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We present molecular dynamics simulations of a simple dimer immersed in a Lennard-Jones �LJ� fluid to test
the validity of the solvation pressure model in a system where we attempt to isolate the general and ubiquitous
solvation pressure. The solvated dimer acts as a simple pressure gauge in a system where the cohesive energy
density �CED� of the solvent is fixed. We study the dimer bond length as a function of uniform hydrostatic
pressure and as a function of a scaling parameter x which changes the attractive component of the LJ solvent-
solute interaction. For small x, or weak solvent-solute attractive interactions, the liquid bond lengths are
dominated by repulsive interactions, but at higher values of x strong solvent-solute interactions produce a
“packing effect” that is the dominant factor. We find that the change in bond length between vapor and liquid
is consistent with the solvation pressure model for only a narrow range of x. Despite the simplicity of the
system, departure from the solvation pressure model and an increase in the dimer bond length with increasing
pressure are observed which is consistent with experimental observations of real liquids and normally attrib-
uted to masking effects. The existence and impact of these effects are explained in terms of CED, axial forces,
and axial pressures.
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I. INTRODUCTION

Recent years have seen increased interest in the role that
solvation pressure plays in the shortening and lengthening of
molecular bonds in solvated molecules. One reason for this
is that many biological processes are sensitive to externally
applied pressure. For example, pressure can increase the
folding rates of proteins which undergo reversible folding/
unfolding transitions when subjected to hydrostatic pressures
of 2–10 katm.1,2 Although the consensus is that both pressure
and temperature are potential denaturants of proteins, the
former has the advantage that it affects only the volume of
the system whereas the latter involves changes in both the
volume and thermal energy.3 Attention is focused in this area
because proteins are now considered for their potential use as
biosensors4 and since protein misfolding can have serious
consequences including Alzheimer and Parkinson diseases.5

Thus, a clear understanding of the specific physical prin-
ciples governing the solvation pressure mechanism offers a
possible means for controlling pressure-dependent biological
functions.

Solvent-solute interactions can modify significantly the
solvent structure in the region surrounding a solute particle,
the cybotactic region, from that in the pure solvent. This
leads to changes in the solvation pressure experienced by
solvated molecules and good evidence for the solvation pres-
sure effect has been observed using Raman spectroscopy for
nanosized objects such as carbon nanotubes,6,7 starch grains,8

pure solvents,9,10 and for solvent mixtures.11,12

The solvation pressure model asserts that all solutes, in-
cluding particles immersed in their own liquid, experience a
pressure equal to the cohesive energy density �CED� of the
solvent, which is defined as the energy of vaporization per
unit volume. This can be obtained from both experimental
measurements and molecular dynamics �MD� simulations
using the molar enthalpy of vaporization �Hvap and molar
internal energy change on vaporization �uvap, respectively:

CED �
�uvap

v
� ��Hvap − RT�/v , �1�

where v is the molar volume of the solvent. The two molar
energies are related by

Hvap = uvap + Pvvap, �2�

where vvap is the molar volume of the vapor and P is the
pressure. A similar expression can be written for the liquid
phase and since vvap»v, it follows that

�Hvap = �uvap + RT , �3�

assuming the van der Waals formula holds for the vapor. The
CED is often expressed in units of pressure and for con-
densed argon, water, ethanol, chloroform, and benzene is
about 1.8,14 24, 7, 3, and 3.5 katm, respectively.13

Several theoretical models have been used to describe the
solvation pressure mechanism. Schweizer and Chandler in-
voke competition between short-range �hard-sphere� and
long-range solvent-solute interactions.14–16 Good agreement
with experiment can be secured but the fitting parameters are
sensitive to the hard-sphere radius of the solvent and the
length scales of attractive solvent-solute interactions.15 This
has focused effort on simpler models, such as the solvation
pressure model, where the pressure effect of a solvent on a
solute can be obtained simply from the CED of the liquid.

