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We calculate the dc conductance at zero temperature of clean quantum wires driven by a laser field. In the
high-frequency regime we find an interplay between length-dependent interference effects and dynamical
localization, which leads to a modulation by a Bessel function of the even-odd oscillations in the conductance.
In the low-frequency regime we find that the field suppresses these oscillations. We present some analytical
expressions for each of these frequency limits.
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I. INTRODUCTION

Quantum wires will be the basic components in quantum
electronic devices. Understanding their basic electronic
transport properties is of fundamental importance for future
applications. Experimentally, chains of atoms between two
electrodes have been formed and investigated1–3 and the con-
ductance of molecules like H2 has been measured.4 Carbon
nanotubes are also very promising materials for working as
quantum wires in different possible devices.5

One of the most basic properties of the conductance in
clean quantum wires is its oscillations as a function of the
wire length.6 When the Fermi energy EF is located in the
band center of a one-dimensional wire even-odd oscillations
have been known to exist since the beginning of the field of
molecular electronics.7 They can be seen as analogous to a
Fabry-Perot interferometer for electronic transport. The con-
ductance of atomic Au, Pt, and Ir wires between break junc-
tion contacts has revealed these oscillations. For an odd
number of atoms in the atomic wire the conductance has
maxima while it is reduced when the number of atoms is
even.8 This behavior was obtained after averaging over many
realizations of the experiment in which the precise form of
the contacts between the electrodes and the atomic chain
might be different. Using density functional methods these
oscillations have been calculated for chains of Na atoms9 and
a four-atom period was obtained for Al atoms.10 Depending
on the value of EF oscillations of different periods have been
shown to appear.11 These oscillations survive in the presence
of interactions12 which can increase their amplitude with the
length.11,13,14

One interesting possibility to control the properties of a
quantum wire is to use a time-dependent electromagnetic
field such as that of a laser beam. Interesting phenomena
have been found in the last decade, such as photon assisted
tunneling,15,16 pumping of electrons,17–21 heat pumping,22,23

and quantum rachet effect in molecules.24 Theoretically, an
important breakthrough was the recent derivation of a
Landauer-type formula25 for transport in driven systems us-
ing Floquet theory.26 The current and the noise in coherent
conductors connected to leads have been written in terms of
transmission coefficients that could be calculated using the
Floquet-Green function of the system.

It is the objective of this paper to study the dc conduc-
tance of a quantum wire modeled with a tight-binding
Hamiltonian in the presence of a laser field �dipole approxi-
mation.� For that purpose we will use a Floquet-Green func-
tion formalism. The Floquet-Green function will be com-
puted using a matrix continued fraction method27,28 that has
been successfully used for studying the localization proper-
ties of disordered one-dimensional systems.29,30

The remainder of the paper is organized as follows: In
Sec. II the Floquet formulation of the conductance for driven
systems is sketched and the method of calculation of the
Floquet-Green function for our tight-binding quantum wire
connected to leads is explained. The modulation of the even-
odd oscillations due to dynamical localization in the high-
frequency regime is studied in Sec. III where we compare
our exact results using the Floquet-Green function of the
system, with the analytical results obtained in the high-
frequency limit. In Sec. IV we obtain analytical results
within the low-frequency approximation and we compare
them with the exact results. Finally, we end with some con-
clusions and perspectives in Sec. V. In the Appendix we have
presented the derivation for the even-odd oscillations in
terms of the Green’s function, which establishes a connection
between the driven and nondriven results.

II. FLOQUET-GREEN FORMULATION OF THE
CONDUCTANCE FOR DRIVEN SYSTEMS

Following Ref. 26, we describe our laser-driven quantum
wire by a time-dependent Hamiltonian of the form

H�t� = Hwire�t� + Hleads + Hcoupling, �1�

where the different terms correspond to the time-dependent
Hamiltonian for the quantum wire, the Hamiltonian for the
leads, which we assume as time independent, and the lead-
wire coupling, respectively. We want to study the basic phys-
ics at play in the regime of coherent quantum transport in the
presence of the driving field.

