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We present a multiscale modeling approach that can simulate multimillion atoms effectively via density-
functional theory. The method is based on the framework of the quasicontinuum �QC� approach with orbital-
free density-functional theory �OFDFT� as its sole energetics formulation. The local QC part is formulated by
the Cauchy-Born hypothesis with OFDFT calculations for strain energy and stress. The nonlocal QC part is
treated by an OFDFT-based embedding approach, which couples OFDFT nonlocal atoms to local region atoms.
The method—QCDFT—is applied to a nanoindentation study of an Al thin film, and the results are compared
to a conventional QC approach. The results suggest that QCDFT represents a new direction for the quantum
simulation of materials at length scales that are relevant to experiments.
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I. INTRODUCTION

The ability to perform quantum simulations of materials
properties over length scales that are relevant to experiments
represents a grand challenge in computational materials sci-
ence. If one could treat multimillions or billions of electrons
effectively at micron scales, such first-principles quantum
simulations could revolutionize materials research and pave
the way to the computational design of advanced materials.
There are two principal reasons why quantum simulations at
relevant experimental scales are important. First of all, it
allows a direct comparison between theory and experiment.
For example, the rapidly emerging field of nanotechnology
demands realistic and accurate modeling of material systems
at the nanoscale, including nanoparticles, nanowires, quan-
tum dots, nanoelectromechanical systems �NEMS�, and mi-
croelectromechanical systems �MEMS�. All these nanosys-
tems could reach a length scale of microns and contain
millions or billions of electrons, if not more. Second, quan-
tum simulations at larger scales are essential even for ex-
tended bulk crystals where periodic boundary conditions
may be used. This is due to the fact that a real bulk solid
always contains lattice defects �or impurities� whose interac-
tions are long range—dislocations being the prominent ex-
ample. An insufficiently large periodic unit cell would lead to
unrealistically high concentrations of defects and/or impuri-
ties, rendering the results of such simulations questionable.

In this paper, we propose a multiscale approach that is
based entirely on density-functional theory �DFT� and allows
quantum simulations at the micron scale and beyond. The
method, termed QCDFT, combines the coarse-graining idea
of the quasicontinuum �QC� approach and the coupling strat-
egy of the quantum mechanics/molecular mechanics �QM/
MM� method, and represents a potentially major advance in
the quantum simulation of materials properties. It should be
stated at the outset that QCDFT is not a brute-force elec-
tronic structure method, but rather a multiscale approach that
can treat large systems—effectively up to billions of elec-
trons. Therefore, some of the electronic degrees of freedom
are reduced to continuum degrees of freedom in QCDFT. On

the other hand, although QCDFT utilizes the idea of
QM/MM coupling, it does not involve any classical/
empirical potentials �or force fields� in the formulation—the
energy calculation of QCDFT is entirely based on orbital-
free DFT �OFDFT�. This is an important feature and advan-
tage of QCDFT, which qualifies it as a bona fide quantum
simulation method.

Since QCDFT is formulated within the framework of the
QC method, we shall give an introduction to QC in the con-
text of the multiscale modeling of materials in Sec. II A.
Then in Sec. II B, we introduce the OFDFT formalism, an
approximation to Kohn-Sham �KS� DFT that offers a neces-
sary compromise between computational accuracy and effi-
ciency. In Sec. II C, we explain how OFDFT is used to
evaluate energy and stress in the local QC region. In Sec.
II D, we discuss the necessity of employing the QM/MM
scheme and introduce an OFDFT-based QM/MM approach
that can treat the nonlocal QC region accurately and effi-
ciently. In Sec. II E, we propose an approach to address an
important issue in the QC method—the ghost force. The par-
allelization of the QCDFT method is briefly described in Sec.
II F. In Sec. II G, we compare the QCDFT method to other
related approaches. After the QCDFT method is introduced,
we apply it to the study of nanoindentation of an Al thin film.
The introduction of nanoindentation and the model setup is
presented in Sec. III A. In Secs. III B and III C, we discuss
the loading procedure and relevant parameters used in the
QCDFT calculations. We present the nanoindentation results
in Sec. IV and finally our conclusions in Sec. V.

II. QCDFT METHODOLOGY

The QCDFT method is based on the quasicontinuum
framework with an OFDFT energy formulation. For com-
pleteness, we provide in this section a detailed description of
various components of QCDFT, although some of them have
been published previously.

A. Quasicontinuum method

The quasicontinuum �QC� method1,2 is a concurrent mul-
tiscale approach3 that combines atomistic models with con-
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tinuum theories, and thus offers an advantage over conven-
tional atomistic simulations in terms of computational
efficiency. The idea underlying the QC method is that atom-
istic processes of interest often occur in very small spatial
domains while the vast majority of atoms in the material
behave according to well-established continuum theories. To
exploit this fact, the QC method retains atomic resolution
only where necessary and coarsens to a continuum finite el-
ement description elsewhere. The original formulation of QC
was limited to classical potentials for describing interactions
between atoms. However, since many materials properties
depend crucially on the behavior of electrons, such as bond
breaking/forming at crack tips or defect cores, chemical re-
actions with impurities, surface reactions and reconstruc-
tions, electron excitation and magnetism, etc., it is desirable
to incorporate appropriate quantum mechanical descriptions
into the QC formalism. QCDFT is one strategy to fill this
role.

The goal of the QC method is to model an atomistic sys-
tem without explicitly treating every atom in the problem.1,2

This is achieved by replacing the full set of N atoms with a
small subset of Nr “representative atoms” or repatoms �Nr
�N� that approximate the total energy through appropriate
weighting functions. The weighting functions can be physi-
cally interpreted as the number of atoms represented by each
repatom. The weighting functions depend on the local defor-
mation state and are determined on-the-fly in QC simula-
tions. The energies of individual repatoms are computed in
two different ways depending on the deformation in their
immediate vicinity. Atoms experiencing large variations in
the deformation gradient field on an atomic scale are com-
puted in the same way as in a standard atomistic method. In
QC these atoms are called nonlocal atoms to reflect the fact
that their energy depends on the positions of their neighbors
in addition to their own position. In contrast, the energies of
atoms experiencing a smooth deformation field on the atomic
scale are computed based on the deformation gradient �G� in
their vicinity as befitting a continuum model. These atoms
are called local atoms because their energy is based only on
the deformation gradient at the point where it is computed. In
a classical system, the total energy Etot can be written as
Etot=�i=1

N Ei �with Ei the energy of atom i�, and is approxi-
mated as

Etot
QC��R�,�G�� = �

i=1

Nnl

Ei��R�� + �
j=1

Nloc

njEj
loc��G�� . �1�

The first term is an atomistic region of Nnl nonlocal atoms
with energy dependent upon the coordinates of neighbor re-
patoms at �R� as in the usual atomistic fashion. The second
term gives the contribution from local repatoms each of
which represents nj physical atoms with energy dependent
upon local deformation gradients �G� characterizing the fi-
nite strain around its position. The basic assumption em-
ployed is the Cauchy-Born rule, which relates the continuum
deformation at a point to the motion of the atoms in the
underlying lattice represented by this point.

