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The description of spontaneous symmetry breaking that underlies the connection between classically ordered
objects in the thermodynamic limit and their individual quantum-mechanical building blocks is one of the
cornerstones of modern condensed-matter theory and has found applications in many different areas of physics.
The theory of spontaneous symmetry breaking, however, is inherently an equilibrium theory, which does not
address the dynamics of quantum systems in the thermodynamic limit. Here, we will use the example of a
particular antiferromagnetic model system to show that the presence of a so-called thin spectrum of collective
excitations with vanishing energy—one of the well-known characteristic properties shared by all symmetry-
breaking objects—can allow these objects to also spontaneously break time-translation symmetry in the ther-
modynamic limit. As a result, that limit is found to be able, not only to reduce quantum-mechanical equilibrium
averages to their classical counterparts, but also to turn individual-state quantum dynamics into classical
physics. In the process, we find that the dynamical description of spontaneous symmetry breaking can also be
used to shed some light on the possible origins of Born’s rule. We conclude by describing an experiment on a
condensate of exciton polaritons which could potentially be used to experimentally test the proposed
mechanism.
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I. INTRODUCTION

Combining many elementary particles into a single inter-
acting system may result in collective behavior that qualita-
tively differs from the properties allowed by the physical
theory governing the individual building blocks. This
realization—immortalized by Anderson1 in his famous
phrase “more is different”—not only forms the basis of much
of the research being done in condensed-matter physics to-
day, but has also found applications in areas ranging from
string theory to cosmology. The theory of spontaneous sym-
metry breaking which formalizes these ideas first took shape
over 50 years ago,2–7 and was completed in the context of
quantum magnetism only two decades ago by the detailed
description of the classical state as a combination of thin
spectrum states, emerging as N→� because of the singular
nature of the thermodynamic limit.8–10 The same description
of the classical state emerging from the thin spectrum has
since been shown to also directly apply to the cases of quan-
tum crystals, antiferromagnets, Bose-Einstein condensates,
and superconductors.11–15

The connection between the quantum-mechanical proper-
ties of microscopic particles and the classical behavior of
symmetry-broken macroscopic objects has now again come
to the forefront of modern science because of our technologi-
cal capability to create ever larger and heavier quantum su-
perpositions in the laboratory. Superconducting flux qubits
harbor counter-rotating streams of supercurrent consisting of
up to 1011 Cooper pairs,16,17 while Bose-Einstein conden-
sates of the order of 105 rubidium atoms can be routinely
brought into superpositions of different momentum
states;18–21 Young’s double slit experiment has now been
done using C60 molecules instead of single photons or
electrons;22 and an experiment has even been proposed to
create a Schrödinger catlike state of a mesoscopic mirror
superposed over a macroscopically discernible distance.23

Almost all of these experiments employ the rigidity asso-
ciated with a spontaneously broken symmetry to create and
manipulate their “macroscopic” superpositions. Roughly
speaking, the typical setup consists of a well defined,
symmetry-broken object in isolation �a superconductor,
Bose-Einstein condensate, or crystal� which is brought into
superposition by coupling it to a carefully selected quantum
state. Although the theory of spontaneous symmetry break-
ing can be used to understand the stability and rigidity of
macroscopic classical states such as superconductors or crys-
tals, it says nothing about the quantum dynamics of such
objects interacting with microscopic quantum states. The rea-
son is that the standard description of spontaneous symmetry
breaking is an inherently equilibrium description: it explains
how macroscopic operators �such as the order parameter� can
acquire finite expectation values and still be in stable equi-
librium, but it does not say anything about the dynamics of
these objects away from equilibrium.

A theoretical framework which does addresses the inter-
action of a macroscopic object with its microscopic
quantum-mechanical environment is the study of
decoherence.24–26 The basic idea of decoherence is that the
entanglement of a certain quantum state with the many states
of its environment can lead that state to behave effectively
classically as long as the environmental states remain unob-
servable. This phenomenon has many practical implications,
not in the least in the field of quantum information technol-
ogy, where decoherence forms the main hurdle to be over-
come in the race toward a working quantum computer. In the
description of the interaction of a single macroscopic object
with a single-quantum state, however, the theory of decoher-
ence cannot be applied. The problem is that decoherence has
to always refer to the properties of an ensemble average:
after deciding which of the environmental degrees of free-
dom cannot be measured, one has to trace them out of the
full density matrix describing the combined system of object
and environment. Doing this �partial� trace is exactly equiva-
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lent to taking the quantum-mechanical expectation value of
the operators describing the unobserved states, and as such is
only defined within an ensemble and cannot be used to say
anything about the outcomes of single-shot experiments.27,28

In this paper, we will develop a description of dynamical
spontaneous symmetry breaking that is meant to augment the
earlier theories of equilibrium spontaneous symmetry break-
ing and decoherence in the areas where these theories do not
apply. It will describe the quantum dynamics of individual
experiments in which macroscopic and microscopic systems
are allowed to interact. We will find that the presence of thin
spectrum states in symmetry-broken objects allows these
systems to also spontaneously break the unitarity of
quantum-mechanical time evolution. This result explains
why truly macroscopic objects do not dynamically delocalize
even if they are allowed to interact and entangle with observ-
able microscopic quantum states. At the same time it also
sheds light on what happens if the classical state is forced
into a superposition state by an interaction with a carefully
chosen quantum state.

In Sec. II we start out with a short review of the equilib-
rium theory of spontaneous symmetry breaking. The role of
the thin spectrum and the singular nature of the thermody-
namic limit will be highlighted. In Sec. III we then review
the theory of decoherence and point out why it refers only to
ensemble averages. We then turn to dynamic spontaneous
symmetry breaking in Sec. IV using a model antiferromag-
netic system as an example. It is argued there that the thin
spectrum states and the thermodynamic limit can cooperate
to allow the spontaneous breakdown of quantum-mechanical
unitarity. The resulting dynamics of a single quantum state in
the thermodynamic limit is studied. We then continue in Sec.
V by describing the fate of a macroscopic object that is
forced into a quantum superposition through the interaction
with a microscopic quantum state. The results are again clari-
fied using the example of the model antiferromagnet and are
shown to shed new light on the emergence of Born’s rule.
Finally, in Sec. VI, we describe a possible experimental test
of the ideas of Secs. IV and V using a condensate of exciton
polaritons. We end in Sec. VII with a summary and conclu-
sions.

