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We study the electronic surface states of the semiconducting alloy bismuth antimony �Bi1−xSbx�. Using a
phenomenological tight-binding model, we show that the Fermi surface for the 111 surface states encloses an
odd number of time-reversal-invariant momenta �TRIM� in the surface Brillouin zone. This confirms that the
alloy is a strong topological insulator in the �1;111� Z2 topological class. We go on to develop general
arguments which show that spatial symmetries lead to additional topological structure of the bulk energy
bands, and impose further constraints on the surface band structure. Inversion-symmetric band structures are
characterized by eight Z2 “parity invariants,” which include the four Z2 invariants defined by time-reversal
symmetry. The extra invariants determine the “surface fermion parity,” which specifies which surface TRIM
are enclosed by an odd number of electron or hole pockets. We provide a simple proof of this result, which
provides a direct link between the surface-state structure and the parity eigenvalues characterizing the bulk.
Using this result, we make specific predictions for the surface-state structure for several faces of Bi1−xSbx. We
next show that mirror-invariant band structures are characterized by an integer “mirror Chern number” nM,
which further constrains the surface states. We show that the sign of nM in the topological insulator phase of
Bi1−xSbx is related to a previously unexplored Z2 parameter in the L point k ·p theory of pure bismuth, which
we refer to as the “mirror chirality” �. The value of � predicted by the tight-binding model for bismuth
disagrees with the value predicted by a more fundamental pseudopotential calculation. This explains a subtle
disagreement between our tight-binding surface-state calculation and previous first-principles calculations of
the surface states of bismuth. This suggests that the tight-binding parameters in the Liu-Allen model of bismuth
need to be reconsidered. Implications for existing and future angle-resolved photoemission spectroscopy
�ARPES� experiments and spin-polarized ARPES experiments will be discussed.
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I. INTRODUCTION

A topological insulator is a material with a bulk electronic
excitation gap generated by the spin-orbit interaction, which
is topologically distinct from an ordinary insulator.1–8 This
distinction, characterized by a Z2 topological invariant, ne-
cessitates the existence of gapless electronic states on the
sample boundary. In two dimensions, the topological insula-
tor is a quantum spin Hall insulator,1–3,8 which is a close
cousin of the integer quantum Hall state. The edge states
predicted for this phase have recently been observed in trans-
port experiments on HgCdTe quantum wells.9 In three di-
mensions there are four Z2 invariants characterizing a time-
reversal-invariant band structure.5–7 One of these
distinguishes a strong topological insulator, which is robust
in the presence of disorder. The strong topological insulator
is predicted to have surface states whose Fermi surface en-
closes an odd number of Dirac points and is associated with
a Berry’s phase of �. This defines a topological metal surface
phase, which is predicted to have novel electronic
properties.7,10,11

In Ref. 12 we predicted that the semiconducting alloy
Bi1−xSbx is a strong topological insulator using a general ar-
gument based on the inversion symmetry of bulk crystalline
Bi and Sb. The surface states of Bi have been studied for
several years. Experimentally there are several photoemis-
sion studies of Bi crystals and films which have probed the
surface states.13–22 There are fewer studies of Bi1−xSbx,

23 but
in a very recent work, Hsieh et al.24 mapped the �111� sur-

face states and verified the topological structure predicted for
a strong topological insulator.

First-principles calculations provide a clear picture of the
surface-state structure of Bi,19–22,25 which captures many of
the experimental features, including their spin structure.22

For the alloy Bi1−xSbx, one expects the surface states to
evolve smoothly from Bi, at least for small x. The alloy
presents two difficulties for these calculations, though. First,
since these calculations must be done on relatively thin slabs,
features near the small band gap are inaccessible because
finite-size quantization mixes the bulk and surface states.
Moreover, describing the alloy would require some kind of
mean-field treatment of the substitutional disorder.