In QCDFT, the calculations of Ej
loc��G�� and stress in the

continuum regions are based on OFDFT, which is the same

energy formulation used in the nonlocal atomistic region.
This makes the passage from the atomistic to continuum re-
gions seamless since the same underlying material descrip-
tion is used in both. This seamless description enables the
model to adapt automatically to changing circumstances
�e.g., the nucleation of new defects or the migration of ex-
isting defects�. This adaptability is difficult for many other
multiscale methods and is one of the QC method’s main
strengths. On the other hand, a consequence of the partition-
ing into local and nonlocal regions and the existence of a
well-defined total energy for the entire system is the presence
of nonphysical ghost forces at the interface. These can be
eliminated by self-consistent application of dead load
corrections.2

In the following, we outline the energy and force formu-
lations for both local and nonlocal regions of QCDFT. In the
local region, a finite element mesh is constructed with each
repatom on the vertex of several surrounding finite elements.
The energy and force of each local repatom can be obtained
from the strain energy density and the stress tensor of the
finite elements that share the same repatom. More specifi-
cally, according to the Cauchy-Born rule, the deformation
gradient G is uniform within a finite element, therefore the
local energy density � and the stress tensor for each finite
element can be calculated as a perfect infinite crystal under-
going a uniform deformation specified by G. In other words,
one could perform an OFDFT-based energy/stress calcula-
tion for an infinite crystal by using periodic boundary condi-
tions with the primitive lattice vectors of the deformed crys-
tal, hi, given by

hi = GHi, i = 1,2,3. �2�

Here Hi are the primitive lattice vectors of the undeformed
crystal and the volume of the primitive unit cell is �0. The
details of the OFDFT calculation can be found in Sec. II C.
Once the strain energy density ��Gk� is determined, the en-
ergy contribution of the jth local repatom is given as

Ej
loc��G�� = �

k=1

Mj

wk��Gk��0, �3�

where Mj is the total number of finite elements represented
by the jth repatom, and wk is the weight assigned to the kth
finite element. The force on the jth local repatom is defined
as the gradient of the total energy with respect to its coordi-
nate R j

loc. In practice, the nodal force on each finite element
is calculated from the stress tensor of the finite element by
using the principle of virtual work.4 The force on the repa-
tom is then obtained by summing the nodal force contribu-
tions from each surrounding finite element.

For the energy/force calculation in the nonlocal region,
we resort to a QM/MM approach that was developed re-
cently for metals.5 The coupling between the QM and MM
regions is achieved quantum mechanically within an OFDFT
formulation. Although the detailed implementation of the
QM/MM approach is presented in Sec. II D, we wish to
stress two important points here: �i� The original QC formu-
lation assumes that the total energy can be written as a sum
over individual atomic energies. This condition is not satis-
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fied by quantum mechanical models. The energy of the non-
local region is now a functional of total electron density, so
instead of the expression in Eq. �1�, the total energy of
QCDFT should be expressed as

Etot
QCDFT��R�,�G�� = Enl��tot� + �

j=1

Nloc

njEj
loc��G�� . �4�

Here �tot is the total electron density in the nonlocal region as
well as the coupling nonlocal/local region, i.e., the buffer
region in the following discussion. �ii� The nonlocal energy,
Enl, should be calculated with appropriate boundary condi-
tions; that is to say, it should include the interaction energy
between the nonlocal atoms and neighboring local atoms. In
the original QC framework, this requirement is realized by
including dummy atoms in the energy/force calculation of a
given nonlocal repatom. These dummy atoms are in the local
region and within the cut-off radius of the given nonlocal
repatom. The dummy atoms are not independent degrees of
freedom in the local region, but rather slaves to the local
repatoms. In this way, the nonlocal calculation is carried out
with the appropriate boundary conditions, and at the same
time, the energy of the dummy atoms is still treated with the
Cauchy-Born rule, consistent with their status. In the
QCDFT approach, a buffer region including the dummy at-
oms and local repatoms that are adjacent to the nonlocal
repatoms is selected as the “MM” region, and the nonlocal
atoms constitute the QM region. The nonlocal atoms are
treated by OFDFT, and the coupling between the “MM” and
QM region is also formulated within OFDFT. Therefore the
entire system is formulated with one energy functional,
OFDFT, which is evaluated at two levels of approximation
depending upon the inhomogeneity or homogeneity of the
local deformation. Note that “MM” here is actually a misno-
mer: The local atoms are treated by OFDFT with the
Cauchy-Born rule as mentioned earlier, and we retain the
designation “MM” solely to indicate the similarity to the
earlier coupling scheme.5

B. OFDFT formulation

OFDFT is the energy formulation of choice for the
present QCDFT method, although KS DFT can also be used
for calculating the local and nonlocal energies �see Sec.
II G�. OFDFT is an efficient implementation of density-
functional theory which approximates the kinetic energy of
noninteracting electrons in terms of their density, instead of
the KS orbitals.6–11 In doing so, OFDFT reduces the degrees
of freedom from 3N to 3 �N being the number of electrons�.
It also removes the need for expensive orthonormalization
and k-point sampling associated with the KS orbitals. The
resulting O�N ln N� scaling of the calculation allows the
study of systems larger than 105 atoms when periodic bound-
ary conditions are used.12

In OFDFT, the total energy is expressed as an explicit
functional of electron density ��r�:

EOF��� = Ts��� + EH��� + Ee−i��� + Exc��� + Ei−i. �5�

The various terms in Eq. �5� represent the noninteracting
electronic kinetic energy, the Hartree electron repulsion en-

ergy, the electron-ion attraction energy, the electron
exchange-correlation energy, and the ion-ion repulsion en-
ergy, respectively.

The lack of wave functions in OFDFT comes at the cost
of approximating the electronic kinetic energy with a density
functional �rather than the orbital-based expectation value of
the Laplacian�. State-of-the-art kinetic energy functionals in-
clude three contributions:9,10 the Thomas-Fermi contribution
TTF, exact for a uniform electron gas,13,14 the von Weizsäcker
contribution TvW, exact for a single orbital,15 and a density-
dependent convolution term Tker that ensures the correct lin-
ear response of the electron gas �the Lindhard function�.16 In
the present simulation of Al, we use the Wang-Govind-Carter
�WGC� KEDF.10,17 The WGC kernel is density dependent,
which renders it more accurate than previous KEDFs. A
second-order Taylor expansion of the kernel is employed to
maintain O�N ln N� scaling.10 Because the WGC KEDF fol-
lows the Lindhard linear response, it is most accurate for
electrons in materials that are nearly-free-electron-like, such
as the valence electrons in main group metals. Therefore,
while in principle an all-electron version of OFDFT could be
employed, instead we only solve explicitly for the density
associated with the valence electrons. Consequently, a
pseudopotential must be introduced to describe the effect of
the core electrons plus nucleus on the valence electrons. In
order to retain linear scaling, a local pseudopotential �LPS�
that only depends on distance from the nucleus is used. Here
we employ the Goodwin-Needs-Heine �GNH� empirical Al
LPS.18 Some flexibility is lost when using spherically sym-
metric LPSs �rather than orbital-based nonlocal pseudopo-
tentials�, but the WGC-GNH combination yields vacancy
formation energies and total energies for a variety of un-
strained bulk phases that agree with KS-DFT to within 0.01
eV/atom.10

C. Local calculations with OFDFT

Local QC with OFDFT is used only in regions of the
sample where the deformation gradient is smaller than that
which would initiate nucleation of defects such as disloca-
tions. As mentioned in Sec. II A, the energy of a finite ele-
ment in the local region is computed using the Cauchy-Born
rule, so that each finite element can be modeled by a single
unit cell with periodic boundary conditions. The deformed
geometry of each finite element is thus represented by a 3
�3 matrix h, with the deformed primitive lattice vectors
making up the columns of h �see Eq. �2��. For each defor-
mation gradient, an OFDFT energy/stress calculation is car-
ried out by minimizing the electronic total energy.