II. EQUILIBRIUM SPONTANEOUS SYMMETRY
BREAKING

Classically, spontaneous symmetry breaking just corre-
sponds to the evolution from a high-symmetry metastable
state into a ground state with lower symmetry. Quantum me-
chanically, however, the situation becomes a bit more in-
volved. First of all, there are in general nonzero tunneling
matrix elements between different symmetry-broken states,
so that strictly speaking time evolution should cause any
symmetry-broken state to spread out and restore its symme-
try. In practice though, this finite lifetime of a symmetry-
broken state can be easily shown to be long compared to the
age of the universe for any realistic macroscopic system.
Second, the symmetry-broken states of a finite-size system
do not have to be ground states. In fact, they usually are not
even eigenstates of the system.

To establish how the system can end up in a state that is
not an eigenstate of the underlying Hamiltonian, we will here
use the specific example of the Lieb-Mattis model.8–10,12,13

This model is defined by the Hamiltonian:

HLM =
2J

N
SA · SB =

J

N
�S2 − SA

2 − SB
2� . �1�

Here N spin-1
2s are distributed over a bipartite lattice, with

SA/B the total spin of the A /B sublattice and SA/B
z its z pro-

jection. Each spin on the A sublattice thus has an interaction
with every spin on the B sublattice and vice versa. The posi-
tive interaction strength J is divided by N to make the model
extensive. S is the total spin of the combined sublattices: S
=SA+SB. The reason for considering specifically the Lieb-
Mattis model with its infinitely long ranged interactions is
that it captures the relevant physics of a broad class of
Heisenberg models with short ranged interactions. To say
that a particular model for an antiferromagnet is invariant
under SU�2� spin rotations is equivalent to stating that its
Hamiltonian commutes with the total spin operator: �H ,S2�
=0. It is thus immediately obvious that total spin is a good
quantum number for any isotropic antiferromagnet and that
all their eigenstates can be labeled by such a total spin quan-
tum number. For the description of the collective properties
of the system as a whole �i.e., strictly infinite wavelength�,
the total spin is the only relevant part of the Hamiltonian. As
far as the total spin is concerned, the Lieb-Mattis model co-
incides exactly with all other antiferromagnetic models. That
is to say, if one takes any model for an antiferromagnet with
short ranged interactions �such as, for example, the nearest-
neighbor Heisenberg model� and looks at the model in Fou-
rier space, then the k=0 and k=� modes together form ex-
actly the Lieb-Mattis Hamiltonian.12,13 At the same time, the
finite wavelength k�0,� modes are gapped and dispersion-
less in the Lieb-Mattis model due to the infinite ranged in-
teractions, which makes it ideally suited for studying just the
collective behavior of antiferromagnets. The discussion of
this model can also be easily adapted to describe spontane-
ous symmetry breaking in quantum crystals, superconduct-
ors, and Bose-Einstein condensates.12–15

From the second expression in Eq. �1� it is immediately
clear that the ground state of the Lieb-Mattis system is a
singlet state with zero total spin. This nondegenerate ground
state is isotropic in spin space and thus fully respects the
symmetry of its Hamiltonian. The heart of the workings of
spontaneous symmetry breaking lies in the realization that
every many-particle Hamiltonian which possesses a continu-
ous symmetry that is unbroken in its ground state �such as
the Lieb-Mattis Hamiltonian� gives rise to a tower of low-
energy states called the thin spectrum.11,13 The states in this
thin spectrum represent global �infinite wavelength� excita-
tions that can be seen as the center-of-mass properties of the
collective system.13,15 In the present model of Eq. �1� the thin
spectrum consists of total spin states, which only cost an
energy of order J /N to excite. These states thus become de-
generate with the symmetric ground state in the thermody-
namic limit. They are called the thin spectrum of the model
because of the vanishing weight that these states have in the
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partition function. Excitations that change the size of the
sublattice spins are separated from the ground state by an
energy gap of size J and can thus be ignored in the present
�low energy� discussion. Without loss of generality we also
set the z projection of the total spin to be zero from here on.

The crucial observation is now that the strength of the
field needed to give rise to a fully ordered ground state de-
pends on the total number of particles N in the system. Be-
cause the energy separation between two consecutive thin
spectrum states scales as 1 /N, the field strength necessary to
explicitly break the symmetry decreases with system size. In
the thermodynamic limit �where N→�� all of the thin spec-
trum states collapse onto the ground state to form a degen-
erate continuum of states. Within this continuum even an
infinitesimally small symmetry breaking-field is enough sta-
bilize a fully ordered, symmetry-broken ground state. The
system is thus said to spontaneously break its symmetry in
that limit. To make this explicit in the present model, we add
a symmetry-breaking staggered magnetic field to the Hamil-
tonian

HLM =
2J

N
SA · SB − B�SA

z − SB
z � . �2�

The staggered magnetization only has nonzero matrix ele-
ments between consecutive thin spectrum levels13

�S��SA
z − SB

z �S� = �S�+1,SfS + �S�−1,SfS� �
N

4
��S�+1,S + �S�−1,S� ,

�3�

where fS	
�S2��SA+SB+1�2−S2�� / �4S2−1� and the ap-
proximation in the last line holds if SA=SB=N /4 and 1�S
�N.9 The Schrödinger equation for the Lieb-Mattis model
HLM�n�=En�n� can be expanded in the total spin basis using
�n�	
SuS

n�S�. Upon taking the continuum limit it then reads

−
1

2

�2

�S2uS
n +

1

2
�2S2uS

n = �nuS
n, �4�

with �=2 /N
J /B and �n=2En / �BN�+1. This equation de-
scribes a harmonic oscillator and its eigenfunctions are given
in terms of the well-known Hermite polynomials. The expan-
sion of these harmonic wave functions in the total spin basis
brings to the fore the crucial role played by the thin spectrum
in the mechanism of spontaneous symmetry breaking: be-
cause the total spin states all become degenerate in the limit
N→�, it then becomes arbitrarily easy to create the antifer-
romagnetic Néel state �n=0�=
SuS

0�S�. Mathematically this
translates into the noncommuting limits for the equilibrium
expectation values of the order parameter13

lim
N→�

lim
B→0
� SA

z − SB
z

N/2 � = 0,

lim
B→0

lim
N→�

� SA
z − SB

z

N/2 � = 1. �5�

The same instability can also been seen by looking at the
energy of the ground state in the presence of the symmetry-
breaking field. That energy is proportional to NB and thus an

infinite amount of energy could be gained in the thermody-
namic limit by aligning with an infinitesimally small
symmetry-breaking field.

An alternative, equivalent way of phrasing this singular
property of the thermodynamic limit is to say that the limits
of Eq. �5� imply that even in the absence of B, quantum
fluctuations of the order parameter which tend to disorder the
symmetry-broken state take an infinitely long time to have
any measurable effect on a truly macroscopic system. Under
equilibrium conditions, the system will thus be stable in a
symmetry-broken state that is not an eigenstate of its Hamil-
tonian.