In this paper we study the surface states of Bi1−xSbx first
by developing a phenomenological tight-binding model
which can be solved numerically and then by developing
general arguments that exploit spatial symmetries and ex-
plain a number of model independent features of the surface
states. Our phenomenological tight-binding model is based
on an interpolation of a model developed by Liu and Allen.26

This model has the advantage that it can be solved in a semi-
infinite geometry, which allows the surface-state features
near the small band gap to be calculated. Our aim is not to
perform a quantitatively accurate calculation of the surface
states, but rather to provide a concrete calculation in which
robust, model independent features of the surface states can
be identified and characterized. Here we list our main con-
clusions:
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�1� We find that the Fermi surface of the 111 surface of

Bi1−xSbx consists of an electron pocket centered around the �̄
point and six elliptical hole pockets centered a point in be-

tween �̄ and the M̄ point. �Here the bar refers to symmetry
points in the 111 surface Brillouin zone.� This is similar to
the surface states in Bi. Unlike the alloy, however, Bi has

bulk states at the Fermi energy: hole states near �̄ and elec-

tron states near M̄. This calculation verifies the topological
structure of the surface states predicted in Ref. 12. In that
work we showed that the four Z2 invariants ��0 ;�1�2�3� char-
acterizing the valence bands of pure Bi and Sb are �0;000�
and �1;111�, respectively. The semiconducting alloy Bi1−xSbx
was argued to be in the same class as Sb, which is a strong
topological insulator. These invariants determine the number
of surface bands crossing the Fermi energy modulo 2 be-
tween each pair of time-reversal-invariant momenta �TRIM�
in the surface Brillouin zone. Specifically, it predicts that for
the 111 surface, an odd number of Fermi surface lines sepa-

rate the �̄ point from the three equivalent M̄ points. This is
consistent with both our calculation and with experiment.24

�2� We will show that for crystals with inversion symme-
try, there is an additional topological structure in the bulk
band structure, which further constrains the surface band
structure. At each of the eight TRIM, �i in the bulk Brillouin
zone, the product of the parity eigenvalues of the occupied
bands defines a parity invariant ���i�, which is a topological
invariant in the space of inversion-symmetric Hamiltonians.
The four Z2 invariants, which require only time-reversal
symmetry are determined by these eight signs and determine
the number of Fermi surface lines separating two surface
TRIM. They do not, however, specify which of the TRIM are
inside of the surface Fermi surface and which are outside.
We will show that the bulk parity invariants ���i� provide
that information. Specifically, for each surface TRIM we will
define the surface fermion parity as the parity of the number
of Fermi lines that enclose that TRIM. This distinguishes the
TRIM that are outside the Fermi surface from those that are
inside a �single� electron or hole pocket. For a crystal termi-
nated on an inversion plane, we will establish a theorem
which relates the surface fermion parity to the bulk parity
invariants. Thus, for inversion-symmetric crystals, the eight
bulk parity invariants provide more information about the
surface states than just the four Z2 invariants. We will give a
simple proof of this theorem in the Appendix, which estab-
lishes a more direct connection between the bulk parity ei-
genvalues and the surface-state structure than that presented
in Ref. 12. For the 111 surface of Bi1−xSbx, our general theo-
rem is consistent with both our surface-state calculation and
with experiment. We will also apply this result to make pre-
dictions about the other surfaces of Bi1−xSbx. In addition, our
theorem has implications for inversion-symmetric crystals
which are ordinary insulators. In particular, we will show
that it has nontrivial implications for the surface states of
pure Bi, whose valence band is in the trivial �0;000� topo-
logical class.

�3� In addition to inversion symmetry, the crystal lattices
of Bi and Sb have a mirror symmetry. We will show that the
presence of mirror symmetry leads to a further topological

classification of the bulk band structure in terms of an integer
nM, which we refer to as a mirror Chern number. This inte-
ger is similar to the spin Chern number, which occurs in the
quantum spin Hall effect when spin is conserved,27 and its
parity is related to the Z2 invariant.28 The valence band of
pure Bi, which has the �0;000� Z2 class,12 has nM=0. The
semiconducting alloy is a topological insulator with Z2 class
�1;111�. There are two possibilities for the mirror Chern
number nM= �1, however, which correspond to topologi-
cally distinct phases. We will show that the sign of nM in the
topological insulator phase further constrains the behavior of
the surface states. The transition between the �0;000� and
�1;111� classes in Bi1−xSbx occurs for small x� .03 because
pure Bi is very close to a band inversion transition where the
Ls valence band and La conduction band cross. The k ·p
theory of these states has been studied extensively in the
literature29–33 and has the form of a nearly massless three-
dimensional Dirac point. We will show that the change �nM
in the mirror Chern number at the band inversion transition
is determined by a previously unexplored parameter in that
theory: a sign �= �1, which we will refer to as the mirror
chirality. � is related to the sign of the g factor, which relates
the magnetic moment to the angular momentum in a particu-
lar direction. For �= +1 the g factor is like that of a free
electron, while for �=−1 it is anomalous. We will use this
result to interpret our surface-state calculation and to provide
guidance for how � can be measured. In addition to the