We will neglect the possible effects of the electron-
electron interaction and the effect of dissipation in the wire.
The effect of the oscillating potential in the leads could be
important and modify the tunneling rates in general; see for
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example Ref. 31 for a 2D case. However, for the one-
dimensional models considered in this work, the effect of an
oscillating external voltage applied to the leads can be
mapped to the Hamiltonian in Eq. 1 by a gauge transforma-
tion; see page 387 of Ref. 26. For this reason and for sim-
plicity we will not include any time dependence in the leads
or in the couplings.

For the wire Hamiltonian we choose a tight-binding
model composed of L sites with next-neighbor hopping and
an oscillating dipole field that could represent a laser with an
angle of incidence perpendicular to the wire and an angle of
polarization parallel to the wire.

Hwire�t� = − s�
l=1

L−1

��l��l + 1� + �l + 1��l�� + 2v cos��t��
l=1

L

�l�l��l� ,

�2�

where s is the hopping matrix element �4s corresponds to the
bandwidth of the wire�, � is the frequency of the laser, and
2v is the amplitude of its electric field. The factor of 2 is
used here for later convenience.

The leads are modeled by ideal electron gases,

Hleads = �
k

�k�cLk
† cLk + cRk

† cRk� , �3�

where cL�R�k
† creates an electron with momentum k in the left

�right� lead. The coupling between the wire and the lead is
modeled by the tunneling Hamiltonian connecting the Fermi
gas states of the left lead to the first site in the wire and the
states of the right lead to the last site of the wire,

Hcoupling = �
k

�VLkcLk
† c1 + VRkcRk

† cL + H . c.� . �4�

The coupling matrix elements will be considered symmetric
VkL=VkR. They can be described by a spectral density

�L�R��E� = 2��
k

�VL�R��2��E − �k� . �5�

We will use the wide-band limit approximation for these
couplings and consider them energy independent. This ap-
proximation is justified when the conduction bandwidth of
the leads is much larger than all other relevant energy scales.

In the wide-band approximation, the effect of the Hamil-
tonian of the leads and the coupling to the wires can be taken
care of by introducing two self-energies into the Hamiltonian
of the wire, the resulting operator H, which is often called an
“effective Hamiltonian,” is nonHermitian. For a clean wire
driven by a laser field it can be written as

Hwire
eff �t� = H0 + 2v cos �t�

l=1

L

l�l��l� + i�L�1��1� + i�R�L��L� ,

�6�

with H0 defined as the tight-binding Hamiltonian �first term
on the right-hand side� in Eq. �2�.

In Fig. 1 we show a schematic drawing of the kind of
systems that we consider in this work.

From this point on, we will refer to the operator Hwire
eff �t�

as our “Hamiltonian” H�t�, even though it is clearly a non-

Hermitian operator. Effective Hamiltonians of this kind have
been rigorously defined and have been used for a long time
to describe, for instance, the physics of decay from open
systems. In the mathematical treatment that follows using the
Floquet-Green operator, the nonhermicity of H�t� plays no
significant role and its particulars features will be pointed out
only when necessary.

Since our �effective� Hamiltonian for the wire is time-
periodic, H�t�=H�t+T�, with period T=2� /�, we can apply
Floquet theory.32–34 The solutions to the Schrödinger equa-
tion ��t� with a Hamiltonian that is time-periodic are of the
form

��e�t�� = e−iet/��	e�t�� , �7�

where �	e�t��= �	e�t+T��. One can arrive at an eigenvalue
equation for the Floquet Hamiltonian HF�t��H�t�− i� �

�t ,

HF�t��	e�t�� = e�	e�t�� . �8�

As pointed out by Sambe,34 since Eq. �8� is an eigenvalue
equation, it can be solved using the standard techniques de-
veloped for time-independent Hamiltonians, provided we ex-
tend the Hilbert space of the system, H, to include the space
of time-periodic functions. If e
,p is an eigenvalue with cor-
responding eigenvector �	e
,p�t��, then e
,p+m�� is also an
eigenvalue with corresponding eigenvector �	e
,p+m���t��
=eim�t�	e
,p�t��. Accordingly, the eigenstate corresponding to
the eigenvalue e
+m�� has the same structure as the eigen-
state corresponding to e
,p, except that it is displaced by
m�� on the energy axis. Because of this, to find all the
eigenvectors and eigenvalues of the Floquet Hamiltonian one
needs only to consider − 1

2���Re�e��
1
2��. We use the let-

ter � to refer to the Floquet eigenvalues restricted to this
interval and call them, as it is customary, “quasi-energies.”
For the particular case of our operator Hwire

eff �t�, the quasi-
energies are complex, with Im��
� �often called “self-
energy”� being dependent on the couplings �R/L to the leads.