Strictly speaking Eq. �5� only allows truly infinite-size
systems to spontaneously select a direction for their sublat-
tice magnetization. A large, but not infinitely large, system
requires a finite symmetry-breaking field to stabilize one of
the symmetry-broken states over the exact ground state. A
true staggered magnetic field that points up on each site of
the A sublattice and down on the B sublattice does not exist
in nature. Because the strength of the required field becomes
increasingly weaker as the size of the antiferromagnet grows,
it can be argued however that any field which has a compo-
nent that resembles a staggered magnetic field will be
enough to stabilize the symmetry-broken state in a large
enough antiferromagnet. Such a weak staggered field could
be provided in practice by magnetic impurities, local fields,
or even by a second antiferromagnet at an ever increasing
distance from the first.

III. DECOHERENCE

We have seen in Sec. II how spontaneous symmetry
breaking enables a macroscopic collection of quantum-
mechanical particles to occur in an effectively classical
symmetry-broken state under equilibrium conditions. A dif-
ferent route from quantum mechanics to effectively classical
behavior is provided by the process of decoherence. Deco-
herence happens on all length scales �i.e., it does not require
the object of interest to be macroscopic� and is a direct con-
sequence of the inability of observers to monitor each and
every degree of freedom of a typical quantum environment.
At the heart, decoherence is the process in which a carefully
prepared quantum state gets entangled with different states in
its environment. Because the observer cannot measure all
states of the environment, he can see only part of the final
entangled state, and this partial state looks effectively classi-
cal. In this section we will use the Lieb-Mattis model as an
example to highlight the different conceptual steps involved
in the decoherence process.

Consider the Hamiltonian of Eq. �1�. Its eigenstates can
be written as �m ,S�	�SA=SB=N /4−m /2,S� �where we have
assumed Sz=0 and SA=SB without loss of generality�. The
excitations m represent magnons or spin waves while the
excitations S form the thin spectrum of this model. Because
the thin spectrum excitations make only a vanishingly small
contribution to the free energy of the Lieb-Mattis antiferro-
magnet if N is large, they will be very hard to observe ex-
perimentally �for relatively small N the thin spectrum states
of molecular antiferromagnets can and have been experimen-

QUANTUM DYNAMICS IN THE THERMODYNAMIC LIMIT PHYSICAL REVIEW B 78, 054301 �2008�

054301-3



tally observed29,30�. For large systems we can thus regard the
thin spectrum as a “quantum environment” for the magnon
excitations. To study decoherence in this system we will first
prepare a superposition state in the magnon sector, then we
will let the magnon and the thin spectrum excitations interact
and become entangled, and finally we will disregard the thin
spectrum states and find that magnon states on their own
have become an effectively classical mixture.

To prepare the initial magnon superposition, let us assume
that we can access the exact ground state of the N-spin sys-
tem and subsequently let it interact with a separate two-spin
singlet state 
1 /2��↑↓�− �↓↑�� through the instantaneous in-
teraction defined by

H = �
2J

N
SA · SB + JS1 · S2 for t � 0

2J

N + 2
�SA + S1� · �SB + S2� for t � 0.� �6�

Here S1/2 refer to the two initially separated spins and the
interaction is turned on at time t=0. In terms of the eigen-
states of the Hamiltonian at positive times, the initial state
can easily be shown to correspond to the state 
1 /2��m
=0,S=0�− �m=2,S=0�� for large N �where now m and S
refer to the N+2-spin system�. That is, for large N the initial
state of the two-spin system is encoded in the number and
relative phase of the magnon excitations in the final state.31

Next, we would like to entangle the magnons with the
thin spectrum so that the quantum information initially en-
coded in the magnon states is spread out over the environ-
ment. One way of achieving this is to instantaneously intro-
duce a symmetry-breaking field B�SA

z +S1
z −SB

z −S2
z� into the

Hamiltonian at some positive time t0. After some straightfor-
ward algebra the state of our systems at times 	= t− t0 is then
found to be

�
� =
1

2

n,S

uS
nu0

n�e−i/�E0
n	�0,S� − e−i/�E2

n	�2,S�� , �7�

where uS
n are the harmonic wave functions defined in Eq. �4�

and Em
n is the energy of the nth harmonic wave function in

the presence of m magnons. We can write this final entangled
state in the form of a density matrix through the definition
��	�= �
��
�. Notice that all the quantum information en-
coded in the initial two-spin singlet state is still present in the
final density matrix ��	�. Because purely quantum-
mechanical time evolution is always strictly unitary, time
inversion symmetry is automatically preserved and there is
always a way �at least in principle� to evolve the system back
to its original state. If we now decide that the thin spectrum
states are unobservable and trace them out of our density
matrix,32 we end up with a reduced density matrix describing
the dynamics of the magnons only. In doing so, however, the
time inversion symmetry is lost along with some of the quan-
tum information. To be specific, the reduced density matrix
�red will be given by

�red�	� = Trthin��	� = 

S

�S�
��
�S�

= 

m,m�

�m��

S


m,S
m�,S
� ��m�� . �8�

In the last line we have written the entangled wave function
as �
�=
m,S
m,S�m��S� to show explicitly that taking the par-
tial trace over the thin spectrum states is equivalent to calcu-
lating the usual quantum-mechanical ensemble-averaged ex-
pectation value with respect to these states.

To complete the analysis of our model interaction, we
should explicitly calculate the reduced density-matrix ele-
ments of Eq. �8�. The diagonal elements of the resulting
2
2 matrix are easily seen to be 1/2. For the off-diagonal
elements the calculation involves a summation over terms

which differ only by the phase factor e−i/��E0
n−E2

n�	. After some
algebra one finds that these phases interfere destructively,31

so that after a time 	coh�� /
JB the reduced density matrix
becomes effectively diagonal. We thus find that the initial,
pure density matrix loses its coherence and becomes a diag-
onal, mixed, reduced density matrix within a time 	coh. Be-
cause for large enough N the environmental states are unob-
servable, this constitutes a “for all practical purposes”
reduction from quantum to classical physics within the en-
semble average. In any one single, individual experimental
realization of the above procedure, however, one ends up
with the full density matrix defined by Eq. �7�, and one can-
not use the expectation values of Eq. �8� to conclude any-
thing about that one specific experiment. In particular, in the
classic Young’s double slit experiment, the observation that
each single electron produces only a single dot on the pho-
tographic plate can not be explained by invoking decoher-
ence and averaging over the many degrees of freedom of the
plate.27,28,33

Although the presence of the thin spectrum can lead to
decoherence in real qubits,11 the interaction of the Lieb-
Mattis antiferromagnet and the two-spin state considered in
this section is of course a highly pathological example. In
reality there will never be infinite ranged interactions, instan-
taneous changes to the Hamiltonian, or full experimental
control over the prepared states. Moreover, experiments typi-
cally involve finite temperatures and external environments
that do not resemble the thin spectrum states of our model.
However, the general idea of constructing a meaningful
quantum superposition, letting it interact and entangle with
its environment and then looking only at the result averaged
over the environmental degrees of freedom to find decoher-
ence, remains essentially unaltered in more realistic
situations.26 In particular the conclusion that the theory of
decoherence is applicable only within the realm of ensemble
averages remains intact throughout.