Dirac point enclosed by the surface Fermi surface at �̄, our
tight-binding surface band calculations for both pure Bi and
Bi1−xSbx predict that the six hole pockets also enclose Dirac

points which reside at points along the line between �̄ and

M̄. Unlike the Dirac points at the surface TRIM, the degen-
eracy at these Dirac points is not protected by time-reversal
symmetry, but rather by mirror symmetry. This prediction is
inconsistent with first-principles calculations of the surface
states in Bi,22,25 which do not find a band crossing inside the
hole pocket. Since the Dirac point occurs above the Fermi
energy, angle-resolved photoemission spectroscopy
�ARPES� experiments do not directly probe this issue. None-
theless, spin-resolved ARPES experiments on Bi provide
evidence that the surface band structure is consistent with the
first-principles calculations.22 We will show that this incon-
sistency can be traced to the mirror chirality and the mirror
Chern number. The mirror chirality in the topological insu-
lator phase of Bi1−xSbx can be determined from the structure
of the k ·p perturbation theory of the energy bands in the
vicinity of the L point in pure Bi. We find that the Liu-Allen
model predicts that nM= +1. This value implies that the
surface-state bands in the alloy cross in such a way as to
establish the presence of the Dirac points in the hole pockets
in agreement with our surface-state calculation. In contrast,
we find that an earlier but more fundamental pseudopotential
calculation by Golin34 predicts that nM=−1. This value pre-
dicts that the bands do not cross and that there are no extra
Dirac points, which is consistent with the presently available
experimental results as well as first-principles
calculations.22,25 The Liu-Allen tight-binding parameters
were chosen to reproduce the energy of the bands computed
using first-principles calculations, incorporating available ex-
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perimental constraints. Therefore, there is no reason to ex-
pect that it gets nM right. We conclude that the inconsistency
in our surface-state calculation is an artifact of the Liu-Allen
tight-binding model, which could be corrected with a suit-
able choice of new parameters.

The outline of the paper is as follows: In Sec. II we will
review the salient features of bulk Bi1−xSbx and describe our
phenomenological tight-binding model. In Sec. III we will
describe our surface-state calculations for Bi1−xSbx. In Sec.
IV we will establish the relationship between the surface
fermion parity and the bulk parity eigenvalues and use that
result to analyze the surfaces of Bi1−xSbx. In Sec. V we will
discuss the mirror Chern number and show that it is related
to the mirror chirality of the k ·p theory of pure Bi. In Sec.
VI we will conclude with a discussion of the relevance of our
results to existing and future experiments. Finally, in the Ap-
pendix we provide a simple proof of the theorem relating the
surface fermion parity to the bulk parity eigenvalues.

II. BULK Bi1−xSbx

A. Introduction

Bismuth and antimony are group-V semimetals. They
have the rhombohedral A7 structure shown in Fig. 1�a�,
which can be viewed as a distorted simple cubic lattice in
which the triangular �111� lattice planes �which we will refer
to as monolayers� are paired to form bilayers. The trivalent
s2p3 atoms tend to form strong covalent bonds directed to the
three nearest neighbors within a bilayer. Different bilayers
are more weakly coupled. The primitive unit cell consists of
two atoms in different monolayers, and each bilayer has a
structure similar to a honeycomb lattice. The Brillouin zone
for this lattice is shown in Fig. 1�b�. It contains eight special
points which are invariant under inversion and time reversal,
denoted by �, T, and three equivalent L and X points.

Both Bi and Sb have a finite direct energy gap throughout
the Brillouin zone, but they have a negative indirect gap. In
Bi the conduction-band minimum at L is below the valence-
band maximum at T, which gives rise to an anisotropic hole

pocket and three electron pockets with small effective
masses.31 At L the conduction-band minimum, which has
even-parity Ls symmetry, nearly touches the valence-band
maximum, with odd-parity La symmetry, forming a three-
dimensional Dirac point with a small mass gap Eg
�11 meV. In Sb, the conduction-band minimum at L has La
symmetry and is below the valence-band maximum at the
lower-symmetry H point.