The stress tensor in the OFDFT formulation is defined as
follows:

�ab =
1

�
�

�

�E

�ha�

hb�, �6�

with � as the volume of deformed unit cell and hij denoting
the component of the deformed lattice vector hj in Cartesian
dimension i.
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1. WGC kinetic energy and stress

The WGC functional takes the form

Ts��� = TTF��� + TvW��� + Tker��� , �7�

TTF = CTF� �5/3�r�dr , �8�

TvW =
1

8
� 	���r�	2

��r�
dr = −

1

2
� �1/2�r��2�1/2�r�dr , �9�

Tker = CTF� � �	�r�w	
����r,r��,r − r���
�r��drdr�,

�10�

where TTF, TvW, and Tker are the Thomas-Fermi functional,
the von Weizsäcker functional, and kernel functionals, re-
spectively, and CTF= 3

10�3
2�2/3. For Al, the parameter values
of �	 ,
�= � 5�
5

6 � and �=2.7. The variable

���r,r�� = � kF
��r� + kF

��r��
2

�1/�

�11�

is the two-body Fermi wave vector, and kF�r�= �3
2��r��1/3

is the local one-body Fermi wave vector.
As with the energy, the WGC stress is split up into a

Thomas-Fermi, a von Weizsäcker, and a kernel term:

�ab
WGC = �ab

TF + �ab
vW + �ab

ker. �12�

Thomas-Fermi stress has the form

�ab
TF = −

2TTF

3�
�ab, �13�

where �ab is the Kronecker delta. The von Weizsäcker stress
can be written as

�ab
vW = −

1

4�
� � ���r�

�ra
�� ���r�

�rb
� 1

��r�
dr =

−
1

�
� �1/2�r�

�2�1/2�r�
�ra � rb

dr . �14�

The stress derived from WGC density-dependent kernel has
different values depending on whether average electron den-
sity �� or total number electrons Ne remains constant as the
cell’s dimensions change. Here, we model an infinite bulk
crystal in each finite element in the local QC regions, so Ne is
fixed to its undeformed value in each deformed unit cell; the
stress is given by19

�ab
ker = �g�0 
−

1

3
TWGC

	
� �ab + CTF���gagb

	g	2
−

1

3
�ab�

� ��̃	�− g�d00�̃
�g� + �̃	+1�− g�d01�̃
�g�

+ �̃	�− g�d01�̃
+1�g� + �̃	+2�− g�d02�̃
�g�

+ �̃	�− g�d02�̃
+2�g� + �̃	+1�− g�d11�̃
+1�g��� ,

�15�

where ��= 	g	 / �2kF�� is the dimensionless momentum as-
suming electron density ��, g is a reciprocal space lattice
vector,

�D�g� = F��D�r�� , �16�

d00 =
�F�w	
�

���

+ 2��

�F�w	
� �
���

− ��
2� �F�w	
1

� �

���

+
�F�w	
2

� �

���

� ,

�17�

d01 = −
�F�w	
� �

���

+ ��� �F�w	
1
� �

���

+
�F�w	
2

� �

���

� , �18�

d02 = −
1

2

�F�w	
1
� �

���

, �19�

d11 = −
�F�w	
2

� �

���

, �20�

with F indicating a Fourier transform, coefficients
d00,d01,d02 evaluated at ��, and derivatives of the kernel
defined as

w	
� =
�w	
����r,r��, 	r − r�	�

���r�
, �21�

w	
1
� =

�2w	
����r,r��, 	r − r�	�
��2�r�

, �22�

w	
2
� =

�2w	
����r,r��, 	r − r�	�
���r� � ��r��

. �23�

2. Electron-ion energy and stress

The electron-ion energy is summed in real space,

Ee−i =� ��r�Vion�r�dr , �24�

Vion�r� =
1

�
F��

I

ṼI
psp�g�e−ig·RI� , �25�

where RI is the position of ion I, ṼI
psp the Fourier transform

of the pseudopotential of ion I �VI
psp�, and F an inverse Fou-

rier transform.
The corresponding electron-ion stress is

�ab
e−i = −

1

�
��

g�0
��̃�g�

gagb

	g	 �
I

�ṼI
psp�	g	�
� 	g	

eig·RI� + �abEe−i� .

�26�

Note that this stress equation corrects Eq. �A3� in Ref. 20.

3. Hartree energy and stress

As in Ref. 20, the Hartree energy takes the form
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EH =
1

2
� � ��r���r��

	r − r�	
drdr� �27�

and the Hartree stress is

�ab
H = �

g�0

2


	g	2�2gagb

	g	2 ���g���− g� − �ab
EH

�
. �28�

4. Exchange-correlation energy and stress

In this work, we use the local-density approximation
�LDA�21,22 for Exc���. As in Ref. 20 the LDA exchange-
correlation energy is expressed as

Exc =� ��r���x���r�� + �c���r���dr , �29�

where �x is the Slater-Dirac23 exchange energy density func-
tional of a uniform electron gas of density � and �c is the
Perdew-Zunger21 parameterization of the Ceperley-Alder22

correlation energy density functional. The exchange-
correlation stress has the form

�ab
xc =

1

�

Exc −� ��r�� �Exc

���r��dr��ab. �30�

5. Ewald energy and stress

The Ewald summation calculates the ion-ion interactions
for a periodic system.24,25 There is a short-range term in real
space, a long-range term calculated in reciprocal space, a
self-correction term, and a background correction. The back-
ground correction is necessary for systems that are not
charge neutral, which is the case for our system, since the
ionic interactions summed by the Ewald method are between
cations stripped of their valence electrons. The ion-ion repul-
sion energy is expressed as

Ei−i =
1

2�L �I,J
� ZIZJ

erfc��	rIJ,L	�
	rIJ,L	

+
2


�
�g�0

exp�− 	g	2/4�2�
	g	2 ���I

ZI cos�g · RI��2

+ ��I
ZI sin�g · RI��2� −

�




�I

ZI
2 −




2��2 ��I
ZI�2,

�31�

where I and J indicate atoms within the periodic cell, Z is the
ionic charge, R are the ionic positions, L indicates the origins
of each image cell, and rIJ,L=L+RI−RJ. The prime over the
summation indicates that we skip terms where both I=J and
L=0. Note that here � is a constant, unrelated to �� in the
WGC stress functional. The error due to the Ewald energy is
bounded to less than 10−10 eV by on-the-fly calculation of
the parameter �, the real space cutoff, and the reciprocal
space cutoff.26 The Ewald stress is20

�ab
i−i = −

1

2�
�L �I,J

� ZIZJ
 2�




exp�− �2	rIJ,L	2�

+
erfc��	rIJ,L	�

	rIJ,L	 � rIJ,L,arIJ,L,b

	rIJ,L	2

+
2


�2 �g�0

exp�− 	g	2/4�2�
	g	2 ���I

ZI cos�g · RI��2

+ ��I
ZI sin�g · RI��2�

� 
2gagb

	g	2 �1 +
	g	2

4�2� − �ab� +



2�2�2��I
ZI�2

�ab.