IV. DYNAMIC SPONTANEOUS SYMMETRY BREAKING

As we have seen, both the theory of spontaneous symme-
try breaking and the theory of decoherence have only a lim-
ited domain of applicability. Because macroscopic states
typically have a lot of interaction with their environments,
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decoherence explains the reduction of pure macroscopic
states to mixed states in situations where not all degrees of
freedom can be explicitly monitored, but only in an �en-
semble� averaged sense. Spontaneous symmetry breaking on
the other hand can be used to demonstrate the stability of
macroscopically ordered, classical states using the singular
nature of the thermodynamic limit and the properties of the
thin spectrum, but only under equilibrium conditions. The
most general situation involving macroscopic objects—that
of individual-state quantum dynamics in the thermodynamic
limit—cannot be addressed within either of these frame-
works.

In this section we will show that the presence of a thin
spectrum in objects that can undergo spontaneous symmetry
breaking also allows these objects to spontaneously break the
�unitary� time-translation symmetry of quantum-mechanical
time evolution. The resulting dynamical version of the pro-
cess of spontaneous symmetry breaking naturally leads to the
observed stability of macroscopic objects even in the pres-
ence of interactions with microscopic quantum states.

The approach to spontaneously breaking time-translation
symmetry is exactly analogous to the spontaneous breaking
of more usual symmetries: we will introduce a vanishingly
small nonunitary perturbation to the free Hamiltonian and
demonstrate that this results in a qualitative change to the
dynamics of a macroscopic object, even in the limit of taking
the field strength to zero. The conclusion must thus be that
the quantum dynamics of these macroscopic objects is infi-
nitely sensitive to any nonunitary perturbation of the type
considered. In other words, purely unitary quantum dynam-
ics is unstable in the thermodynamic limit in the same way
that the total spin singlet state of a macroscopic antiferro-
magnet is an unstable state under equilibrium conditions. As
a result the unitary time-translation symmetry of macro-
scopic quantum objects will be spontaneously broken and
gives rise instead to classical dynamics.

At this point one may wonder about the physical origin of
the symmetry-breaking field. As with the usual equilibrium
symmetry breaking, large but finite sized systems will re-
quire a very small but nonetheless finite symmetry-breaking
field. Nonunitary fields however are strictly forbidden in
quantum theory. The origin of a nonunitary symmetry-
breaking field must therefore lie outside of quantum mechan-
ics. There are many possible candidates that could in prin-
ciple insert a vanishingly small nonunitary correction into
quantum mechanics. A notable example is the theory of gen-
eral relativity, in which general covariance rather than uni-
tarity is the guiding principle. Because of this, gravity has �in
a different setting� been considered before as a possible non-
unitary influence on mesoscopic systems.34–36 In this paper
we will not speculate about the possible origins of the non-
unitary field, but merely recognize that there are nonunitary
physical theories outside of the realm of quantum mechanics
and that only an infinitesimally small contribution from one
of these sources would be enough to spontaneously break the
unitarity of quantum dynamics in the thermodynamic limit.

We thus consider once again the Lieb-Mattis model for an
antiferromagnet, but now in the presence of a nonunitary
symmetry-breaking field

H =
2J

N
SA · SB + ib�SA

z − SB
z � . �9�

The rationale of which specific form of nonunitary field is to
be included in this equation is again exactly analogous to the
case of equilibrium spontaneous symmetry breaking: one
should in principle consider every conceivable field. The sys-
tem will of course be stable with respect to the vast majority
of them, but as long as there is one that has an effect in the
limit in which its strength is sent to zero, the system will be
unstable. In the equilibrium case considered before, we have
seen that the symmetric singlet state is unstable with respect
to a staggered magnetic field. We could have also considered
other symmetry-breaking fields, such as a uniform magnetic
field. It is easy to show however that such a field would not
lead to the noncommuting limits of Eq. �5�. The Lieb-Mattis
system is thus shown to be unstable under equilibrium con-
ditions with respect to antiferromagnetic ordering, but not
with respect to ferromagnetic ordering. The situation in the
dynamical case is analogous: most fields have no effect on
the quantum dynamics of the system if their strength is sent
to zero. However, as soon as there is one field that does
influence the dynamics even if it is infinitesimally weak, the
dynamics is found to be unstable. Notice also that in the
equilibrium case, the antiferromagnet is in fact unstable to-
ward staggered magnetic fields along any axis. In practice,
the resulting orientation of the order parameter is therefore
randomly chosen, just as in the case of classical symmetry
breaking. In Eq. �9� we have chosen a nonunitary version of
the staggered magnetic field to break time-translational sym-
metry because to have an effect in the thermodynamic limit,
the symmetry-breaking field must couple to the order param-
eter of the system. The orientation along the z axis rather
than any other axis is chosen for convenience only.

The time evolution operator U�t�	exp�−iHt /�� implied
by Eq. �9� has a nonunitary component, and thus no longer
automatically conserves the total energy of the system �de-
fined as �H� with b→0�. This problem is automatically
solved in the thermodynamic limit though. The staggered
magnetization only has nonzero matrix elements between
consecutive states in the thin spectrum �see Eq. �3��. Since
all thin spectrum states become degenerate with the ground
state in the limit N→�, the time evolution defined through
H cannot alter the total energy of the system in that limit.
Other problems that are usually associated with nonunitary
quantum dynamics �conservation of normalizability, commu-
tativity, and so on� are likewise automatically solved in the
limit of vanishing b and large N.

To visualize the time evolution defined by U�t�, consider a
general initial state �
�t=0��=
S
S�t=0��S� �we again take
SA and SB maximal and Sz=0�. Using �
�t��=U�t��
�0�� we
then find the generalized �nonunitary� Schrödinger equation
to be


̇S =
− i

�

J

N
S�S + 1�
S +

b

�
�fS+1
S+1 + fS
S−1� , �10�

with fS the matrix elements defined in Eq. �3�. This differen-
tial equation for the time evolution of a general initial wave
function cannot easily be solved analytically �taking the limit
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in which S becomes a continuous variable and 1�S�N,
there is a solution in terms of Whittaker functions, but this
explicit solution is not very enlightening for our present pur-
poses�. One can however integrate Eq. �10� forward in time
numerically, and we can study the effect of the unitarity
breaking field by comparing the resulting time evolutions of
different initial states. Two initial states of particular interest
are the completely symmetric singlet state and the
symmetry-broken antiferromagnetic Néel state.