Dack’s model correlates the internal pressure pi with the
CED of a liquid system.17 Other workers have tested the
applicability of this model to nonpolar and polar hydrogen-
bonded liquids and have shown that for low polar liquids the
CED can be equated to internal pressure. In contrast, for
strongly hydrogen-bonded liquids pi and CED do not reflect
the same physical property.18 Moreover, liquid comparisons
have shown that even when there is an equivalent internal
pressure it can correspond to a different structural state and
hence significantly different CED.16,19 Liquid systems whose
properties are close to those of a van der Waals fluid are the
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exception because here the cohesive energy density and in-
ternal pressure are approximately equal for the liquids being
compared.16

The internal pressure and CED of a liquid, where the
former is a measure of the change in internal energy of 1 mol
of solvent as it undergoes a small isothermal expansion, are
related by

pi = � �u

�v
�

T

=
n�uvap

v
, �4�

where n is a dimensionless ratio which has been related to
the strength of the intermolecular forces in the liquid.20 For
many liquid systems, the small isothermal expansion may
not disrupt all intermolecular interactions associated with the
1 mol of solvent and so the pi will diverge from the CED.
For example, for highly-polar liquids such as water
n�0.07 and the CED deviates strongly from the internal
pressure whereas for nonpolar liquids such as benzene
n�1 and the CED and internal pressure are approximately
equal.21 Thus, the relationship between the CED and pi may
indicate the likely validity of the solvation pressure model.
So cohesion, and hence CED, results in a ubiquitous solva-
tion pressure exerted on solutes which can be masked in the
presence of strong specific interactions. For example, MD
simulations of pure ethanol report that the change in bond
length with pressure is well described by the solvation pres-
sure model for all bonds except for O-H, which is lengthened
with applied pressure due to masking by hydrogen bonding
forces.9 In addition, a comparison between experimental data
and MD simulations demonstrate that masking interactions
exist in real chloroform which can be reduced or eliminated
in simplified simulations.10

The different length behaviors observed have left workers
cautious as to the general applicability of the model to
hydrogen-bonded systems, where the vibrational properties
of bonds are sensitive to local structure. It has been shown
that the results of experimental studies of the change in vi-
brational frequencies associated with solvated molecular
bonds can be interpreted in terms of a general solvation pres-
sure added to atom-specific masking interactions. Further-
more, it has been suggested that Schweizer and Chandler’s
theory, adapted to include solvent-solvent effects, could
achieve decomposition of the molecular interactions into sol-
vation pressure plus masking interactions. However, the key
message from previous tests of the validity of the solvation
pressure model using Raman spectroscopy and MD simula-
tions is that simplifications of the potentials appear to reduce
or eliminate masking the interactions that exist in real liq-
uids.

In this paper we examine the solvation pressure effect on
a simple nonpolar dimer as vapor and immersed in a
Lennard-Jones fluid. The Lennard-Jones �LJ� fluid has been
the focus of a number of studies22,23 and here we use this
model in an attempt to isolate the general solvation pressure
by studying a liquid system where we expect �pi���CED�
such that the potentials are sufficiently simple to suggest that
masking effects are reduced or eliminated. Moreover, here
the solvated dimer acts merely as a pressure gauge and we
use direct measurements of its bond behavior to test for the

ubiquitous effects of solvation pressure and hence the valid-
ity of the solvation pressure model.

II. MOLECULAR DYNAMICS SIMULATIONS

Two simple systems were considered: first a 6084 particle
pure LJ fluid; second the same LJ fluid but with 100 particles
replaced by 100 nonpolar dimer molecules. The MD package
DLPOLY 2.17 �Ref. 24� was used for all liquid systems stud-
ied.

A. Simulation of pure LJ fluid

The pure fluid consists of N=6084 solvent particles inter-
acting via the LJ �12–6� potential

USS�r� = 4�S	��S

r
�12

− ��S

r
�6
 , �5�

where �S and �S are the usual LJ length and energy param-
eters, respectively and the subscript identifies the solvent.
The solvent parameters are typical for benzene, �S=5 Å and
�S /kB=414 K,25,26 which is a nonpolar solvent with a CED
of around 3.5 katm and a fairly wide liquid range of around
75 K �278.7–353.3 K�.19,25

The pure liquid consists of a cube containing the solvent
particles initially arranged in a face-centered cubic �fcc� lat-
tice, in a volume V, at a density of 800 kg m−3, which is
approximately 10% lower than the experimental density of
liquid benzene. All simulations of the pure liquid and liquid-
dimer mixture were performed at 293 K. Periodic boundary
conditions were employed in the normal way and the LJ
potentials were truncated at a cutoff rcut=2.5�S with the
usual LJ tail corrections applied.27 Equilibration of the pure
liquid was achieved by allowing repeated isotropic contrac-
tions for 106 time steps of 0.2 fs in the N-P-T ensemble
�constant number of particles, pressure, and temperature�
with a zero pressure target. The system was then thermalized
further in the N-V-E ensemble �constant number of particles,
volume, and energy� using the cell dimensions obtained from
the N-P-T thermalization and equilibration was verified by
ensuring that there was no systematic drift in pressure. This
procedure produced a stable equilibrated liquid system at
zero pressure with extremely small pressure fluctuations of
�1 atm.