�32�

D. Nonlocal calculations with OFDFT

The nonlocal region is modeled at the atomistic level with
a QM/MM approach. In a typical QM/MM calculation, the
system is partitioned into two separated domains: a QM re-
gion and a MM region. In QCDFT, the QM region refers to
the nonlocal region and the MM region refers to the buffer
region. The buffer region is introduced to provide the bound-
ary conditions for the calculation of nonlocal energy and it
contains both dummy atoms and local repatoms. The dummy
atoms differ from the local and nonlocal repatoms in the
following sense: �i� their positions are interpolated from the
positions of local repatoms using finite element shape func-
tions; �ii� the energy and force on the dummy atoms do not
need to be considered explicitly since they are not explicit
degrees of the freedom in the QC formulation.

At present, there are two types of QM/MM coupling strat-
egies: mechanical coupling and quantum coupling.27–31 The
interaction energy between the QM and MM regions is for-
mulated at the MM level for mechanical coupling, and at the
QM level for quantum coupling. The latter form should be
more accurate as it accounts for all quantum mechanical in-
teractions. Depending on the level of the quantum descrip-
tion, the extent of the electronic coupling varies from merely
long-range electrostatic interaction to a full Coulomb inter-
action, including short-ranged exchange correlations.27,31

Here we use an OFDFT-based quantum mechanical QM/MM
coupling proposed by Zhang and Lu5 which considers the
full Coulomb, kinetic energy, and exchange-correlation inter-
actions. More specifically, both the energy of the nonlocal
atoms and the interaction energy between the nonlocal atoms
and the buffer atoms are calculated by OFDFT. To simply the
notation, we denote the nonlocal region as region I and the
buffer region as region II. Typically, the buffer region con-
sists of several atomic layers surrounding the nonlocal re-
gion. The buffer region has to be chosen carefully for a sys-
tem of interest. Systematic study of the choice of the buffer
region has been carried out previously for Al5 and we will
use these results in the present paper �cf. Sec. III C for more
details�. The nonlocal energy Enl as defined in Eq. �4� can be
expressed as

Enl��tot� = min�I�EOF��I;RI� + EOF
int ��I,�II;RI,RII�� , �33�

where RI and RII denote ionic coordinates in region I and II,
respectively. The OFDFT energy functional EOF has been
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introduced earlier �Eq. �5��. The total charge density of the
QM/MM system �tot consists of two contributions: �tot=�I

+�II, where �I and �II represent the charge density from re-
gion I and II, respectively. While �I is determined self-
consistently by minimizing the total energy functional Eq.
�33�, �II is defined as a superposition of atom-centered
charge densities �at via �II�r�=�i�II�

at�r−Ri�. Note that �at is
spherically symmetric and can be constructed a priori. It is
important to point out that �at is not a charge density of an
isolated atom, but rather an atom-centered charge density
whose superposition gives rise to the approximate bulk den-
sity of region II.5 It should be noted that in general, the
atom-centered charge density should contain higher angular
momentum contributions, including, e.g., p- and d-like den-
sities. For aluminum, which is the system of interest in the
present paper, we found that the s-like charge density alone
could give sufficiently good results.5 Therefore �II�r� is fixed
for a given ionic configuration of region II and it changes
upon the motion of region II ions. In other words, the elec-
tronic degree of freedom in the formulation is �I only and �II

is fixed during the electronic relaxation. The interaction en-
ergy is thus defined as follows:

EOF
int ��I,�II;RI,RII� = EOF��tot;Rtot� − EOF��I;RI�

− EOF��II;RII� , �34�

where Rtot�RI�RII. The energy functional of Eq. �33� can
be written as

Enl��tot� = min�I�EOF��tot;Rtot� − EOF��II;RII�� . �35�

A basic ansatz of the present QM/MM formulation �Eq.
�35�� is that �I must be confined within a finite volume ��I�
that is necessarily larger than region I but much smaller than
the entire QM/MM region. The confinement of �I is enforced
by setting �I to be zero outside �I. Therefore beyond �I, �II

should reproduce the correct total density, �tot. In addition,
since some terms in the formulation �Eq. �35�� could be more
efficiently computed in reciprocal space �discussed in the
following�, we also introduce a volume �B over which the
periodic boundary conditions are applied. The periodic box
�B should be larger than �I so that �I does not overlap with
its periodic images.5 Note that the QM/MM system is only a
small fraction of the entire QCDFT system. To facilitate the
introduction of the QCDFT method, we present a schematic

10]1[

[111]x
y

z2]11[

FIG. 1. �Color online� The overview of the entire system and domain partition in QCDFT with nanoindentation as an example. The x, y

and z axes are along �111�,�1̄10�, and �1̄1̄2�, respectively. �I and �B are 2.8 Å and 8 Å beyond the nonlocal region in �x and �y
directions, respectively �Ref. 5�. The colors indicate uz, the out-of-plane displacement of atoms in the z direction.
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diagram in Fig. 1 which demonstrates the typical partition of
domains in a QCDFT calculation. This particular example is
for a nanoindentation calculation of an Al thin film which is
used to validate the QCDFT method �see Sec. III for details�.
The lower-right panel shows the entire system and the cor-
responding finite element mesh. The lower-left panel is a
blow-up view of the entire system, which is further zoomed
in as shown in the upper-left panel, focusing on the nonlocal
region. The upper-right panel shows out-of-plane displace-
ments of the nonlocal atoms, where the dislocations and the
stacking faults are clearly visible. All lengths are given in Å.
The blue and green circles represent the nonlocal and buffer
atoms, respectively. The volumes �I and �B are represented
by the black dashed box and solid box in the upper-left
panel, respectively. There is no constraint on �II, which can
extend to the entire QM/MM system. In addition to its com-
putational efficiency as discussed in Sec. II B, OFDFT al-
lows Eq. �35� to be evaluated over �I rather than over the
entire QM/MM system as Eq. �35� appears to suggest.5,32

This significant computational saving is due to the cancella-
tion in evaluating the first and second term of Eq. �35�, and it
is rendered by the orbital-free nature of OFDFT and the lo-
calization of �I. In the following, we will express all terms in
Eq. �35�, and the cancellation can be seen explicitly from
these expressions. It should be noted that as the deformation
evolves, the number of nonlocal repatoms and the valence
electrons could change from one nonlocal OFDFT calcula-
tion to the next, however, the number of the valence elec-
trons in each nonlocal OFDFT calculation remains constant
for a given set of nonlocal repatoms.

1. Noninteracting kinetic energy terms

First we consider the local terms of the kinetic energy
functional, TTF and TvW, which are given by

TTF��tot� − TTF��II� =� fTF��tot�dr −� fTF��II�dr

= �
�I

�fTF��tot� − fTF��II��dr ,

TvW��tot� − TvW��II� =� fvW��tot�dr −� fvW��II�dr

= �
�I

�fvW��tot� − fvW��II��dr , �36�

where fTF���= 3
10�3
2�2/3�5/3, fvW���=− 1

2�1/2�2�1/2 and we
have used the fact that �tot�r�=�II�r� when r is beyond �I.
Therefore the calculations involve an integral over �I rather
than over the entire system. It is clear that the TF term can be
computed easily and efficiently on a grid in real space within
�I. Finite differencing schemes allow the vW term to be
evaluated on only �I as well. However, in practice, the vW
term is computed in reciprocal space which is more efficient.
This allows greater accuracy, but as a tradeoff, its evaluation
requires integration over �B.