In the case of the symmetric initial state the time evolu-
tion of Eq. �10� leads the unitarity breaking field to amplify
the weight of states with a finite order parameter �i.e., their
components in the wave function become monotonously in-
creasing exponential functions�, so that a fully ordered state
is quickly formed. In Fig. 1 the time evolution of the order
parameter is shown for different values of b, J, and N. It is
immediately clear that the halftime associated with the re-
duction toward an ordered state must be proportional to
1 / �Nb�, so that the thermodynamic limit in this case is found
to be a singular limit: if we let b go to zero before sending N
to infinity, the symmetric singlet state remains an eigenstate
of H and under time evolution it can only pick up a total
phase; if on the other hand even just an infinitesimally small
field b is present while the thermodynamic limit is taken, the
time evolution governed by H gives rise to an instantaneous
reduction of the symmetric state to the fully ordered state
with the order parameter pointing in the direction of b.
Analogous to the equilibrium description, this noncommut-
ing order of limits signals the sensitivity of the system to
even infinitesimally small perturbations. In this case it is the
unitary time-translational symmetry of quantum dynamics it-
self that is spontaneously broken, and as a result the sym-
metric singlet state will be spontaneously and instanta-
neously reduced to an ordered Néel state.

Starting from a fully ordered initial state, the picture
changes drastically. The state which has antiferromagnetic

order aligned with the field b to start with will not be influ-
enced at all. That state is just a stable state with respect to the
generator of time evolution U�t�. The evolution of the initial
state with full Néel order along the x axis �at a 90° angle
with the field b� is shown in Fig. 2. The effect of the pres-
ence of the unitarity breaking term is clearly to align the
initial order parameter with the field b. The timescale on
which this process takes place however is proportional to

1 / �Jb�. This time is just the ergodic time of the Lieb-Mattis
system and it becomes infinitely long in the thermodynamic
limit with a vanishing symmetry-breaking field. The differ-
ence between this “turning time” and the “ordering time” of
the symmetric state considered before is due to the fact that
for large objects any fully ordered state becomes exactly or-
thogonal to all differently ordered states, while the symmet-
ric state always keeps a finite overlap with all of them.37 The
lifetime of the symmetric state is therefore determined sim-
ply by the strength of the amplification due to the unitarity
breaking field, while the turning time of a fully ordered ini-
tial state is set by the ergodic time of the system. Starting
from the ordered state, the limit N→� is thus no longer
singular: regardless of the size of N, the limit b→0 will
reduce any dynamics to just the standard quantum-
mechanical time evolution. The dynamics of the ordered
state, in other words, is stable with respect to the unitarity
breaking field b.

Summarizing, it has become clear that even an infinitesi-
mally small unitarity breaking field is enough in the thermo-
dynamic limit to instantaneously convert a symmetric initial
state into a fully ordered state. Once such an ordered state
has been formed, however, it is stable with respect to any
differently aligned unitarity breaking field. The former insta-
bility explains why the dynamic interaction with microscopic
states cannot cause the wave function of a macroscopically

FIG. 1. �Color online� Left: The staggered magnetization as a
function of time. To make the plot the values J=10 and b=1 were
used, and time was measured in units of �s. The curves range from
N=20 �rightmost curve� to N=400 �leftmost curve� and represent
the evolution starting from the completely symmetric singlet state.
Right: The dependence of the halftime on the parameters of the
model. The top plot shows that t1/2�1 /b, the middle plot that t1/2
�1 /N, and the bottom plot that t1/2 is independent of J.

FIG. 2. �Color online� Left: The staggered magnetization along
the z axis as a function of time. To make the plot the values J
=10 and N=200 were used, and time was measured in units of �s.
The curves range from b=0.1 �rightmost curve� to b=2 �leftmost
curve� and represent the evolution starting from the state with full
antiferromagnetic order along the x axis. Right: The dependence of
the halftime on the parameters of the model. The top plot shows that
t1/2�
1 /b, the middle plot that t1/2 is independent of N, and the
bottom plot that t1/2�
1 /J.

JASPER VAN WEZEL PHYSICAL REVIEW B 78, 054301 �2008�

054301-6



ordered state to spread. After all, the more symmetric,
spread-out wave packet would be an unstable state, and it
would spontaneously and instantaneously be brought back to
the ordered state. At the same time the stability of the mac-
roscopically ordered state itself ensures that such a state can-
not spontaneously change the direction of its order param-
eter.

In the above analyses we have only considered symmetry-
breaking fields that are constant in time. Because of the dy-
namical nature of the spontaneous symmetry-breaking pro-
cess, it would actually be more natural to also include time
dependent nonunitary fields. Since the strength of the field is
taken to be infinitesimal, the time dependence of such a field
must lie in its spatial orientation. As we have seen, ordered
states are stable with respect to any orientation of the
symmetry-breaking field and will thus also be stable with
respect to a fluctuating field. The symmetric state on the
other hand is sensitive to the direction of the field b: it is
along this direction that the ordered state is formed. A fluc-
tuating symmetry-breaking field will thus cause the quantum
dynamics of a symmetric state to amplify different orienta-
tions of the order parameter at different times. As a result
both the direction and the size of the overall staggered mag-
netization will undergo a random walk. As soon as the size of
the magnetization is large enough, however, the dynamics
again reduces to that of the ordered state and the influence of
the symmetry-breaking field will no longer be felt. Because
the symmetric state reacts infinitely fast to an infinitesimal
perturbation in the thermodynamic limit, the whole process
of undergoing a random walk and picking out an orientation
for the order parameter will still be effectively instantaneous,
and the earlier conclusions about the stability of quantum
dynamics in the thermodynamic limit remain unaltered even
in the presence of a fluctuating field.

V. MACROSCOPIC SUPERPOSITIONS AND BORN’S
RULE

Having established that a macroscopically ordered state is
dynamically stable, the question arises what would happen to
a macroscopic system that is forced into a superposition by
some strong external force. Instead of a gentle and continu-
ous spreading of the wave packet �such as the one caused by
the environment, which is subject to the instability discussed
before�, consider a quantum-mechanical operation which
quickly drives a macroscopic system into a superposition of
ordered states with well separated orientations of their order
parameters �the instantaneous coupling of the order param-
eter to a quantum superposition would in general do the
trick�. To be specific, consider the initial state

�
�0�� = ��AFM�x + ��AFM�z. �11�

Here �AFM�x signifies an antiferromagnetic Néel state or-
dered along the x axis. The time evolution of the order pa-
rameter measured along the z axis, starting from the initial
state with �=�=
1 /2 is shown in Fig. 3. Here we again
consider a constant symmetry-breaking field b and the time
evolution defined by Eq. �10�.