The Floquet-Green operator corresponding to Eq. �8� is
defined by �see Refs. 27 and 28�

�IE − HF�t��	G�E,t�,t�� = I��t� − t�� , �9�

where ��t� is the -periodic delta function �= 2�
� � and I is

the identity operator in H. We can write the Floquet-Green
operator entirely in terms of the eigenfunctions �	
,0�t��,

�

�L �R

|1�� |2�� |4�� |5��|3��

EF
EF s s s s

FIG. 1. Schematic representation of a quantum wire with five
sites as modeled in the text.
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which correspond to values e
,p where − 1
2���Re�e
,p�

�
1
2��.

G�E,t�,t�� = �



�
p

eip��t�−t�� �	

,0�t����	
,0�t���
E − �
 − p��

, �10�

where 
=1, . . . ,N for a N-dimensional H, and p=
−� , . . . ,�.

Operating on both sides of this equation with
1
2 
0


0
eim�t�e−in�t�dt�dt� we can write the Floquet-Green

function in terms of its Fourier components,

Gm,n�E� = �

,p

1

E − �
 − p��
�	m+p


,0 ��	n+p

,0 � , �11�

where

Gm,n�E� =
1

2�
0

 �
0



eim�t�e−in�t�G�E,t�,t��dt�dt�,

and

�	m

,0� =

1


�

0



eim�t��	
,0�t���dt�, �12�

m ,n=−� , . . . ,�. It is easy to show that the components of
the Floquet-Green function have the following property:
Gm,n�E�=Gm−k,n−k�E+k���. From this one can conclude that
the quantities Gk,0�E� provide all the information of the
driven system, and from now on we will call them G�k��E�.

G�k��E� = �

,p

1

E − �
 − p��
�	k+p


,0 ��	p

,0� . �13�

In our case, Hwire
eff �t� is nonHermitian, and therefore �	k+p


,0 �
and �	p


,0� are, correspondingly, a right eigenvector and a left
eigenvector of the Floquet Hamiltonian �Hwire

eff �F.
The physical interpretation of the operators G�k��E� above

is simple. They give the probability amplitude for the propa-
gation of a particle with initial energy E to a final energy
E+k�� having absorbed or emitted �k� photons �for k being
positive or negative, respectively�.

For one-dimensional systems, in the case of the wide-
band limit previously considered, we can write the average
current through the driven system in terms of the Floquet-
Green operators G�k��E� corresponding to the effective wire
Hamiltonian,26

Ī =
e

h
�

k=−�

� � dE�TLR
�k��E�fR�E� − TRL

�k��E�fL�E�	 , �14�

with

TLR
�k��E� = �R�L�G1L

�k��E��2,

TLR
�k��E� = �R�L�G1L

�k��E��2, �15�

and fL�R��E� being the Fermi functions corresponding to the
left and right lead. �L�R� represent the coupling to the left
�right� lead, as defined in Eq. �5�, and the subscripts in the
Green’s function relate to the matrix elements of G�k� be-
tween the first site of the system connected to the left lead

and the last site of the system of length L, connected to the
right lead.

If we define the dc conductance at zero temperature as

g = lim
V→0

dĪ

dV
, �16�

where V is the applied bias between the leads that will
modify the Fermi factors corresponding to the right and left
leads, we can easily arrive at a formula for the conductance
at T=0 for one-dimensional driven systems,

g =
e

2h
�T̃LR�EF� + T̃RL�EF�	 , �17�

where

T̃LR�RL��EF� � �
k=−�

�

TLR�RL�
�k� �EF� . �18�

If the system does not have a reflection symmetry TLR
�k��E� is

not necessarily equal to TRL
�k��E�. In our case, however, the

nondriven part of the Hamiltonian in Eq. �2� is spatially sym-
metric, and therefore one can prove that TLR

�k��E�=TRL
�k��E� and

therefore T̃LR�E�= T̃RL�E�= T̃�E�. �This implies that there is

no pumped current in our system, since Ī=0 when V=0, as
can be seen from Eq. �14�	. Using this we obtain

g =
e

h
T̃�EF� . �19�

Equation �19� is the basic formula that we use throughout
this paper.