The kernel term of the kinetic energy has a complicated
nonlocal form which requires close scrutiny:

Tker��tot� − Tker��II� = �
�I

F�r��K � G��r�dr

+ �
�I

F�r��K � g2��r�dr

+ �
�I

G�r��K � f2��r�dr , �37�

where the convolution integral is defined as �K�G��r�
��K�r−r��G�r��dr�, etc. and

f2�r� � f„�II�r�…, f12�r� � f„�I�r� + �II�r�… ,

g2�r� � g„�II�r�…, g12�r� � g„�I�r� + �II�r�… ,

F�r� � f12�r� − f2�r�, G�r� � g12�r� − g2�r� . �38�

With the WGC KEDF,10 f�x�=x	, g�x�=x
, and K
=CTFw	
����r ,r�� ,r−r��, as in Eq. �10�. While the kernel
term Tker��tot�−Tker��II� is expressed as integrals over �I, the
time-consuming convolution terms, such as �K�G��r� are
actually integrated over the entire space. We have shown that
the fast Fourier transforms �FFT� can be used to make such
computations both efficient and accurate,5 where the evalua-
tion of convolution terms are confined within �B.

2. Electrostatic Coulomb energy terms

According to Eq. �33�, we can express the electrostatic
terms as �EH��I�+Ee−i��I�+Ei−i�RI��+ �EH

int+Ee−i
int +Ei−i

int�,
where the first three terms represent the electrostatic energy
of region I, and the last three terms represent the electrostatic
contribution of the interaction energy. The electrostatic en-
ergy of region I can be evaluated within �I:

�EH��I� + Ee−i��I� + Ei−i�RI��

=
1

2
�

�I

�I�r��I�r��
	r − r�	

drdr�

+ �
i
�

�I
�I�r�Vpsp�r − Ri

I�dr + �
i�j

I
ZiZj

	Ri − R j	
.

�39�

For the electrostatic contribution of the interaction energy,
the long-range 1 /R Coulomb interactions in electron-
electron, electron-ion and ion-ion contributions are canceled
identically for a charge-neutral system. Thus it is convenient
to group the three terms together when evaluating the elec-
trostatic energies. The sum of the three terms can be written
as

�EH
int + Ee−i

int + Ei−i
int�

= �
�I

�I�r���
i

Velec
at �r − Ri

II��dr + �
i,j

��Ri
I − R j

II� ,

�40�

where we define
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Velec
at �r� � � �at�r��

	r − r�	
dr� + Vpsp�r� ,

��Ri
I − R j

II� � � Vpsp�r − Ri
I��at�r − R j

II�dr +
ZiZj

	Ri
I − R j

II	
.

�41�

Velec
at �r−Ri

II� represents the Coulomb potential at a point r in
�I due to the ith atom in region II, and ��Ri

I−R j
II� represents

the electrostatic Coulomb energy between the ith ion in re-
gion I and the jth atom in region II. Here we define an atom
as an entity composed of an ion and its valence electrons.
Due to the spherical symmetry of �at and Vpsp, Velec

at and � are
the functions of distance only. Both Velec

at �r� and ��R� in Eq.
�40� are short-ranged functions where the long-range 1 /R
contributions have been canceled. Therefore the calculation
of Eq. �40� is also confined to a smaller volume than the
entire QM/MM system, determined by a cut-off distance be-
yond which the 1 /R relation is exact. The actual calculation
of the electrostatic terms is performed in real space.

3. Exchange-correlation energy terms

Similar to TTF and TvW terms, the exchange-correlation
energy is also a local term which is given by

Exc��tot� − Exc��II� =� fxc��tot�dr −� fxc��II�dr

= �
�I

�fxc��tot� − fxc��II��dr , �42�

where fxc������xc���, and it can be evaluated efficiently in
real space.

4. Calculation of ionic force

The ionic force is calculated by varying the total energy
functional �Eq. �33�� with respect to the ionic displacement.
At the ground state of the electrons, �min

I satisfies ��EOF�I�
+EOF

int � /��I 	�min
I =0, therefore the ionic force in region I �Fi�I�

can be written as

− Fi�I =
��EOF�I� + EOF

int �
�Ri

= �
�I

�I�r��Ri
Vpsp�r − Ri�dr

+ �
j�II

�Ri
��Ri − R j� . �43�

Since the second term in Eq. �43� is short-ranged, only the
region II ions which are adjacent to the QM/MM interface
contribute to the sum. The force contribution on region II
ions due to the interaction energy turns out to be much more
complicated because the interaction energy is not minimized
with respect to �II, and thus, there are force contributions
from the variation of �II. The force on the jth ion in region II
due to the interaction energy is given by

− F j�II
int =

�ETF+vW+ker
int

�R j
+

��EH
int + Ee−i

int + Ei−i
int�

�R j
+

�Exc
int

�R j
,

�44�

where the various contributions of the first term are given as

�TTF
int

�R j
= �

�I
�Rj

�at�r − R j���TF��I + �II� − �TF��II��dr ,

�TvW
int

�R j
= �

�I
�Rj

�at�r − R j���vW��I + �II� − �vW��II��dr ,

�Tker
int

�R j
= �

�I
�Rj

�at�r − R j��f12� �r��K � G��r� + g12� �r��K � F�

��r� + F��r��K � g2��r� + G��r��K � f2��r��dr . �45�

The second term is given by

��EH
int + Ee−i

int + Ei−i
int�

�R j
= �

i�I
�Rj

��Ri − R j�

+ �
�I

�I�r��Rj
Velec

at �r − R j�dr ,

�46�

and the third term is given by

��Exc
int�

�R j
= �

�I
�Rj

�at�r − R j���xc��I + �II� − �xc��II��dr .

�47�

In Eqs. �45�–�47�, various � terms are the derivative of cor-
responding energy functional with respect to �at�r�. All the
integrations are performed within �I, and F j�II

int is nonzero
only for the region II ions which are adjacent to the interface.

E. Ghost forces

The QC partitioning of the physical system into two re-
gions causes an unphysical mismatch between the energy
functional evaluated in the local and nonlocal regions. As a
result, a seemingly well-defined energy functional for the
entire QC model will lead to spurious forces near the inter-
face called “ghost forces” in the QC literature. Note that the
ghost force only exists on local repatoms adjacent to the
local/nonlocal �or QM/MM� interface. The principal reason
for the ghost force is that we choose to focus on approximat-
ing the energy and not the force. One could opt to avoid the
ghost force by formulating the force appropriately, but then
one could no longer define an appropriate total energy of the
system. There are two advantages of having a well-defined
energy in atomistic simulations: �i� it is numerically more
efficient to minimize energy, compared to the absolute value
of a force; �ii� one can potentially obey an energy conserva-
tion law in dynamical simulations.