The alloy Bi1−xSbx retains the rhombohedral A7 crystal
structure. The evolution of its band structure has been stud-
ied experimentally.35,36 As x is increased from zero, two
things happen. First, the small gap at L closes and then re-
opens. The Ls and La bands switch places, and the mass of
the three-dimensional Dirac point changes sign. Second, the
top of the valence band at T descends below the bottom of
the conduction band, resulting in a semimetal-semiconductor
transition. For 0.09	x	0.18, the alloy is a direct-gap semi-
conductor, with a gap on order of 30 meV at the L points.

B. Topological invariants

Time-reversal-invariant band structures are classified to-
pologically by four Z2 invariants.5–7 In Ref. 12 we exploited
inversion symmetry to show that these four invariants can be
determined by the parity 
m��i� of the occupied bands at the
eight TRIM �i, via the quantities

���i� = �
n


2n��i� , �2.1�

which we will refer to as parity invariants. Here the product
includes each Kramer pair �which satisfy 
2n=
2n−1� only
once. For an inversion-symmetric crystal, all eight of the
parity invariants are topological invariants in the following
sense: If the crystal Hamiltonian is smoothly deformed, pre-
serving the inversion symmetry, then the only way any of the
���i� can change is if the gap at �i goes to zero, so that states
with opposite parities can be exchanged between the conduc-
tion and valence bands. If inversion symmetry is relaxed,
then the eight invariants lose their meaning. However, in
Ref. 12 we showed that provided time-reversal symmetry is
preserved, four combinations of the ���i� remain robust and
define the four Z2 invariants denoted by ��0 ;�1�2�3�. The
most important invariant, �0, distinguishes the strong topo-
logical insulator and survives even in the presence of
disorder.7,12 �−1��0 is given simply by the product of all eight
���i�.

Pure Bi and Sb have inversion symmetry. The parity ei-
genvalues for inversion about the point O in Fig. 1�a� are
tabulated in the literature.26,34,37 Based on these data, we dis-
play ���i� in Table I, along with the predicted Z2 invariants
for pure Bi, pure antimony, and the alloy. The valence band
of pure Bi is characterized by the trivial class �0;000�, while
antimony has the �1;111� class. The difference is due to the
inversion of the Ls and La bands, which changes the sign of
��L�. The alloy inherits its topological class from antimony
and is a strong topological insulator.

C. Pure Bi, Sb: Liu-Allen model

Liu and Allen26 developed a third-neighbor tight-binding
model for the electronic structure of Bi and Sb, which de-
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FIG. 1. �Color online� �a� Crystal structure of Bi. �b� Three-
dimensional �3D� Brillouin zone and its projection onto the �111�
surface. Also displayed is the choice of coordinate system through-

out the paper: z is along the �111� direction, y is along the �̄ to M̄
direction, and O is a center of inversion.
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scribes the atomic s and p orbitals nearest to the Fermi en-

ergy. The Bloch Hamiltonian Ĥ�k�=e−ik·rHeik·r has the form

Ĥ�k� = �H11�k� H12�k�
H21�k� H22�k�

� . �2.2�

Here Hab�k� are 8�8 matrices describing the coupling be-
tween the 2s states and 6p states on the a and b sublattices of
the crystal. The explicit form of these matrices is given in
Tables IX and X in the appendix of Ref. 26.

H11=H22 describe the coupling within the same sublattice.
These terms involve the on site energies Es and Ep as well an
on site spin-orbit coupling �. The closest neighbor on the
same sublattice is the third neighbor, which resides in the
same monolayer as the origin. The third-neighbor hopping
involves four parameters Vc�, with c=ss, sp, pp, and pp�,
describing the hopping between the s and p states. Since
further neighbor hopping is not included in this model,
H11�k� and H22�k� describe decoupled monolayers and de-
pend only on the momentum q=k� in the plane of the mono-
layer.

H12=H21
† describes the coupling between the sublattices.

These involve two terms: First-neighbor hopping terms Vc
couples atoms within the same bilayer, and second-neighbor
hopping terms Vc� couple atoms in neighboring bilayers. In
the following it will be useful to separate these two contri-
butions by writing k= �q ,kz�,

H12�q,kz� = H12
�1��q�eikzc1 + H12

�2��q�e−ikzc2, �2.3�

where c1 and c2 are the spacing between the monolayers
within a bilayer and between different bilayers, and q and kz
are the momenta parallel and perpendicular to the surface.
H12

�1� and H12
�2� can be extracted from Table X of Ref. 26 by

noting that they are the terms which involve the parameters
g0−g12 and g13−g26, respectively.