In order to calculate the Floquet-Green function Fourier
components we use the matrix continued fractions formalism
as presented in Ref. 27. Here we will only write down the
final expressions for a general Hamiltonian of the form H
=Hstatic+2V cos��t�, where Hstatic and V are time-
independent operators in the Hilbert space of the system.

G�0��E� = �E − Hstatic − Veff�E�	−1, �20�

where

Veff = Veff
+ �E� + Veff

− �E� ,

with

Veff
� �E� = V

1

E � 1�� − H0 − V
1

E � 2�� − H0 − V
1

]

V

V

V ,

�21�

and

G�k��E� = �
j=0

j=�k�−1

V−1Veff
sg�k��E + sg�k�j���G�0��E� , �22�

where sg�k�= + �−� for k�0�k�0�. For details about this
method we refer the reader to the original references.27,28

This is the method that we will use to calculate exactly the
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conductance in the following sections. Using Eqs. �20�–�22�
we calculate numerically the Floquet-Green function of the
effective Hamiltonian Hwire

eff , where Hstatic=H0+ i�L�1��1�
+ i�R�L��L� and V=v�l=1

L l�l��l�. The matrix elements of the
Green’s function calculated in this way will be introduced in
Eq. �14� to compute the current, from which one can obtain
the dc conductance g. The results of these calculations will
be labeled “exact” in the figures of the sections to come.

III. MODULATION OF THE EVEN-ODD OSCILLATIONS
IN THE HIGH-FREQUENCY REGIME

Using the effective Hamiltonian for the wire we can ob-
tain the time evolution for the part of the wave function that
remains in the wire after a time t, �l�t�. It satisfies

i�
d

dt
�l�t� = �H0 + 2v cos �tl + i�L�l1 + i�R�lL	�l�t� ,

�23�

where �l�t�= �l ���t��, for l=1, . . . ,L.
If we now write �l�t�=e−i2v/��l sin �t�l�t� we get

i�
d

dt
�l�t� = �− se−i� sin �tP+ − sei� sin �tP− + i�LP1

+ i�RPL��l�t� , �24�

where we have defined the operators Pl��l��l� and P+

��l=1
l−1�l+1��l�, P−��l=2

L �l−1��l� and the dimensionless quan-
tity �=2v /��.

A dimensionalizing the equation above, using �=�t we
obtain

i
d

d�
�l��� = H����l��� , �25�

with

H��� = −
s

��
e−i� sin �P+ −

s

��
ei� sin �P− + i

�L

��
P1 + i

�R

��
PL.

�26�

In the high-frequency limit, the hopping matrix element s
and the coupling to the leads �L ,�R are all small compared
to ��, which gives H����1. From this one can conclude
that the evolution operator corresponding to H�t� should be
well approximated by using first-order time-dependent per-
turbation theory,

U�t,0� = I −
i

�
�

0

t

H�t��dt� + ��H2� . �27�

Using the property

eix sin �t� = �
n=−�

�

ein�t�Jn�x� , �28�

one obtains

i

�
�

0

t

H�t��dt� = − i
s

�
P+J0�− ��t + �

n�0

ein�t − 1

in�
Jn�− ���

− i
s

�
P−J0���t + �

n�0

ein�t − 1

in�
Jn����

−
1

�
�LP

1t −
1

�
�RP

Lt , �29�

and since in the high-frequency regime s
�� �1,

i

�
�

0

t

H�t��dt� �
i

�
J0���H0t −

1

�
�LP

1t −
1

�
�RP

Lt + �� s

��
� .