In the QCDFT �or the QM/MM� approach, the ghost force
is defined as the force difference between two distinctive
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formulations: �i� where the force is calculated by applying
the Cauchy-Born rule throughout the entire system; this cor-
responds to a “consistent” way of calculating force, thus no
ghost force exists and �ii� where the force is calculated based
on the mixed local/nonlocal formulation aforementioned and
hence the ghost force exists. In the first case, the force on a
local repatom would be

F̃�RII� = −
�ECB�Rtot�

�RII , �48�

where ECB�Rtot� is the total energy of the system where the
Cauchy-Born rule is used throughout. In the second case, the
total energy of the QM/MM system can be written as

Etot�Rtot� = ECB�RII� + EQM�RI� + EQM
int �Rtot� , �49�

where ECB�RII� is the local energy computed using the
Cauchy-Born rule, EQM�RI� is the nonlocal energy computed
by a quantum mechanical approach, and EQM

int �Rtot� is the
quantum mechanical interaction energy. The force derived
from this total energy functional is

F�RII� = −
�ECB�RII�

�RII −
�EQM

int �Rtot�
�RII

= −
�ECB�Rtot�

�RII +
�ECB

int �Rtot�
�RII −

�EQM
int �Rtot�
�RII

= F̃�RII� + Fghost, �50�

where ECB
int �Rtot�=ECB�Rtot�−ECB�RI�−ECB�RII� is the inter-

action energy calculated with the Cauchy-Born rule applied

to the entire system, and Fghost=
��ECB

int �Rtot�−EQM
int �Rtot��

�RII is the ghost
force. Note that ECB�RI� does not depend on RII, hence its
contribution to force is zero.

Having determined the ghost force in QCDFT, one can
correct for it by adding a correction force Fcorr=−Fghost on
the local atoms �Fcorr+F�RII�� so that the resultant force is

F̃�RII�. The correction force is applied to the local repatoms
as a dead load, computed each time the status of the repre-
sentative atoms is updated, and remains fixed until the next
update required due to the evolving state of deformation. In
practice, the correction force is nonzero only for the local
repatoms adjacent to the nonlocal region. Finally, the total
energy expression has to be modified accordingly so that its
gradient is consistent with the new formulation of force. This
is achieved by incorporating the work done by the correction
force into the original energy formulation:

Ẽtot = Etot − �
	

Nrep�

F	
corr · u	, �51�

where Nrep� denotes the number of local repatoms whose cor-
rection force is nonzero, and u	 is the displacement of the
	th local repatom.

F. Parallelization of QCDFT

The present QCDFT code is parallelized based on the
Message Passing Interface �MPI�. The parallelization is

achieved for both local and nonlocal calculations. The paral-
lelization for the local part is trivial: Since the energy/force
calculation for each finite element is independent from oth-
ers, one can divide the local calculations evenly onto each
processor. The computational time is thus proportional to the
ratio of the number of the local finite elements to the avail-
able processors. Parallelization of the nonlocal region is
achieved through domain decomposition, since the calcula-
tions �e.g., charge density, energy and force computations�
are all performed on real-space grids, except the convolution
terms in the kinetic energy. Grid points are evenly distributed
to available processors, and results are obtained by summing
up contributions from all grids. The calculation of the con-
volution terms is performed by parallelized FFT.

G. Comparisons to earlier QCDFT schemes

Efforts to combine QC with quantum simulations began
as soon as the original QC method was introduced. Early
work involved using quantum mechanical methods to com-
pute the strain energy density and stress in a local QC �LQC�
formulation. For example, Smith et al.33,34 incorporated a
DFT-based tight-binding model into the LQC formulation for
a nanoindentation study of Si. Tadmor et al.35 used the LQC
framework with DFT-based effective Hamiltonians to study
polarization switching in PbTiO3. More recently, Hayes et
al.19,20 implemented OFDFT in LQC to study nanoindenta-
tion of Al and Al3Mg. These methods were valuable for pro-
viding physical insights that would be otherwise unattainable
by empirical atomistic simulations, but being based only on
LQC, they could not treat lattice defects such as dislocations,
cracks, etc. explicitly. Lu et al.36 introduced the first QCDFT
method which included the full QC method—mixing local
and nonlocal formulation—with KS-DFT. In this version of
QCDFT, the nonlocal region was treated by an embedded
atom method �EAM�-based QM/MM coupling approach:
KS-DFT was coupled to EAM with the interaction energy
calculated classically by EAM. The local region, on the other
hand, was dealt with by EAM. This method has been used to
study dislocation36 and crack37 properties in the presence of
hydrogen impurities in Al. The major advantage of the
method is its simplicity and versatility. Compared to the
present QCDFT method, the downsides of the original
QCDFT method are the following: �i� QM/MM coupling in
the nonlocal region was not treated as accurately and rigor-
ously as the present method; �ii� two different energy func-
tionals are used in the formulation, KS-DFT and EAM; thus
additional errors could arise due to this discrepancy. Re-
cently, the so-called QC-OFDFT method38 was proposed
based on the coarse-graining idea of QC with OFDFT as the
sole energy formulation of the method. Although QC-
OFDFT shares the same goals as the present QCDFT for
quantum simulations at large scales, the two methods are
very different in terms of the technical approach. While the
QCDFT method is based on the Cauchy-Born rule �for the
local region� and QM/MM coupling �for the nonlocal re-
gion�, QC-OFDFT relies on the finite element approximation
for various meshes introduced in the method, including an
atomic mesh, an electronic mesh, and a fine mesh. The quan-
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tum mechanical problem of OFDFT is solved on these
meshes simultaneously. Elegant as the method is, its present
formulation is limited to local approximations of the kinetic
energy �i.e., the important kernel terms are not included�, and
it is not clear how the method could be extended either to
nonlocal kinetic energy functionals for OFDFT or to a Kohn-
Sham DFT formulation. On the other hand, the present
QCDFT does not suffer from the above constraints, and it
could be extended to a Kohn-Sham DFT setting. Recent
progress in sparse grid representation39 makes it possible to
perform KS-DFT-based local QC calculations, and a
QM/MM method has been developed to treat nonlocal atoms
with KS-DFT.5 KS-DFT is important for nonlocal QC be-
cause it offers superior accuracy and versatility than OFDFT
in dealing with the nonlocal region for many material sys-
tems.

III. COMPUTATIONAL DETAILS

A. Model setup

Nanoindentation has now become a standard experimental
technique for evaluating the mechanical properties of thin
film materials and bulk materials in small volumes.40 As it
can measure nanometer penetration length scales, nanoinden-
tation is an indispensable tool to assess elastic moduli and
hardness of materials. It also can be used to derive strain-
hardening exponents, fracture toughness, and viscoelastic
properties of materials.41 Moreover, nanoindentation also
provides an opportunity to explore and better understand the
elastic limit and incipient plasticity of crystalline solids.42