There are two methods for calculating the CED of the
liquid from the simulation. The most straightforward ap-
proach is to evaluate

CEDS =
− uS

vS
, �6�

where uS and vS are the mean configurational energy and
volume per solvent particle, respectively. An alternative ap-
proach for the calculation of the CED examines the interac-
tions between a particle and those particles in its immediate
surroundings. The effective CED due to the surrounding par-
ticles can be obtained by considering the breaking and for-
mation of bonds when a particle is inserted into the liquid.
Suppose each particle, on average, forms bonds to c neigh-
boring particles, where c can be considered the coordination
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number. In the LJ liquid we would expect c�12 for first
nearest neighbors as for a fcc lattice.34 A cavity is formed by
breaking c /2 bonds and then a particle is inserted into the
cavity forming c bonds. The net result is the formation of
c /2 bonds.

In a liquid of course, c is a function of r and is related to
the solvent-solvent radial distribution function �rdf� gSS�r�,

c�r� = 4��N�
0

r

r2gSS�r�dr , �7�

where �N is the average number density N /V=1 /�S. It is then
evident that the configurational energy is given by

uS = 2��N�
0

�

USS�r�gSS�r�r2dr , �8�

where USS�r� is the solvent-solvent LJ pair potential given by
Eq. �5� and the CED is obtained using Eq. �6�. For a single-
species liquid, the CED obtained using either Eq. �5� for the
system as a whole or using Eq. �8� for the local CED should
produce the same result. Equation �8� can be adapted, how-
ever, to estimate the effective local CED experienced by the
dimer solute molecules as explained in the following
section.28

B. Simulation of solvent-dimer mixture

This system consists of a binary mixture of ND=100 non-
polar dimer solutes immersed in a NS=5984 particle LJ sol-
vent. The intramolecular dimer bond is described by a Morse
potential

U�r� = E0��1 − exp− k�r − r0���2 − 1� , �9�

with parameters that are typical of those used to model the
single O-O bond in hydrogen peroxide which is liquid at
room temperature: E0=50 kcal mol−1, r0=1.468 Å, and k
=1.375 Å−1.29,30

The solvent-solvent interaction pair potential and param-
eters in the mixture are the same as those of the pure fluid
presented in the previous section. For solvent-solute interac-
tions, the dimer is treated as two-site and the interaction
between a solvent particle and each dimer site is modeled as
LJ �12–6� but modified by a parameter x that scales the at-
tractive term:

USD�r� = 4�X	��X

r
�12

− x��X

r
�6
 , �10�

where �X and �X are the LJ length and energy parameters,
respectively, for the solute-solvent interactions and are con-
stants independent of x. This expression may be rewritten in
the form

USD�r� = 4�SD�x�	��SD�x�
r

�12

− ��SD�x�
r

�6
 , �11�

such that

�SD�x� = �Xx−1/6, �12�

�SD�x� = x2�X, �13�

thus satisfying the requirement that the repulsive component
of the solvent-solute potential is a constant. Since the
solvent-solvent length and energy parameters are fixed, any
variation in x represents a variation in the energy and length
parameters associated with the solute only. For the solvent-
solute parameters we expect the Lorentz-Berthelot mixing
rules to hold, thus30

�SD�x� =
1

2
�S + �D�x�� , �14�

�SD�x� = �S�D�x��1/2, �15�

where each dimer site, or atom, has energy and length pa-
rameters �D�x� and �D�x�, respectively, assigned oxygen-
oxygen LJ interaction parameters for the case x=1. Hence
�D�x=1�=2.95 Å and �D�x=1� /kB=61.6 K.31 Also, in Eq.
�10�, �X=�SD�x=1� /kB=159.7 K and �SD�x=1�=3.98 Å.
These choices lead to the solvent-solute LJ parameters listed
in Table I. Note that there are no solute-solute intermolecular
interactions.