�30�

This equation shows that for high frequencies, the solutions
�l�t� of Eq. �24� can be written as �l

n�t�=e−iEnt�l
n, with �l

n

being the �right� eigenfunctions of a time-independent effec-
tive Hamiltonian

H� = J0���H0 + i��LP1 + �RPL	 , �31�

with En as the corresponding �complex� eigenvalues.
Since ��n�t��=e−iEnte−i�l sin �t��n�, the Fourier components

of the Floquet eigenstates corresponding to Eq. �23� can be
written as

�	k
n� = �

l

�l�Jk�− �l��l��n� . �32�

Inserting this result into the Floquet-Green operator of the
full Hamiltonian, Eq. �13�, one obtains

G1L
�k��0� = Jk�− ��J0��L��

n

�1��n���n�L�
− En

= Jk�− ��J0��L�G1L� �0� , �33�

where En are the complex eigenvalues of the Hamiltonian H�
in Eq. �31�, and G��E� is the corresponding Green’s function.
The quantity G1L� �0� can be obtained directly from Eq. �A9�
by replacing s→sJ0���. With this we obtain

G1L
�k��0� = Jk�− ��J0��L��

sJ0����− 1�L/2+1

s2J0
2��� + �L�R

, L even

i

�L + �R
�− 1�L−1/2, L odd. �

�34�

The transmission is T̃LR=�k=−�
� �L�R�G1L

�k��0��2, and from the
property of Bessel functions �k=−�

� Jk
2�x�=1 we finally arrive

at

g = 4�L�RJ0
2��L��

s2J0
2���

�s2J0
2��� + �L�R�2 , L even

1

��L + �R�2 , L odd. � �35�

Notice that due to the Bessel function factors that appear
in the conductance, the amplitude of the driving field can
substantially affect the conductance of these devices, and in
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fact, at some particular values, conductance can be greatly
reduced �dynamic localization phenomenon�. For the odd
case it is interesting to notice the absence of the factor J0���
in the equation above. This stems from the somewhat coun-
terintuitive fact that for the nondriven system the conduc-
tance, for L odd, is independent of the coupling s between
sites �see note at the end of the Appendix�. Due to this, the
phenomenon of dynamic localization, extensively discussed
in the literature since it was first reported by Dunlap and
Kenkre,35 manifests itself in different ways for even and odd
number of sites. In the former case the conductance is greatly
reduced at values of the amplitude of the driving field v
which satisfy �=2v /��=an,0, where J0�an,0�=0, and also,
for �=an,0 /L. In the odd case, however, only the last condi-
tion, which is length-dependent, applies. In the high-
frequency regime the conductance should decrease substan-
tially at the dynamic localization points �=an,0 without
actually vanishing completely, a consequence of the fact that
in deriving Eq. �35� we neglected second-order terms in
s /�� which would be dominant when J0��� vanishes. It is
not the purpose of this work to study in detail dynamic lo-
calization and therefore, we do not include here any results
for the case �=an,0.

Figure 2 shows the results for hopping matrix element s
=1, coupling to leads �=0.1, laser frequency �=10, and for
different values of the laser field amplitude v. For v=0 one
can see the well-known oscillations in the conductance for L
even-odd. As the laser is turned on �v increases�, these oscil-
lations become quite irregular and the conductance in gen-
eral decreases with an irregular oscillatory behavior. For �
=10, we can see that the agreement between the exact cal-
culations and the high-frequency approximation is very
good.

In Fig. 3 we look at the behavior of the conductance vs
the length of the wire for different frequencies and for the
parameters s=1, �=1, and v=5 �no oscillations in this case
for the nondriven Hamiltonian�. From these plots it is clear

that the high-frequency regime sets in when �

�� , s
�� �0.1.

This regime is reached independently of the particular value
of L, which as we will see next, is not the case for the
low-frequency regime in which the convergence to the low-
frequency limit is dependent on the particular length of the
system. Notice that the driving induces its own oscillations
in the conductance, as expected from Eq. �35� above, given
the dependence of J0 on L. These oscillations are superim-
posed on the oscillations that are already present in the non-
driven Hamiltonian when s��.