The 12 hopping parameters and 3 on site parameters make
a total of 15 parameters specifying this model. These were
chosen to reproduce the energies predicted by first-principles
calculations, as well as details of the band gaps and
effective-mass tensors which are known experimentally. The
values of the parameters for both Bi and Sb are listed in
Table II of Ref. 26.

D. Tight-binding model for alloy

In order to describe the electronic structure of the alloy
Bi1−xSbx, we wish to develop a “virtual-crystal” approxima-
tion which treats the substitutional disorder in mean-field
theory and results in a translationally invariant effective
Hamiltonian. Since the regime of interest is x�0.1, the ef-

fective Hamiltonian should be close to that of pure Bi. The
effect of small x will be to modify the band energies, but not
drastically change the wave functions. The effective Hamil-
tonian should reproduce two essential features: �1� the inver-
sion of the Ls and La bands �which are nearly degenerate in
pure Bi�; and �2� the descent of the valence band at T below
the conduction band at L, as x is increased, which leads to
the transition between the semimetal and the semiconductor.

The simplest approach would be to simply interpolate be-
tween the tight-binding parameters for bismuth and anti-
mony. For each of the 15 tight-binding parameters �c, we
could define

�c�x� = x�c
Sb + �1 − x��c

Bi. �2.4�

However, for this simple interpolation the inversion between
Ls and La occurs at a rather large value x�0.4, which occurs
after the semimetal-semiconductor transition. We found that
this could be corrected if each of the hopping terms �but not
the other terms� are revised such that

Vc�x� = xVc
Sb + �1 − x2�Vc

Bi. �2.5�

This approach is admittedly ad hoc, but it is sufficient for our
purposes because it correctly accounts for the most important
features of the band evolution. In Fig. 2 we plot the energies
of T45

− , Ls, and La as a function of x for this model. The
qualitative behavior of the known band evolution is repro-
duced, including the decent of the hole pocket at T and the
inversion of the conduction and valence bands at L. This
should not, however, be interpreted as a quantitative descrip-
tion of the band evolution of Bi1−xSbx.

TABLE I. Parity invariants ���i� and Z2 topological invariants ��0 ;�1�2�3� for bismuth, antimony, and
Bi1−xSbx determined from the product of parity eigenvalues 
m��i� at each bulk TRIM �i.

���� ��L� ��T� ��X� ��0 ;�1�2�3�

Bismuth −1 −1 −1 −1 �0;000�
Antimony −1 1 −1 −1 �1;111�
Bi1−xSbx −1 1 −1 −1 �1;111�
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FIG. 2. Band evolution of interpolated tight-binding model us-
ing the parameters in Eqs. �2.4� and �2.5�.
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III. SURFACE STATES OF Bi1−xSbx

In this section we describe our calculation of the 111 sur-
face band structure for a semi-infinite lattice in the half plane
z	0 described by the interpolated tight-binding model de-
scribed above. We begin with a brief discussion of our
method, which is based on a transfer-matrix scheme,38 and
then go on to discuss the results.

A. Transfer-matrix method

The electronic states of a semi-infinite crystal can be rep-
resented as �n,a�q� in a basis of states which are plane waves
with momentum q in the plane of the surface, but are local-
ized on the a=1,2 monolayer of the nth bilayer. Each �na
has eight components associated with the eight atomic orbit-
als. The time independent Schrödinger equation, written in
this basis, may be expressed in the form

��n+1,1

�n+1,2
� = T�q,E���n,1

�n,2
� , �3.1�

where the transfer matrix is given by T�q ,E�
= t11�q ,E�t22�q ,E�, with

t11 = �H21
�2�−1�E − H22� − H21

�2�−1H21
�1�

1 0
� , �3.2�

and

t22 = �H12
�1�−1�E − H11� − H12

�1�−1H12
�2�

1 0
� . �3.3�

Any bulk state is an eigenstate of the 16�16 transfer matrix
with unimodular eigenvalues. For E within the energy gap,
T�q ,E� has exactly eight eigenvalues with modulus larger

than 1. These correspond to states that decay exponentially in
the −z direction. E�q� will correspond to a surface state lo-
calized at the top surface in Fig. 3�a� near z=0 provided
there is a linear combination of the decaying states which
vanish on the monolayer n=0, a=1 just outside the surface:
�0,1=0. The surface states are thus determined by forming an
8�8 matrix M�q ,E� composed of the eight components of
�0,1 for each of the eight decaying states. E�q� is then deter-
mined by solving det	M�q ,E�
=0.