For simulations of the mixture, 6084 solvent particles
were arranged in a fcc lattice and 100 were replaced with
dimers. Starting with x=1, equilibration began with repeat
N-P-T-N-V-T cycles for 106 time steps of 0.2 fs which pro-
duced simulation cells containing the mixture at a range of
pressure from about 0 to 1.2 katm. In order to obtain systems
with different values of x at approximately the same volume
and hence density, the equilibrated system with x=1 was
equilibrated for a new x in the N-V-T ensemble for 5	106

time steps of 0.2 fs and then in the N-V-E ensemble for a
maximum of 3	106 time steps of 0.2 fs. As before, equili-
bration was verified and the simulation terminated when
there was no pressure or bond length drift.

Each cell was then simulated using the N-V-E ensemble
for a maximum of 2	106 time steps of 0.2 fs with the ther-
modynamic data and atomic positions recorded every 25
time steps. Dimer bond length measurements were obtained
by averaging the individual bond length measurements of the
100 dimers over all recorded time steps. The pressure and
bond length data were monitored throughout each run and
for the mixture equilibration was verified and the simulation
terminated when there was no systematic drift in pressure or
bond length. Each cell was then taken through a cycle of four

TABLE I. The solvent-solute LJ energy and length parameters.
In all simulations the solvent length and energy parameters are
�S=5 Å and �S /kB=414 K, respectively.

x
�SD /kB

�K�
�SD

�Å�

0.5 39.9 4.46

1 159.7 3.98

2.1 704.3 3.50

3 1437 3.31

4 2555 3.16
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simulations using the N-V-E ensemble for 5	106 time steps
of 0.2 fs, again with the thermodynamic data and atomic
positions recorded every 25 time steps, and bond lengths
were obtained at a given pressure by averaging the bond
lengths obtained from each of the four N-V-E runs. The stan-
dard deviation of the pressure and temperature fluctuations
was typically 0.015 katm and 1.5 K, respectively. It is also
noted that the use of the N-V-E ensemble at the data taking
stage is essential as the normal thermostat �Nosé-Hoover� for
N-V-T ensembles scales the atomic velocities and the normal
barostat �Berendsen� for N-P-T ensembles scales the volume
and hence bond lengths. Both ensembles therefore interfere
with the quantities we wish to measure.

By definition, a dimer as vapor will have a CED of zero
and does not experience a solvation pressure. Thus, we can
test for the validity of the solvation pressure model by com-
paring bond lengths obtained from liquid and vapor simula-
tions. We modeled the vapor by placing a single dimer in a
cubic simulation cell with the same dimensions as the liquid,
which meant that the cell was sufficiently large to render
negligible any interactions between the molecule and its im-
ages due to periodic boundary conditions. To obtain the va-
por bond length, we averaged the bond length obtained from
103 simulations undertaken, at zero pressure and 293 K, us-
ing the N-V-E ensemble for 107 time steps of 0.02 fs.

The CED experienced by a dimer due to its local environ-
ment can be obtained by considering the bonds broken in the
formation of a cavity and the bonds formed when a dimer is
inserted in the manner described in Sec. II B. Here, however,
c /2 solvent-solvent bonds are broken in forming the cavity
and 2c solute-solvent bonds are formed when the dimer is
inserted. Therefore,

uD = 2��N�
0

�

USS�r�gSS�r�r2dr − 8��N�
0

�

USD�r�gSD�r�r2dr

�16�

and

CEDX =
− uD

vD
, �17�

where gSD�r� is the solvent-solute radial distribution function
and vD is the volume per dimer. It is assumed that the par-
ticle density is approximately constant and equal to the bulk
density in the region of the integrations which, in practice, is
taken to rcut. This integral cutoff incorporates the second
shell in the energy calculations and consequently reduces the
error since the interaction energy due to all neighbors beyond
the second shell contributes only about 1.8% of the total.

III. RESULTS AND DISCUSSION

The zero pressure density of the pure fluid determined
from the simulation was 871.7 kg m−3. Using Eq. �6�, we
calculated a solvent cohesive energy density of
2.3�0.3 katm. This is in excellent agreement with the CED
of 2.2 katm obtained using Eq. �8� for both the pure fluid and
fluid component of the mixture. For the pure fluid we calcu-

lated the volume per solvent particle from V /N, while for the
mixture we calculated this quantity using

vS =
V

NS + XSND
, �18�

where NS and ND are the number of solvent and solute par-
ticles in the system, respectively, and XS is the mole fraction
of the solvent equal to 0.968.