The evolution of this initial state can be understood as a
combination of the two processes encountered before. First

there is a fast reduction of the initial state to a single ordered
state within a timescale �1 / �Nb�. The choice of which or-
dered state results from this fast initial evolution depends
only on the chosen direction of the unitarity breaking field,
and not on the weights of the different ordered states in
�
�0�� �as can be seen in Fig. 4�. After the fast reduction to a
single ordered state, the slow process of rotating the order

FIG. 3. �Color online� The evolution of the order parameter
along the zaxis as a function of time �in units of �s� for different
constant orientations of the unitarity breaking field. Each set of
three curves consists of different numbers of spins which are ini-
tially prepared in an equal-weight superposition of being ordered
along the z axis and along the x axis. The angle � between the
unitarity breaking field and the z axis is 0.2� for the upper set,
0.25� in the middle, and 0.3� for the lowest set. The inset shows
the fate of the order parameter in the thermodynamic limit as a
function of �.

FIG. 4. �Color online� The evolution of the order parameter
along the z axis as a function of time �in units of �s� starting from
the superposition state 
1 /5�AFM�x+
4 /5�AFM�z. Each set of
three curves represents the time evolution with three different val-
ues for N in the presence of a single, constant orientation of the
unitarity breaking field b. From top to bottom the angle between b
and the z axis for the different sets is 0.1�, 0.2�, 0.25�, 0.3�, and
0.4�. The point at which the initial fast reduction process starts
favoring the x orientation over the z orientation is seen to be at
0.25�.
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parameter toward alignment with the field b takes over. This
secondary process happens in a time which scales as
�
1 / �Jb�. In the limit that the number of particles goes to
infinity before the unitarity breaking field is sent to zero, the
result is thus a spontaneous, instantaneous reduction of the
initial state to just a single one of the ordered states present
in the original superposition.

The observation that the selection of the ordered state to
be singled out by the spontaneous dynamics depends on the
chosen �constant� orientation of b signifies the fact that the
initial state is unstable with respect to two different and com-
peting perturbations: one for each orientation of the order
parameter present in the initial superposition. The two pos-
sible stable final states are mutually exclusive since for any
choice of unitarity breaking field, only one orientation of the
staggered magnetization results.

As mentioned before, the dynamical nature of the
symmetry-breaking process implies that we should really
consider a time-dependent, fluctuating symmetry-breaking
field rather than only a constant field. In the presence of such
a fluctuating field, it is clear that there must be a competition
between the two instabilities of the initial state. In general,
this gives rise to a statistical outcome of the reduction pro-
cess �just like the instabilities of the singlet state gave rise to
a statistical, random selection of the orientation of its order
parameter under equilibrium conditions�. The resulting dy-
namic process could be somewhat reminiscent of the evolu-
tions considered in the so-called Ghirardi-Rimini-Weber
�GRW� and continuous spontaneous localization �CSL� mod-
els for quantum state reduction,38,39 and consists of a random
sequence of amplifying one or the other ordered state until
one of them completely dominates.

It was shown recently by Zurek,40 using the concept of
ENVariance, that one can obtain conclusions about the sta-
tistics of the final results of a dynamic competition between
instabilities such as the one considered here, without know-
ing the exact dynamics governing the competition process.41

It is shown in the appendix that Zurek’s proof is applicable
here without the need for any assumptions regarding our
system. Following his derivation one finds that the only pos-
sible result of the dynamic competition between different
instabilities of the initial state of Eq. �11� is the emergence of
Born’s rule: the probability of a certain direction of the order
parameter emerging from the process is given by the square
of its weight in the initial wave function.42 Notice that this
result is not an expectation value: it is valid even for the
quantum dynamics of a single macroscopic object that is
forced into a superposition state.

VI. EXPERIMENTAL PREDICTIONS

The dynamic spontaneous symmetry-breaking process de-
scribed in the previous sections results in unaltered, purely
unitary quantum dynamics for microscopic particles, but also
gives rise to spontaneous and nonunitary effects in the ther-
modynamic limit. For truly macroscopic objects the nonuni-
tarity will be effectively instantaneous, and the quantum dy-
namics of such objects correspondingly reduces to classical
physics. Somewhere in between the micro- and macroscales,

however, there must be a class of mesoscopic objects which
are just sensitive enough to the presence of a small �but
finite� time-translation symmetry-breaking field to undergo
nonunitary dynamics on timescales that are measurable by
human standards. The scale at which this happens should in
fact be the same scale at which collections of interacting
quantum particles become large enough to be meaningfully
ascribed a �stable� order parameter and considered classical,
symmetry-broken objects under equilibrium conditions. This
prediction can in principle be exploited to experimentally
test the ideas which are put forward in this paper.

The greatest obstacle in realizing such an experimental
test will be decoherence. Quite apart from the issue of its
applicability to only ensemble averages, decoherence is of
course a real physical phenomenon which severely compli-
cates the observation of quantum effects in systems coupled
to a reservoir. To observe the breakdown of unitary quantum
dynamics, one will thus have to find a way to experimentally
distinguish its effects from those of the usual environmental
decoherence. The most obvious way of doing that is to look
at single-shot experiments only. If the famous experiment of
Arndt et al.,22 interfering C60 molecules one at a time, could
be scaled up to truly macroscopic proportions, it would form
the ideal testing ground for observing the transition from
quantum to classical behavior. The crossover scale could
then be directly compared with the scale at which ordering
and rigidity appear under equilibrium conditions, and this
could be used to examine the role played by dynamic spon-
taneous symmetry breaking. Such macroscopic interference
experiments, however, seem to be very far from what can
presently be experimentally realized.