IV. LOW-FREQUENCY REGIME AND THE ADIABATIC
LIMIT

Moskalets and Büttiker36 have shown that when the driv-
ing frequency is much smaller than any of the energy scales
of the Hamiltonian, the Floquet-Green operator of the system
can be obtained from the Green operator of the stationary
Hamiltonian in the following way:

Gadiab
�k� �E� =

1

T
�

0

T

eik�tGst�E,v cos �t�dt , �36�

where Gst�E ,v� corresponds, in our case, to the Green’s func-
tion of a tight-binding Hamiltonian with a static electric field
of magnitude v.

5 10 15 200
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1
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5 10 15 200
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5 10 15 200
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5 10 15 200
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0.1

Exact
High freq. approx.

v=0 v=1

v=5 v=10

L L
FIG. 2. Dc conductance g, as a function of the length of the wire

for hopping matrix element s=1, coupling to the leads given by �
=0.1, laser frequency �=10, and for different values of the field
amplitude v.
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FIG. 3. Dc conductance as a function of the length of the wire
for s=1, �=1, v=5 and three different frequencies of the driving
field.
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To study this adiabatic limit we would like to compare the
exact numerical results using matrix-continued fractions with
Eq. �36�. The diagonal elements of the Green’s function for a
finite 1D tight-binding system with a static electric field and
not connected to any leads ��=0� have already been
calculated.37 In that work, the authors derived continued
fraction expressions for the diagonal elements of the Green’s
function and used the properties of continued fractions to
express their results in terms of ratios of Bessel functions.
Using this approach we calculate analytically the Green’s
function of the tight-binding Hamiltonian with a static elec-
tric field and connected to the leads. First we show the re-
sults for the matrix elements G11, GLL and G1L for the un-
coupled case �=0, and then, using Dyson’s equation, we
derive the general result for ��0. We use in Eq. �36� the
analytical result thus obtained and compare it with the exact
numerical result.

The Hamiltonian for a 1D tight-binding Hamiltonian with
a static electric field is

H = H0 + v�
l=1

L

l�l��l� , �37�

with H0 as described in Eq. �A2�. Following Ref. 37 one
obtains

G11�0,v� =
1

s

JL+1�x�Y1�x� − J1�x�YL+1�x�
J0�x�YL+1�x� − JL+1�x�Y0�x�

,

GLL�0,v� = −
1

s

J0�x�YL�x� − JL�x�Y0�x�
J0�x�YL+1�x� − JL+1�x�Y0�x�

,

G1L�0,v� = −
1

s

J0�x�Y1�x� − J1�x�Y0�x�
J0�x�YL+1�x� − JL+1�x�Y0�x�

, �38�

with x�2s /v, YL�x� are the Bessel functions of the second
kind of order L, and there is no coupling to the reservoirs.

To include the effect of a coupling to the reservoirs of the
form V= i�L�1��1�+ i�R�L��L�, we proceed as before, using
Dyson’s equation for H=H0+v�l=1

L l�l��l� and V.

G = G0 + G0VG . �39�

From Eq. �A8�, with �L=�R=�, and using Eq. �38�, we get

G1L
st �0,v� = − s�J0YL+1 − JL+1Y0��J0Y1 − J1Y0�

��s2�J0YL+1 − JL+1Y0�2

− is��JL+1Y1 + JLY0 − J1YL+1 − J0YL�

��J0YL+1 − JL+1Y0� − �2��JL+1Y1 − J1YL+1��J0YL

− JLY0� − �J0Y1 − J1Y0�2	�−1, �40�

with all the Bessel functions evaluated at x=2s /v. This equa-
tion is the general expression for the Green operator compo-
nent G1L of a tight-binding Hamiltonian with a constant elec-
tric field and connected to leads. From it, the conductance
through this system can be obtained directly. As far as we
know this result has not been derived before.

In Fig. 4 we show the results for the conductance, with
hopping matrix element s=1, coupling to leads �=1, laser

amplitude v=0.1, and for different values of the laser fre-
quency. The results were obtained by evaluating G1L

st �0,v� in
the above expression, replacing v→2v cos �t, and using Eq.
�36�, together with

g = 4�2 �
k=−�

�

�G1L
�k��2. �41�

We can see in Fig. 4 that the adiabatic approximation works
better for lower frequencies and for the smaller lengths L.
The general criteria is, according to Ref. 36, nmax����E,
where nmax is the maximum number of Floquet sidebands
necessary to obtain convergence and �E is the minimum en-
ergy scale over which the Green’s function varies signifi-
cantly. For small L, typically �E�� and for large L, when
resonances overlap, �E�4s. For an ac electric field, the
number of Floquet sidebands increases linearly with L,
which means that the bigger values of L require smaller fre-
quencies to achieve convergence to the adiabatic limit, as can
be observed in Figs. 4 and 5.