Figure 1 shows the average normalized dimer bond length
as a function of applied pressure for various values of x. Also
shown is the vapor bond length and since this bond will not
experience the solvation pressure felt by the liquid, we plot it
at –2.3 katm, equal to the CED of the solvent. All dimer
bond lengths were normalized to the vapor bond length
which was equal to 1.477 Å. Typically, the standard devia-
tion of the bond length fluctuations was 5	10−4 Å for the
liquid and 10−3 Å for the vapor. The applied pressure is
confined to a maximum of about 1.2 katm to avoid the
liquid-solid transition which occurs at higher densities.

As expected, Fig. 1 shows that the mean dimer bond
length decreases as the attractive component of the solvent-
solute potential, characterized by x, is increased. The dashed
line, obtained from the linear regression of the liquid data
only for the case where x=1, passes through the vapor data
within the error and it appears that it is only for this value of
x, or narrow range of values either side of x=1, that the
behavior of the bond length is consistent with the solvation
pressure model. In other words, the application of a uniform
hydrostatic pressure compresses the dimer bond length in the
same manner as the solvation pressure acting on the liquid at
normal pressure compared to the vapor.

For x=0, 0.5, 1, and 2.1 there is a linear compression of
the bond with increasing hydrostatic pressure and all plots
exhibit a similar slope. However, this is not so when x=3
and 4 where we observe an increase in bond length as the
applied pressure is increased. The simple LJ system reveals
many of the complex features observed in experiments
where bond length changes are inferred from the shift of
Raman peaks with applied uniform pressure. For example, in
real systems where strong attractive forces such as hydrogen
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FIG. 1. The dimer bond lengths determined from MD simula-
tions as a function of uniform hydrostatic pressure.
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bonding are known to be present, comparisons between Ra-
man spectra from experiment and simulation indicate bond
compression and an increase in bond length as a function of
pressure.8–10 We now seek to establish why agreement with
the solvation pressure model occurs for a small range of x
and why, for large relative attractive potentials, an increase in
bond length is observed with increasing applied pressure.

It is evident that the dimers experience a local CED dif-
ferent from the CED of the solvent that surrounds it which,
presumably, is due to the local arrangement of solvent atoms
in the cybotactic region of the dimer. The expressions for the
local CED given by Eqs. �16� and �17� include contributions
from the rdf and dimer volume.

Figure 2 shows the solvent-solvent �SS� and solvent-

solute �SD� rdfs as a function of x. As x is increased the first
peak in the solvent-solute rdfs becomes taller but narrower,
which suggests a reduction in the first coordination number
accompanied by tighter packing in the cybotactic region. A
low and narrow second peak close to the first develops which
becomes more prominent for increasing x. This may be
thought of as a splitting of the first peak as first neighbors are
squeezed out of the first shell. An increase in x corresponds
to a decrease in the solvent-solute LJ length parameter
�SD�x� which in turn leads to a shortening of the position of
the first peak as the solvent molecules are allowed to close in
on dimer sites and hence the squeeze on first shell particles.

Equation �7� was used to calculate the first coordination
number c1 as a function of pressure by integrating to the first
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FIG. 2. The solvent-solute rdfs as a function of radial distance r for �a� x=0, �b� x=0.5, �c� x=1, �d� x=2.1, �e� x=3, and �f� x=4; D refers
to a single dimer site. For clarity, we plot the curves at two pressures only and also include solvent-solvent rdfs.
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minimum of each rdf. c1 is equal to the number of solvent
particles within the first coordination shell of a dimer site.
These data are shown in Fig. 3 as a function of applied
pressure for various values of x and includes the c1 obtained
from the solvent-solvent rdfs. The latter confirms that the
first coordination number is about 12, consistent with a fcc
structure due to a compact liquid. For the solvent-solute co-
ordination number at x=0, we find that c1�12, and from
there we observe a decrease of c1 for increasing x, consistent
with the splitting of the first peak in the rdfs. As x is in-
creased, first shell particles are squeezed and some are forced
out leaving a highly compact cybotactic region. For small x,
the solvent-solute first coordination number increases
slightly with pressure consistent with an uniform compres-
sion of the system. However, for x=3 and x=4, c1 is constant
and independent of pressure thus suggesting a lower limit to
c1 of about 5.