We thus have to look for a different Schrödinger-catlike
state of a mesoscopic system which is large enough to feel
the effects of nonunitarity, but small enough to still have a
measurably long reduction time. Creating such mesoscopic
superpositions in the laboratory surely is not an easy task,
but significant experimental progress toward its realization is
already being made in setups in for example quantum com-
putation �superconducting flux qubits and Cooper pair boxes�
or cold atom physics �Bose-Einstein condensates in optical
traps�. Note however that the superposition must be a com-
bination of states with different orientations of the order pa-
rameter itself. Superpositions of elementary excitations �such
as magnons, phonons, or supercurrents� which do not affect
the order parameter are not subject to the spontaneous reduc-
tion process described in the previous sections, even in a
truly infinite system. Although distinguishing any nonunitary
dynamics from the effects of decoherence is known to be
very hard in most systems,36 there is at least one experimen-
tal arena in which there seems to be, at least in principle, an
opportunity for doing so: the Bose-Einstein condensation of
exciton polaritons in semiconductor microcavities.43–45

Exciton polaritons are composite particles built partly
from particle-hole pairs �excitons� and partly from photons.
This unique combination of light and matter allows the par-
ticles to have strong interactions �due to their excitonic na-
ture� while also being susceptible to direct experimental ma-
nipulation �due to their coupling to light�. Although the short
lifetime of the excitons implies that the condensate formed
from polaritons in semiconductor microcavities is necessar-
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ily in a dynamical rather than a thermal equilibrium, it has
been shown that the condensed phase shares many properties
of the usual atomic Bose-Einstein condensate: it is a coherent
state of spontaneously broken symmetry with an associated
Goldstone mode.45 Recently it has been proposed that the
dynamical nature of the polariton condensation can be used
to explicitly break the U�1� phase symmetry present in a
continuously, resonantly pumped experiment using an addi-
tional continuous probing laser.45,46 The coherence of the
condensate can be independently tested by looking at the
coherence and polarization of the light emitted by recombin-
ing excitons.47 If the pumping power is large enough to cre-
ate a polariton condensate in a truly classical, symmetry-
broken state, then the condensate should retain its coherence
even after the probing laser has been turned off. At lower
power the condensate wave function will instead spread out
over phase space and look symmetric again. Building on
these results, the following experiment comes to mind. One
can use the lack of number conservation in the condensate’s
dynamical equilibrium46 to create a superposition of different
order parameters by temporarily subjecting the polaritons to
a superposition of two different probing laser beams. The
resulting macroscopic superposition is then expected to
spontaneously collapse into just one ordered state for high
enough pumping power due to dynamical spontaneous sym-
metry breaking, while lower pumping power �and the ab-
sence of symmetry breaking� should lead only to quantum
beatings between the states of the initial superposition. If the
transition from collapse behavior to quantum beatings occurs
at the same pumping power at which a single condensate has
been seen to remain stable after turning off the probing laser,
that would form a strong experimental indication of the in-
volvement of dynamic spontaneous symmetry breaking in
the reduction process.

VII. CONCLUSIONS

In summary, we have shown here that macroscopic ob-
jects which spontaneously break a continuous symmetry un-
der equilibrium conditions are also subject to a spontaneous
breakdown of quantum mechanics’ unitary time-translation
symmetry. The coincidence of objects liable to dynamic
spontaneous symmetry breaking with those liable to equilib-
rium spontaneous symmetry breaking is ensured by the cru-
cial role played by the thin spectrum which is known to
characterize the latter objects. Dynamic spontaneous symme-
try breaking augments the well-known theories of equilib-
rium spontaneous symmetry breaking and decoherence in the
domains where these theories do not apply, and so leads to
the symmetry-broken state being not just the only stable
ground state under equilibrium conditions, but also the only
stable state dynamically. The quantum dynamics of any sym-
metric state, and more generally any superposition of differ-
ently ordered states, is almost infinitely sensitive to nonuni-
tary perturbations in the thermodynamic limit, and such
states must thus spontaneously and instantaneously be re-
duced to a state with only a single order parameter.

Applying this description of dynamic spontaneous sym-
metry breaking to the ordered states in our classical world, it

becomes clear why these ordered classical states do not seem
to be bothered by the dynamical interaction with microscopic
quantum states: any buildup of quantum uncertainty is im-
mediately reduced by the dynamical symmetry-breaking pro-
cess. Using the description instead to study the fate of a
superposition of different classical states, one finds that only
a single state can survive the spontaneous breakdown of
quantum dynamics and that the probability for finding any
one particular outcome must be given by Born’s rule.

The predicted spontaneous breaking of unitary quantum
time evolution can in principle be tested experimentally if
one has a controlled way of constructing superpositions of
differently ordered mesoscopic states. One type of system in
which this may possibly be achieved is given by the polar-
iton condensates in which the phase of the order parameter
can be selected using the coherence of an incident laser
beam.
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APPENDIX A: QUANTUM MEASUREMENT

In the main text we investigated the stability of a macro-
scopic state created by a quantum-mechanical operation
which quickly drives an ordered system into a superposition
of differently ordered states with well separated orientations
of their order parameters. One instance in which such a pro-
cess is believed to occur is quantum measurement. By its
very nature a quantum measurement is defined to be a pro-
cess in which some property of a microscopic quantum state
is translated into a specific pointer state of a macroscopic
measurement machine.24,25 The different pointer states of
such a machine must be easily distinguishable, classical
states. In practice this always implies that they are
symmetry-broken states with different values or orientations
for their order parameters. If we take these properties of the
measurement machine at face value then it is clear that the
measurement of a superposed quantum state must also lead
to a superposition of pointer states in the measurement de-
vice because of the unitarity of quantum-mechanical time
evolution.28 This simple observation already lead John von
Neumann to postulate a collapse process which takes place
after the usual quantum-mechanical time evolution and acts
only on macroscopic superpositions.32 The explanation of
why the collapse process exists, why it only acts on pointer
states and not on microscopic states, and why it gives rise to
Born’s rule �dictating the probability of a certain outcome� is
known as the quantum measurement problem. Many at-
tempts have been made to either introduce a specific collapse
process into quantum mechanics or to avoid the problem
altogether by interpreting the mathematics of quantum me-
chanics in a different way. However, neither of these ap-
proaches has yet lead to a satisfactory resolution of all of the
questions posed by the measurement problem.
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Our analysis of the quantum dynamics of a superposition
of differently ordered states in the thermodynamic limit sug-
gests the following description of quantum measurement: a
quantum measurement machine is any system with a well
developed order parameter that can be coupled to a micro-
scopic quantum system in such a way that the orientation of
the order parameter after the coupling process has been com-
pleted represents the property of the microscopic state that is
to be measured. In general such a coupling should give rise
to macroscopic superpositions of the order parameter, but the
dynamical, spontaneous breakdown of quantum mechanics’
unitary time evolution ensures the spontaneous reduction of
such superpositions into a state with just a single well de-
fined order parameter. Because the macroscopic superposi-
tion state is subject to multiple competing instabilities, the
outcome of the reduction process is probabilistic. The prob-
ability for obtaining a specific outcome is automatically
guaranteed to agree with Born’s rule due to the properties of
the process of dynamic spontaneous symmetry breaking �see
also Appendix B�.