Notice that there are two differences between Figs. 4 and
5. The first one is that the ratio between s and � in Fig. 4
gives odd-even oscillations for the nondriven case �v=0�,
whereas in Fig. 5 it does not. The second difference is that in
the former figure, the amplitude of the laser field is weak,
whereas in the latter one it is stronger. Comparing these two
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FIG. 4. Dc conductance g as a function of the length of the wire
for �=1, s=2, v=0.1 and for different frequencies.
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figures, and taking into account these differences we con-
clude that the even-odd oscillatory behavior of the nondriven
system, in the adiabatic limit, is only preserved in a limited
range of L, beyond which the localizing behavior of a quasi-
static electric field �Wannier-Stark effect� dominates and the
conductance decreases monotonically with L. This decay is
faster for stronger field amplitudes. In the case where there
are no oscillations in the nondriven conductance, as in Fig. 5,
a low-frequency field does not induce any oscillations in the
conductance. To summarize, a low-frequency field tends to
suppress the conductance oscillations and overall decreases
conductance for the longer systems.

In Fig. 6 we show different g�L� curves to illustrate the
fact that by manipulating the frequency and amplitude of a
laser field the conductance of a quantum wire can be set to
almost any value between 0 and 1 which could have inter-
esting applications for optical switching.

In a realistic wire molecule, the hopping matrix element s
is of the order of 0.1 eV with a typical wire-lead hopping rate
�=0.1s. This is smaller than the bandwidth of the connecting
leads ��1 eV�, which justifies the use of the wide-band ap-
proximation �� energy independent�. To explore the high-
frequency regime a frequency ��=10s=1 eV could be

used, which corresponds to a laser in the near infrared. For
the low-frequency regime, a THz laser could be used so that
��=0.1s=0.01 eV. For the dipole expression to be valid in
the time-dependent part of the wire Hamiltonian, the system
size should be bigger than the laser wavelength. In the high-
frequency case the laser wavelength is of the order of 1 �m.
Most molecular wires �except for the longest carbon-
nanotubes� would satisfy this condition. For a typical dis-
tance of 5 Å between two neighboring sites, a harmonic
driving 2v cos��t� with an amplitude 2v=s is equivalent to
an electric field strength of 2�106 V /cm. A 0.1 W cw-laser
focused on an area of �10 �m�2 gives an electric field of
104 V /cm, which, after accounting for the amplifying effect
of the contacts,38 would give an amplitude 2v in the range of
0.1 eV. These parameters are only a set in the whole range
that is experimentally available for exploring the effect of a
laser field in the conductance of molecular wires both in the
high- and low-frequency regimes.

V. CONCLUSIONS

In this work we have studied the oscillations in the dc
conductance of ballistic one-dimensional systems under the
effect of an oscillating electric field such as that of a laser
beam. The well-known and experimentally observed even-
odd oscillations as a function of the system length are sub-
stantially modified by the laser field and, in the case of very
low frequencies, they can be suppressed due to the localizing
effect of a quasi-static electric field. This regime is achieved
for driving frequencies smaller than the minimum character-
istic energy scale in the Hamiltonian divided by the length of
the system. In the high-frequency regime, when the driving
frequency is bigger than any energy scale in the Hamiltonian,
we observe the effect of dynamic localization, which renor-
malizes the coupling between sites by a Bessel function
J0�2v /��� and which can produce a zero dc conductance at
the zeros of this function. This particular factor only appears
in the conductance of systems with an even number of sites,
although a length-dependent factor J0�2vL /��� appears for
both even and odd cases introducing additional oscillations
as a function of the length. In the general case, using appro-
priate values of the frequency and amplitude of the laser field
we can control the conductance of a quantum wire.
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FIG. 5. Dc conductance g as a function of the length of the wire
for �=2, s=2, v=0.5 and for different frequencies.
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APPENDIX

As it was explained in the introduction, the even-odd os-
cillations in half-filled clean quantum wires are a well-
known effect that has been measured experimentally. There
are different ways of deriving this result and it appears in
very different models for the quantum wire. In order to make
the paper self-consistent we write in this Appendix a deriva-
tion based on Green’s functions that will allow us to make
direct contact with the analytical results for the Floquet-
Green function presented in the main sections. This deriva-
tion, to the best of our knowledge, has not been shown be-
fore in literature.