Recall that the bond length data presented in Fig. 1 show
that there are masking effects that alter the net solvation
pressure experienced by the solute bond, which results in
bond behavior different from that expected for a fit to the
solvation pressure model. We have also demonstrated using
rdfs and first coordination numbers that increasing the attrac-
tive component of the solvent-solute potential modifies sig-
nificantly the solvent structure within the cybotactic region.
To demonstrate further the extent of structural reorganization
we adopt a method similar to that used by Laaksonen et al.32

to obtain the structural density function, or local structure,
surrounding a molecule. We first translate each dimer so that
its center sits at the origin and then apply rotational matrices
to align the bond length along the x axis. An equivalent
translation and rotation is then applied to solvent particles
originally falling within a radial distance of r
rcut from the
center of the dimer. Over the course of a simulation we
record solvent positions relative to the origin or center of the
dimer bond, and obtain two-dimensional x-y and y-z slices of
the solvent structure surrounding the dimer by restricting the
recording of solvent positions where −0.05 Å�z�0.05 Å
and −0.05 Å�x�0.05 Å, respectively. Figures 4 and 5
show x-y and y-z slices for x=0.5, 1, and 3, up to a radial
distance of 12 Å. Note that the slices show all solvent posi-

tions with the cutoff radius of the 100 dimers over 1200
mixture configurations.

The x-y and y-z slices obtained when x=0.5 manifest the
wide and relatively low first peak in the solvent-solute rdf.
When x is increased, the position of first coordination shell
becomes more prominent and appears highly localized at
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FIG. 3. The solvent-solute first coordination number c1 for vary-
ing x plotted as a function of uniform hydrostatic pressure �closed
symbols�. Also shown for comparison are the solvent-solvent first
coordination numbers �open symbols� for equivalent values of x.
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shows the position of the center of the dimer site and the LJ circle
with diameter �SD�x�, respectively.
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x=3, corresponding the splitting of the first rdf peak and
consequent appearance of a small second peak slightly fur-
ther out. Figures 4 and 5 confirm that there is significant
structural reorganization of solvent molecules surrounding
the solute for large x.

We now turn our attention to the dimer volume. As x is
increased, �SD�x� decreases and solvent particles move
closer to the solute sites. Thus, the local packing environ-
ment of the dimer is altered and the volume occupied by the
dimer is reduced leading to an increase in the local solvation
pressure according to Eq. �17�.

Calculating free volumes in liquids has proved a difficult
task partly due to the computational and experimental diffi-
culties associated with measuring and characterizing them.
Although Krekellberg et al.33 have developed a model that
predicts how the attractive strength affects the free volume
distributions of a square-well fluid with short range interac-
tions, here an elementary model is used which assumes that
the dimer occupies a prolate ellipsoid with major and minor
axes as illustrated in the x-y and y-z slices, respectively.

If the minor and major axes are R1 and R2, respectively,
then

vD =
4�

3
�R1

2R2� , �19�

where R1 is the distance from the dimer axis to the first peak
of the rdf and R2=R1+d /2 where d is the dimer bond length.

Figure 6 confirms that the dimer volume vD decreases for
increasing x at zero applied pressure. Figure 7 shows that the
local CED experienced by the dimer CEDX, calculated from
Eq. �17�, increases as a function of x consistent with the

-12 -8 -4 0 4 8 12
-12

-8

-4

0

4

8

12
x = 0.5

Z
(Å

)

Y (Å)

-12 -9 -6 -3 0 3 6 9 12
-12

-9

-6

-3

0

3

6

9

12

x = 1

Z
(Å

)

Y (Å)

-12 -9 -6 -3 0 3 6 9 12
-12

-9

-6

-3

0

3

6

9

12
x = 3

Z
(Å

)

Y (Å)

(b)

(a)

(c)