For example, homogeneous nucleation of dislocations gives
rise to the instability at the elastic limit of a perfect crystal.
Exceeding the elastic limit can be manifested by a disconti-
nuity in the load-displacement curve in a nanoindentation
experiment.43–48 The onset of the discontinuity is an indica-
tion that the atomically localized deformation, such as dislo-
cation nucleation, occurs beneath the indenter. This correla-
tion has been well established from both experimental and
computational perspectives. For example, an in situ experi-
ment by Gouldstone et al.49 using the Bragg-Nye bubble raft
clearly demonstrated that homogeneous nucleation of dislo-
cations corresponds to the discontinuity of the load-depth
curve. MD simulations have led to greater insight into the
atomistic mechanism of nanoindentation.50,51 In particular,
several QC simulations have been carried out for nanoinden-
tation in Al thin films.19,20,52–54 Tadmor et al.54 have used
EAM-QC to study nanoindentation with a knifelike indenter
with a pseudo-two-dimensional �2D� model. They observed
the correspondence between the discontinuity in the load-
displacement curve with the onset of plasticity. By using a
much larger spherical indenter �700 nm�, Knap et al.53 dis-
covered that plasticity could occur without the corresponding
discontinuity in the load-displacement curve. However, when
the indenter size was reduced �to 70 nm� the discontinuity
reappeared. More recently, Hayes et al.19,20 have performed
local OFDFT- and EAM-based QC calculations for nanoin-
dentation of Al with a spherical indenter of 740 nm in radius.
Using elastic stability criteria, they predicted the location of
dislocation nucleation beneath the indenter and obtained dif-

ferent results from EAM and OFDFT local QC calculations.
Since many QC simulations have been carried out for
nanoindentation of Al, it is not the purpose of the present
paper �and we do not expect� to discover any new physics
with QCDFT calculations. Instead, we use nanoindentation
as an example to demonstrate the validity and the usefulness
of the QCDFT method.

The present QCDFT approach is applied to nanoindenta-
tion of an Al thin film resting on a rigid substrate with a rigid
knifelike indenter. The QC method is appropriate for the
problem because it allows the modeling of system dimen-
sions on the order of microns and thus minimizes the possi-
bility of contaminating the results by the boundary condi-
tions arising from small model sizes typically used in MD
simulations. We chose this particular system for two reasons.
First, there exists a good local pseudopotential18 and an ex-
cellent EAM potential55 for Al. Second, results from conven-
tional EAM-based QC simulations can be compared to the
present calculations. An ideal validation of the method would
require a full-blown OFDFT atomistic simulation for nanoin-
dentation, which is not yet attainable. The second best ap-
proach would be a conventional QC simulation with an ex-
cellent EAM potential that compares well to OFDFT in
terms of critical materials properties relevant to nanoinden-
tation. Our reasoning is that the conventional QC method has
been well established; thus as long as the EAM potential
used is reliable, then the EAM-QC results should be reliable
as well. In this paper, we have rescaled the “force-matching”
EAM potential of Al55 so that it matches precisely the
OFDFT value of the lattice constant and bulk modulus of
Al.32 Excellent results were obtained for perfect bulk Al cal-
culations as a validation of the QM/MM coupling method
used in the nonlocal QC region.5

The crystallographic orientation of the system is dis-
played in Fig. 2. The size of the entire system is 2 �m

�1 �m�4.9385 Å along the �111� �x direction�, the �1̄10�
�y direction�, and the �1̄1̄2� �z direction�, respectively. The
system is periodic in the z dimension, has Dirichlet boundary
conditions in the other two directions, and contains over 60
million Al atoms—a size that is well beyond the reach of any
full-blown brute-force quantum calculation. The thickness of
the thin film is selected to be comparable to the typical dis-

FIG. 2. Schematic representation of the nanoindentation of Al
thin film: geometry and orientation.

PENG et al. PHYSICAL REVIEW B 78, 054118 �2008�

054118-10



location separation distance in well-annealed metals, which
is of the order 1 �m. The unloaded system is a perfect
single crystal similar to the experimental situation under the
nanoindenter. The film is oriented so that the preferred slip
system �110� �111� is parallel to the indentation direction to
facilitate dislocation nucleation. The indenter is a rigid flat
punch of width 25 Å. We assume the perfect-stick boundary
condition for the indenter so that the Al atoms in contact with
it are not allowed to slip. The knifelike geometry of the
indenter is dictated by the pseudo-2D nature of the QC
model adopted. Three-dimensional QC models do exist and
can be implemented in QCDFT.19,20,53 We chose to work
with the pseudo-2D model in this example for its simplicity.
The prefix pseudo is meant to emphasize that although the
analysis is carried out in a 2D coordinate system, out-of-
plane displacements are allowed and all atomistic calcula-
tions are three-dimensional. Within this setting only disloca-
tions with line directions perpendicular to the xy plane can
be nucleated. The elastic moduli of C12, C44, C11 of Al are
computed from three deformation modes, including hydro-
static, volume-conserving tetragonal and volume-conserving
rhombohedral deformations. The shear modulus � and Pois-
son’s ratio � are computed from the elastic moduli by a Voigt
average: �= �C11−C12+3C44� /5 and �=

C11+4C12−2C44

2�2C11+3C12+C44� . The
values are listed in Table I.

B. Loading procedure

The simulation is performed quasistatically with a dis-
placement control where the indentation depth �d� is in-
creased by 0.2 Å at each loading step. We also tried a
smaller loading step of 0.1 Å and obtained essentially the
same results. Because OFDFT calculations are still much
more expensive than EAM, we use EAM-based QC to relax
the system for most of the loading steps. For load d=0, the
QCDFT calculation is performed to account for surface re-
laxations. From the resultant configuration, the depth of the
indenter d is increased to 0.2 Å, again relaxed by QCDFT.
After that, the calculations are done solely by EAM-QC ex-

cept for the loading steps at d=1.8,3.8,9.2 Å, when the
corresponding EAM configurations are further relaxed by
QCDFT. The onset of plasticity occurs at d=9.4 Å. We in-
creased the indenter depth of 0.2 Å from the relaxed
QCDFT configuration at d=9.2 Å, and then performed a
QCDFT calculation to obtain the final structure at d
=9.4 Å. Such a simulation strategy is justified based on two
considerations: �i� An earlier nanoindentation study of the
same Al surface found that the onset of plasticity occurred at
a smaller load with EAM-based local QC calculations com-
paring to OFDFT calculations.20 The result was obtained by
a local elastic stability analysis with EAM and OFDFT cal-
culations of energetics and stress. The result suggests that we
will not miss the onset of plasticity with the present loading
procedure by performing EAM-QC relaxations preceding
QCDFT. �ii� Before the onset of plasticity, the load-
displacement response is essentially linear with the slope de-
termined by the elastic properties of the material. In other
words, two QCDFT data points would be sufficient to obtain
the correct linear part of the curve. Moreover, the fact that
the EAM potential used in this study yields rather similar
elastic constants to those from OFDFT suggests that the
mixed EAM/OFDFT relaxation should not introduce large
errors in the results.

C. Computation parameters

In Fig. 1, we present a schematic diagram illustrating the
partition of domains for a QCDFT simulation of nanoinden-
tation. The system shown in the diagram contains 1420 non-
local repatoms, 736 local repatoms and 1539 finite elements,
and is periodic along the z direction. The system corresponds
to the deformation state close to onset of incipient plasticity.
The top surface is allowed to relax during the calculations
while the other three surfaces of the sample are held fixed.

The parameters of the density-dependent kernel are cho-
sen from Ref. 10 and Al ions are represented by the
Goodwin-Needs-Heine local pseudopotential.18 The high ki-
netic energy cutoff for the plane-wave basis of 1600 eV is
used to ensure the convergence of the charge density. For the
nonlocal calculation, the grid density for the volume �I is 5
grid points per Å. The �I box goes beyond the nonlocal
region by 8 Å in �x and �y directions so that �I decays to
zero at the boundary of �I. All parameters that are relevant
to QM/MM coupling have been tested in our previous study.5

The relaxation of all repatoms is performed by a conjugate
gradient method until the maximum force on any repatom is
less than 0.03 eV /Å.