B. Electronic structure of (111) surface

Figure 3�c� shows the energy spectrum of the �111� sur-
face states of Bi1−xSbx for x=0.08 calculated along the line

connecting q= �̄=0 to M̄ along the +ŷ axis using the
transfer-matrix method for the interpolated tight-binding
model. Figure 3�b� shows the Fermi surface. We find two
bound surface states within the bulk energy gap. Along the
line qx=0, these states are labeled by their symmetry under
the mirror M�x̂�, which takes x to −x. Since the mirror op-
eration also operates on the spin degree of freedom, it is
important to be specific about its definition. We write M�x̂�
= PC2�x̂�, where P is inversion and C2�x̂� is a 180° counter-
clockwise rotation about the positive x̂ axis. P does not affect
the spin degree of freedom, but the C2 rotation does. The
resulting eigenvalues of M�x̂� are +i and −i, which we label

as �̄1 and �̄2. These mirror eigenvalues are correlated with
the spin Sx. For a free spin, eigenstates with M�x̂�= � i cor-
respond to spin eigenstates with Sx= �� /2. The surface
states are not spin eigenstates, but on the line kx=0,0	ky

	ky�M̄�, the expectation value of the spin satisfies �S��
� i�M�x̂��x̂�−�+�x̂, for �1�2�, as indicated in Fig. 3�a�.

The Fermi surface shown in Fig. 3�b� consists of electron

and hole pockets. A single electron pocket surrounds �̄. This
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FIG. 3. �Color online� �a� Geometry for our
surface-state calculations, which defines our co-
ordinate system and specifies the spin directions

of the �̄1 and �̄2 bands, which have mirror eigen-
values +i and −i, respectively. �b� Brillouin zone
for the �111� face of Bi1−xSbx with the electron
pocket and six hole pockets predicted by our
tight-binding calculation. �c� Surface band struc-

ture along the line between �̄ and M̄ predicted by
the tight-binding model. The shaded regions are
the bulk states projected onto the surface. �d�
Schematic illustration of experimental surface
band structure and Fermi surface probed by
angle-resolved photoemission spectroscopy �Ref.
24�. The top shows the Fermi surface in a slice of
the Brillouin zone near kx=0, and the bottom
shows the surface-state dispersion. Compared

with �c�, there are two additional bands near M̄.
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Fermi surface is nondegenerate, and opposite sides of the
Fermi surface are Kramers pairs with opposite spins. The
electronic states pick up a Berry’s phase of � when they are
adiabatically transported around the Fermi surface. This can
be understood to be a consequence of the 360° rotation of the
spin going around the Fermi surface. The Fermi surface is
thus spin filtered, in the sense that the spin of the electron is
correlated with its propagation direction, roughly satisfying

�S��� q̂� ẑ for an electron propagating in the q̂ direction in
the plane. In addition, there are six elliptical hole pockets

centered along the six lines connecting �̄ to M̄. These are
also nondegenerate, though unlike the electron pocket, the
time reverse of a hole pocket is a different hole pocket. The

crossing of the �̄1 and �̄2 bands is protected by the mirror
symmetry for qx=0. The degeneracy will be lifted for finite
qx, so the crossing describes a two-dimensional Dirac point,
which is enclosed by the hole pocket.

C. Comparison with topological predictions

A single band of surface states connects the valence and

conduction bands between �̄ and M̄ in Fig. 3�d�. This con-
firms the topological predictions for the connectivity of the
surface-state bands. In Ref. 7 we showed that the number of
times �N��a ,�b� the surface states intersect the Fermi en-
ergy between two surface TRIM �a and �b satisfies

�− 1��N��a,�b� = ���a����b� , �3.4�

where

���a� = �− 1�nb���a1����a2� . �3.5�

Here �a1 and �a2 are the two bulk TRIM which project to the
surface TRIM �a. The eight parity invariants ���i�, defined
in Eq. �2.1�, are products of parity eigenvalues. This defini-
tion of ���a� differs slightly from the one introduced in
Refs. 7 and 12 because of the additional factor �−1�nb. nb is
the number of occupied Kramers degenerate pairs of energy
bands, which is equal to the number of terms in the product
of Eq. �2.1�. For Bi1−xSbx, nb=5. This factor does not affect
�N��a ,�b� in Eq. �3.4�. However, this modification simpli-
fies our further results, discussed below.