FIG. 5. Two-dimensional y-z slices showing the local solvent
structure with the dimer centered at the origin for �a� x=0.5,
�b� x=1, and �c� x=3. For each x, the black dots indicate the posi-
tion of each dimer site center and the hashed curves show the LJ
circles with diameter �SD�x�, respectively.
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changes in bond lengths presented in Fig. 1. For small x,
CEDX is negative; for example, at x=1, CEDX�−0.2 katm.
Yet, at x=1, the behavior of the dimer bond length is consis-
tent with the solvation pressure model and compliance with
the model implies that at zero applied pressure the bond
should experience a CED equivalent to that of the solvent
CED, namely, about 2.3 katm. Broad agreement with the
SPM, within bond length error, was obtained for approxi-
mately 0.7�x�1.6, which corresponds to a range of solva-
tion pressure −0.3�CEDX�1.4�katm� in Fig. 7, well below
the solvent CED. Note that the calculation of CEDX includes
the effect of both the reduced dimer volume with increasing
x and also changes to the local environment characterized by
the rdf. The negative CED obtained in the low x regime is
because the solvent-solute interactions are dominated by the
repulsive component and so the affinity of solvent with sol-
ute is lower than the solvent-solute interactions. We note that
other workers have used dilution to generate negative solva-
tion pressures in liquids8 and state that these arise because
pressure and dilution change the environment around solute
molecules.34

At low x, CEDX is dominated by the energy of cavity
creation, or break up of solvent-solvent bonds, while for
higher x it is the solute solvation that dominates due to the
increasing strength of the attractive component of the
solvent-solute potential. For x�1, there is both a positive
CED and the increasing strength of the solvent-solute inter-
action leads to significant structural reorganization of solvent
particles, a lower free volume, and hence a packing effect
that dominates the bond behavior. At x�2, CEDX corre-
sponds with the CED of the solvent. The fact that CEDX
increases with increasing x suggests that the CED is a real
pressure that plays a role in the observed bond compression.
However, what is striking is that in our simplified system
there is evidence of masking interactions that cause the bond
length to deviate significantly from the simple solvent solva-
tion pressure dependence. It would therefore be useful to
compare CEDX with a direct calculation of the pressure ex-
erted on the bond determined from the net axial force.

The net axial force fAXIAL is obtained by summing the
bond-lengthening and bond-shortening force components
due to solvent molecules lying within a distance r
rcut of
the dimer where a positive or negative net force corresponds
to a net shortening or lengthening force, respectively. In or-
der to calculate a net axial pressure, it is reasonable to as-
sume that fAXIAL acts on a net area of ��SD�x� /2�2. Thus the
net axial pressure at a given x is

PAXIAL =
fAXIAL

��SD�x�/2�2 �20�

and these values are included on Fig. 7. A quadratic fit to
PAXIAL provides a good fit and indicates that the zero pres-
sure net axial force, and hence bond length, may be domi-
nated by the energy parameter since �SD�x2.

Figure 7 suggests that the pressure mechanism controlling
the bond behavior may be attributed to the internal pressure
rather than the CED or solvation pressure. Evidence comes
from Eq. �4� which showed that in liquids where masking
interaction dominate pi�CED which is similar to the behav-

ior seen here where PAXIAL�CEDX. We note that the dimer
bond behavior appears to fit the solvation pressure model at
x�1 which is where, as shown in Fig. 7, CEDX� PAXIAL.

Finally, we explain the pressure dependence of the bond
lengths for large x shown in Fig. 1. For x�2.1 the bond
lengths show an approximate linear decrease for increasing
applied pressure while for x=3 and 4 the bond lengths are
lengthened with applied pressure, at least for small applied
pressures.

Figures 8–10 present the CEDX, dimer volume, and
PAXIAL, respectively, as functions of uniform hydrostatic
pressure for x=4. The applied pressure promotes changes in
the solvent structure that lead to a systematic increase in free
volume but the change in volume is too small to significantly
affect the value of CEDX. The CEDX shows a small drop in
value with increasing applied pressure up to a pressure of
about 0.2 katm before increasing once more. However, it is
PAXIAL which shows a significant fall with increasing applied
pressure consistent with the increase in bond length observed
in Fig. 1. The lengthening of the bond is similar to the bond
behavior observed in liquids where masking interactions are
evident due to the presence of hydrogen bonds. The theoret-
ical calculation of the axial pressure would be complex be-
cause it depends on the specific positions of the solvent par-
ticles in the cybotactic region. The attractive and repulsive
contributions to the interatomic potentials can serve to
stretch or compress the dimer bond depending on their posi-
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FIG. 8. The solvation pressure experienced by a dimer, calcu-
lated using Eqs. �16� and �17�, shown as function of uniform hy-
drostatic pressure for x=4.
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tion relative to the bond axis. The calculation of CEDX in-
volves averaging over the rdf. It is a mean field calculation
which therefore loses detail of the specific directions of the
surrounding particles. The details of the bond behavior can
only be fully explained if this directional information is
available. Solutes which, experimentally, exhibit an increase
in bond length as a function of applied hydrostatic pressure
are indicative of strong, highly-directional interactions, such
as hydrogen bonding.9