Following the discussion about our model in the introduc-
tion we can write the clean wire Hamiltonian as

H = H0 + i�L�1��1� + i�R�L��L� , �A1�

with

H0 = − s�
n=1

L−1

��n��n + 1� + �n + 1��n�� . �A2�

The eigenstates of the Hamiltonian H0 can be constructed
using plane waves but including the boundary conditions
�0 ���=0 and �L+1 ���=0. This can be achieved only if

��L
n� = N�

l=1

L

sin
n�l

L + 1
�l� , �A3�

where the index n=1,2 , . . . ,L and N is a normalization con-
stant, which is found to be N=�2 / �L+1�. The eigenvalues
corresponding to the previous eigenstates can be easily found
operating with H �taking into account �=0� and can be writ-
ten as a function of quasi-momenta kn=n� / �L+1�, En=
−2s cos kn.

The components of the Green operator that corresponds to
H0 can be written in terms of the eigenstates and eigenvalues
as

Gl,l�
0 �E� = �l�

1

E − H0
�l�� =

2

L + 1�
n

sin knl sin knl��l��l��
E + 2s cos kn

.

�A4�

In particular, from this expression, the matrix elements
G11

0 �EF� and G11
0 �EF� can be shown to be

G11
0 �0� = �0 for L even

� for L odd
� ,

G1L
0 �0� = �1

s
�− 1�L/2+1 for L even

�− 1�L−1/2� for L odd.
� �A5�

In our tight-binding model, and using Landauer’s formu-
lation, the conductance can be obtained from the matrix ele-
ments of the Green’s function,39 g=4�2�G1L�EF��2, valid in
one dimension. The result for the Green-function matrix el-
ement in the coupled case �H� can be obtained from the
result for the uncoupled case �H0� using Dyson’s equation. If
H=H0+V we can obtain the total Green’s function for H
from the Green’s function of H0 using G=G0+G0VG. For
V= i�R�L��L�+ i�L�1��1�, we get G=G0+ i�RG0�L��L�G
+ i�LG0�1��1�G, and therefore, the matrix elements that we
are interested in are

�1�G�L� = G1L = G1L
0 + i�LG11

0 G1L + i�RG1L
0 GLL, �A6�

and

�L�G�L� = GLL = GLL
0 + i�LGL1

0 G1L + i�RGLL
0 GLL. �A7�

Replacing GLL into the formula for G1L we get, after some
algebra,

G1L =
G1L

0

1 − i�RGLL
0 − i�LG11

0 − �L�R�G11
0 GLL

0 − �G1L
0 �2	

.

�A8�

For the Fermi energy in the middle of the band, KF
=� /2, EF=0 we can use Eq. �A5� to obtain

G1L�0� = �
s�− 1�L/2+1

s2 + �L�R
for L even

i

�L + �R
�− 1�L−1/2 for L odd � , �A9�

and for �L=�R=� we obtain

g = � 4�2s2

�s2 + �2�2 for L even

1 for L odd.
� �A10�

This result is counterintuitive in the limit when s→0 or
�→0 since in this case one should expect the conductance
of a real system to go to zero both for even and odd number
of sites. The problem with this limit lies in the fact that
conductance oscillations are obtained under the assumption
of coherent transport through the device. This condition
would be satisfied in a real system only if the travel time of
electrons through the device is much shorter than the typical
inelastic scattering time. Clearly, the travel time through the
device grows with the inverse of � or s �whichever is
smaller� and therefore, when taking the limit s→0 or �
→0 the effect of inelastic scattering events at some point
would become dominant and conductance oscillations would
disappear before this limit is reached.
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