Using dynamic spontaneous symmetry breaking, we have
arrived at a clear-cut definition of what a measurement ma-
chine is, why it is subject to a collapse process, why this
collapse does not influence microscopic quantum states, and
we have recovered Born’s rule. The quantum measurement
problem is thus reduced to the problem of identifying pos-
sible sources of nonunitary perturbations to the theory of
quantum mechanics, which could drive the dynamic sponta-
neous symmetry-breaking process. Regardless of its source
though, any nonunitary influence which can couple to a suit-
able order parameter will be amplified by the symmetry-
breaking process and yield the expected macroscopic dynam-
ics.

APPENDIX B: DETAILED DERIVATION OF BORN’S
RULE

In this appendix we will give the detailed derivation of the
emergence of Born’s rule from the dynamic spontaneous
breaking of quantum-mechanical time-translation symmetry
as applied to the case of the Lieb-Mattis antiferromagnet.
There are three main requirements that need to be satisfied in
order for the following derivation to be applicable. These
requirements are: �1� The spontaneous evolution must yield a
final state with only a single orientation of the order param-
eter, and the selection of the specific order parameter to be
realized must be a probabilistic process; �2� the probability
of obtaining a certain outcome may only depend on its
weight in the initial superposition; and �3� if the initial su-
perposed state is entangled with some other, external
quantum-mechanical object with which the antiferromagnet
has no further interaction, then the probability for finding a
certain final orientation of the antiferromagnetic order pa-
rameter should not be affected by the precise state of the
external quantum-mechanical object.

To see that these requirements are all satisfied by the pro-
cess of dynamic spontaneous symmetry breaking described
before, consider the initial state

�
�0�� = ��e1� � �AFM�x + ��e2� � �AFM�z, �B1�

where ���2+ ���2=1, �AFM�x is the state with full antiferro-
magnetic order along the x axis, and the states �e1� and �e2�
are some external states which have no further interaction
with the antiferromagnet whatsoever. The Hilbert space of
the combined system of antiferromagnet and external states
can be written as a product of the space of states of the
antiferromagnet and the space of external states. Following
the discussion of the quantum dynamics of a superposed
macroscopic state in the main text, it is clear that the dynam-
ics of the initial state �
�0�� is unstable with respect to two
orientations of the symmetry breaking field. Since the two
instabilities of �
�0�� must compete with each other, only one
of the two available stable states can be realized, and the
selection of which state is realized in the presence of a fluc-
tuating symmetry-breaking field is a probabilistic process, as
stated in requirement 1. Furthermore, since the competition
between instabilities takes place on an infinitesimally short
timescale, it cannot be influenced by the finite-energy scale
J. The fluctuating field b is guaranteed by symmetry not to
favor either one of the two possible final states. The only
thing left to determine the probability of finding a certain
final state is then the choice of the initial state itself: i.e., only
the weights � and � can determine the probability distribu-
tion of final states, in agreement with requirement 2. That
these weights in fact do influence the probability distribution
is obvious from the fact that the initial states with � or �
equal to zero are stable states. The external states �e1� and
�e2� cannot influence the spontaneous dynamics because the
competition between the instabilities is governed by the uni-
tarity breaking field b. This field acts only on the states of the
antiferromagnet and not on any other part of the Hilbert
space �requirement 3�. The initial state �
�0�� will thus be
spontaneously and instantaneously reduced to either the state
�e1� � �AFM�x or the state �e2� � �AFM�z, while the probabili-
ties Px�
� and Pz�
� for finding either final state depend only
on the values of � and �.

Building on these known properties of the final probabili-
ties, let’s now follow Zurek’s arguments for obtaining the
exact final probability distribution.41 First consider two dif-
ferent initial states:

�
� = ��e1� � �AFM�x + ��e2� � �AFM�z,

��� = ��e3� � �AFM�x + ��e4� � �AFM�z. �B2�

Since the final probabilities can only depend on the weights
of the classical states in the initial wave function �req. 2�, it is
immediately clear that Px�
�= Px���. This must hold inde-
pendent of the external states �e1� through �e4� �req. 3�, and
thus it must also hold in the special case �e1�
=ei��e3� , �e2�= �e4�, showing that the probability distribu-
tion cannot depend on the phases of the weights in the initial
wave function.

Next, consider the initial states

�
� = ��e1� � �AFM�x + ��e2� � �AFM�z,
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��� = ��e2� � �AFM�z + ��e1� � �AFM�x. �B3�

Clearly, we must have Px�
�= Pz��� for any choice of � and
�. In the special case ���= ��� we also know Pz�
�= Pz���,
and thus we find that in that case Px�
�= Pz�
�. In other
words, if the sizes of the weights corresponding to two final
states are equal, then so are the probabilities for finding these
states. This statement can be trivially extended to yield the
rule that a set of possible final states with equal weights in
the initial wave function leads to equal probability for find-
ing any one of the final states within that set. Continuing that
line of thought, consider

�
� = ��AFM�i + ��AFM� j + ��AFM�k + . . . , �B4�

where i, j, and k are different directions in real space. The
combined probability Pi or j�
� must then be equal to
Pi�
�+ Pj�
�=2Pk�
�, which follows directly from the addi-
tivity of probabilities and the mutual exclusivity of the three
possible final states. That the final states are in fact mutually
exclusive is guaranteed by requirement 1: in the thermody-
namic limit �AFM�i and �AFM� j correspond to states with
different directions of their order parameters, which can have
no overlap and only one of which can be the result of the
spontaneous dynamics. Extending this result, it is now clear
that within a set of possible final states with equal weights in
the initial wave function, a subset has a combined probability
equal to the relative size of the subset times the total prob-
ability of the entire set.

Finally, consider the initial state

�
� =
m

N
�e1� � �AFM�x +
 n

N
�e2� � �AFM�z. �B5�

The probability Px�
� is independent of the external states
�req. 3�. We are therefore free to write �e1� and �e2� in a basis
in which they are a sum of states with equal weights �such a
basis can be shown to always exist41�:

�e1� =
 1

m
��E11� + �E12� + . . . + �E1m�� ,

�e2� =
1

n
��E21� + �E22� + . . . + �E2n�� . �B6�

Reinserting these definitions into Eq. �B5� yields

�
� =
 1

N�

i=1

m

�E1i� � �AFM�x + 

j=1

n

�E2 j� � �AFM�z� .

�B7�

In this expression all weights are equal, and using the previ-
ously found rules we must thus conclude that Px�
�
= n

m Pz�
�. In the case that the total probability for finding any
outcome at all is 1, this result precisely corresponds to
Born’s rule: the probability for finding any specific final ori-
entation of the order parameter is equal to the square of the
weight of the corresponding state in the initial wave
function.42 The extension of this result to include also
weights which are square roots of nonrational numbers is
trivial because the rational numbers are dense on the real
line.41
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