At beginning of the simulation, the number of nonlocal
repatoms is rather small, �80. As the load increases, the
material deforms. When the variation of the deformation gra-
dient between neighboring finite elements reaches 0.15, the
mesh is refined, and the number of repatoms grows. Close to
the onset of plasticity, the number of nonlocal DFT atoms
reaches 1420. This procedure of automatic mesh adaption is
well documented in QC literature1,2 and our tests on
EAM-QC have shown that 0.15 is sufficient to give con-
verged results.

In order to validate the QCDFT method, we performed
EAM-QC calculations of the nanoindentation with the same

TABLE I. Elastic moduli, Poisson’s ratio, lattice constant, �111�
surface energy, and intrinsic stacking fault energy obtained by
OFDFT and EAM calculations on bulk Al, and the corresponding
experimental values extrapolated to T=0 K.

Rescaled

OFDFT EAM Experiment �Unit�

Elastic modulus C11 117.17 97.13 118.0 GPa

Elastic modulus C12 41.36 51.16 62.4 GPa

Elastic modulus C44 29.76 30.23 32.5 GPa

Bulk modulus E 66.63 66.48 80.93 GPa

Shear modulus � 33.01 27.33 30.62 GPa

Poisson’s ratio � 0.287 0.319 0.332

Lattice constant a0 4.032 4.032 4.032 Å

Surface energy �111 0.867 0.72 1.14–1.2 J /m2

Stacking fault energy 0.10 0.10 0.12–0.14 J /m2
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loading steps. We also calculated some relevant materials
properties using the rescaled EAM and OFDFT method for
bulk Al—these are standard atomistic calculations, not mul-
tiscale QC or QCDFT simulations. Since what distinguishes
EAM-QC from QCDFT is in their underlying energetics,
EAM vs OFDFT, the EAM and OFDFT calculations for the
relevant material properties could shed light on the different
results obtained from the EAM-QC and QCDFT simulations
on nanoindentation. The results of EAM and OFDFT calcu-

lations along with experimental values extrapolated to T
=0 K 55 are listed in Table I.

IV. RESULTS AND ANALYSIS

The load-displacement curve is the typical observable for
nanoindentation, and is widely used in both experiment and
theory, often serving as a link between the two. In particular,
it is conventional to identify the onset of plasticity with the
first jump in the load-displacement curve during
indentation.20,42,46–48,52–54,56 In the present work, the loads
are given in N/m, normalized by the length of the indenter in
the out-of-plane direction.

Let us first discuss the QC results with the rescaled EAM
potential. The load-displacement �P−d� curve shows a linear
relation followed by a discrete drop at d=9.4 Å, shown by
the dashed line in Fig. 3. The drop corresponds to the homo-
geneous nucleation of dislocations beneath the indenter—the
onset of plasticity. A pair of straight edge dislocations is
nucleated at x= �13 Å, and y=−49 Å. In Fig. 4, we present
the out-of-plane �or screw� displacement uz of the nonlocal
repatoms. The nonzero screw displacement of edge disloca-
tions suggests that each dislocation is dissociated into two
1/6 �112� Shockley partials bound by a stacking fault with a
width of about 14 Å. An earlier EAM-QC calculation54

which has the same geometry as the present model but with
a thinner sample �the thickness was ten times smaller than
the present case� yields a separation distance of 13.5 Å. The
activated slip planes are those �111� planes that are adjacent
to the side surfaces of the indenter. The linear relation in the
P−d curve is due to �i� the elastic response of the material
before the onset of plasticity and �ii� the particular choice of

FIG. 3. �Color online� Load-displacement curve for nanoinden-
tation of an Al thin film with a rigid rectangular indenter: with
QCDFT �solid line� and rescaled EAM-QC �dashed line�. The
squares are actual QCDFT data points and the solid line is the best
fit to the data points. All EAM-QC data points are on the dashed
line.

QCDFTEAM-QC

FIG. 4. �Color online� The out-of-plane displacement uz obtained from the rescaled EAM-QC �left� and QCDFT �right� calculations. The
circles represent the repatoms and the displacement ranges from −0.4 to 0.4 Å.
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the rectangular indenter; a spherical indenter would have
given rise to a parabolic P−d curve.20,48 The slope for the
linear part of the curve is 20.8 GPa, which is less than the
shear modulus and C44. The critical load, Pcr, for homoge-
neous dislocation nucleation is 18.4 N/m, corresponding to a
hardness of 7.3 GPa. Earlier EAM-QC calculations predicted
the hardness to be 9.8 Gpa.54 The drop in applied load due to
the nucleation of dislocations is �P=3.4 N /m. The value of
�P from the previous EAM-QC calculation is 10 N/m,54

which is three times of the present result. The discrepancy of
�P is mainly due to the different sample sizes used in the
two calculations57 indicating the importance of simulations
at length scales relevant to experiments.

For QCDFT calculations, the load-displacement curve
shows a linear relation up to a depth of 9.2 Å, followed by a
drop at d=9.4 Å, shown by the solid line in Fig. 3. The
slope of initial linear part of the load-displacement curve is
23.9 GPa, rather close to the corresponding EAM value. The
maximum load in linear region is Pcr=21.4 N /m, corre-
sponding to a hardness of 8.6 GPa. The fact that OFDFT
predicts a larger Pcr than EAM is consistent with the results
of Hayes et al.20 using local QC simulations for the same Al
surface. A pair of edge dislocations is nucleated at x
= �13 Å, and y=−50 Å. The partial separation distance is
about 19 Å, larger than the corresponding EAM value. The
drop in the applied load due to dislocation nucleation is 7.8
N/m, which is more than twice the corresponding EAM
value. The large difference in �P between QCDFT and
EAM-QC is interesting. It may suggest that although OFDFT
and EAM produce rather similar results before the onset of
plasticity, they differ significantly in describing certain as-
pects of defect properties. In particular, although both meth-
ods predict almost the same location for dislocation nucle-
ation, they yield sizeable differences in partial dislocation
width and �P. This result justifies the use of more accurate

quantum simulations such as KS-DFT for the nonlocal re-
gion where defects are present. Overall, we find that QCDFT
gives very reasonable results comparing to the conventional
EAM-QC. Although more validations are underway, we are
optimistic that the QCDFT method is indeed reliable and
offers a new route for quantum simulation of materials at
large length scales.

V. CONCLUSION

In summary, we present a concurrent multiscale method
that makes it possible to simulate multimillion atoms based
on density-functional theory. The method—QCDFT—is for-
mulated within the framework of the QC method, with
OFDFT as its sole input, i.e., there is only one underlying
energy functional �OFDFT� involved. Full-blown OFDFT
and OFDFT-based elasticity theory are the two limiting cases
corresponding to a fully nonlocal or a fully local version of
QCDFT. The QC ghost force at the local-nonlocal interface
is corrected by a dead load approximation. The QCDFT
method is applied for a nanoindentation study of an Al thin
film. The QCDFT results are validated by comparing against
conventional QC with an OFDFT-refined EAM potential.
The results suggest that QCDFT is an excellent method for
quantum simulation of materials properties at length scales
relevant to experiments.
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