IV. CONCLUSION

In this paper, we examine the effect of solvation pressure
on a simple nonpolar dimer immersed in a Lennard-Jones
fluid via molecular dynamics simulation. The solvated dimer
acts as a pressure gauge in a system where the solvation
pressure of the solvent is constant and we have attempted to
isolate the general solvation pressure by simplification of the
potentials. The dimer bond length is measured as a function
of x, which scales the attractive component of the solvent-
solute interaction potential, and as a function of applied uni-
form hydrostatic pressure. While ostensibly a simple system,
our results exhibited rich behavior similar to that observed
experimentally, using Raman spectroscopy, for a range of
solute-solvent systems including those where hydrogen
bonding is known to be a dominant factor in bond length
behavior.8–10 We found that for x�1, the observed bond be-
havior is consistent with the solvation pressure model but
with the caveat that neither the effective local CED nor the
axial pressure indicate that the pressure experienced by the
dimer was that expected for compliance with the model.

For weak attractive solvent-solute interactions x�1 we
find that the dimer bond is compressed with applied pressure
as the mean positions of the surrounding solvent particles
draw closer to the dimer. We calculate that the dimer expe-
riences a negative local CED but a positive net axial force
and axial pressure at x=1. We conclude that in the low x
regime the bond behavior is dominated by repulsive solvent-
solute interactions. For x�1, attractive solvent-solute inter-
actions dominate and this leads to significant structural reor-
ganization of solvent particles surrounding the dimer solutes
in which the number of first-nearest neighbors is reduced and
a second peak in the rdf appears. At x=3 and x=4, the dimer

bond is found to lengthen with applied pressure. This is due
to the subtle structural changes where first-nearest neighbors
are squeezed out leading to a reduction in the axial pressure.
Information about the specific positions of the local solvent
particles is required to correctly predict this behavior and this
effect is only partially revealed by the CED which averages
over the local particle density. The high x regime corre-
sponds to a positive CED, axial force, and axial pressure and
we conclude that here the bond length behavior is dominated
by attractive solvent-solute interactions and the consequent
packing restrictions or so called “packing effect.” An in-
crease in dimer bond length with applied pressure is indica-
tive of strong, attractive forces and local structure and is
consistent with experimental observations in hydrogen-
bonded systems.9

Although the main aim of this study is to test the validity
of the solvation pressure model, and hence ubiquitous nature
of solvation pressure, we emphasize that all the conclusions
drawn have been tested on the LJ system only. Other work
worth noting is a study of how the attractive potential influ-
ences the structuring of spheres which demonstrated that co-
hesion between atoms is enormously important to structure
and is of greater significance than first realized.35 Also,
Kodaka36,37 has reported that there is a correlation between
the diameter of solvents and packing density and that the
former tends to increase depending on the magnitude of CED
at constant temperature and pressure. Furthermore, that hy-
drophobicity is caused by the packing density of water �or
organic solvents such as ethylene glycol� being higher than
that expected for a solvent with the same size and lower
CED. Therefore, it will be interesting to see whether the
“packing effect” that we have observed at high x has the
pronounced effect on bond behavior in real systems that we
have shown to be the case for the LJ system.

In conclusion, results suggest that the bond behavior
should be attributed to the net axial pressure, or internal pres-
sure, rather than the cohesive energy density. We also found
that the dimer bond behavior appears to give a fit to the
solvation pressure model at x�1, which is the value of x for
which CEDX� PAXIAL. The solvation pressure model does
not, in general, correctly describe the change in bond length
from vapor to liquid except for a specific and limited ranges
of x. Our results do not support the idea that our simple
pressure gauge, the dimer, experiences a ubiquitous applied
pressure equivalent to the CED of the solvent. That is, the
solvation pressure model has limited validity in our simpli-
fied system where we have attempted to isolate the general
solvation pressure by using simple LJ potentials.

These results should aid the interpretation of experiments
in which the bond lengths within solute molecules are in-
ferred from changes in Raman mode frequencies as a func-
tion of applied pressure and hence provide an insight into the
nature of the specific solute-solvent interactions in real sys-
tems.
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