For ���a����b�=−1, there will be an odd number of
crossings between �a and �b, guaranteeing the presence of
the gapless surface states. In the Appendix we will provide a
derivation of this connection between the surface states and
the bulk parity eigenvalues which is simpler and more direct
than our previous proof.12 This will show that with inversion
symmetry the eight parity invariants ���i� contain more in-
formation about the surface-state structure than just the num-
ber of crossings, a fact we will exploit in Sec. IV to make
general predictions about the locations of electron and hole
pockets in the surface Brillouin zone.

From Fig. 1, Table I, and Eq. �3.5�, it can be seen that for
the alloy,

���̄� = − ������T� = − 1, �3.6�

��M̄� = − ��X���L� = + 1. �3.7�

This predicts that there should be an odd number of cross-

ings between �̄ and M̄, which is confirmed both by our ex-
plicit calculation and, as we will discuss below, by experi-
ment.

D. Comparison with experiment

Before comparing our calculation to experiment and other
calculations, it is worthwhile to discuss what our calculation
does not include. In addition to our approximate treatment of
the alloy’s bulk electronic structure, we have made no at-
tempt to self-consistently describe the potential near the sur-
face. This will be modified by relaxation of the bonds near
the surface. More importantly, the population of the surface
states determines the electric charge distribution near the sur-
face, which leads to Hartree and exchange contributions to
the potential. We assume that the surface is electrically neu-
tral. We will argue in Sec. III that this means that the area of
the electron pocket is equal to the total area of the six hole
pockets. However, the potential due to a surface dipole layer
is not included in our calculation. The effect of such a sur-
face potential will be to modify the energies of the bands and
perhaps to split off additional surface-state bands from the
continuum. However, the topological connectivity of the
surface-state bands will not be altered.

In their recent ARPES experiment, Hsieh et al.24 mea-
sured the spectrum of Bi.9Sb.1 �111� surface states below EF

between �̄ and M̄. The observed spectrum, which we have
sketched schematically in Fig. 3�d�, resembles Fig. 3�c�,
though there are some important differences. As in Fig. 3�c�,
two surface-state bands emerge from the bulk valence band

near �̄. The first intersects the Fermi energy forming the

electron pocket centered on �̄, while the second intersects
the Fermi energy forming a hole pocket. A third band crosses
EF from above, forming the opposite side of the hole pocket,

and merges with the bulk valence band near M̄. Unlike our
calculation, the observed spectrum includes an additional

electron pocket near M̄. A Kramers degenerate pair of sur-

face states is found in the gap at M̄. Away from M̄ these
states split to form two surface bands, which both cross EF
near the end of the hole pocket. Thus there are a total of five

bands crossing EF between �̄ and M̄, which is consistent
with the prediction for a �1;111� topological insulator. The
discrepancy between our calculation and the experiment is
most likely a consequence of our neglect of the self-
consistent surface potential, which could lead to a Kramers
pair of bound states to be split off from the conduction band

at M̄.
It is also instructive to compare our calculation with pre-

vious experimental and theoretical results for pure Bi. In Fig.
4�a� we show the surface-state spectrum for pure Bi calcu-
lated using the transfer-matrix method for the Liu-Allen
tight-binding model. The number of band crossings is con-
sistent with the trivial �0;000� topological structure of the Bi
valence band. Since the Fermi energy of semimetallic Bi is
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fixed by the bulk, our calculated surface states violate surface
charge neutrality: too many surface states are occupied, so
the surface will have a negative charge. Hartree effects will
push the surface states up in energy, but they will not alter
the topological connectivity of the surface states. This allows
us to deduce qualitative conclusions from the calculation.

First, as in our alloy calculation, two surface bands

emerge from the bulk valence band near �̄. These are also
seen in photoemission experiments as well as first-principles
calculations on pure Bi.25 Moreover, the spin �Sx� of those
surface states has been both calculated and measured using
spin polarized ARPES.22 We have checked that the spin di-
rection predicted by our tight-binding calculation for each of
these bands agrees with the experimental and first-principles

theory results. Thus, the behavior near �̄, including the or-

dering in which the �̄2 emerges first and forms the electron
pocket, appears to be robust, with all calculations in agree-
ment with each other and with experiment.

There is a discrepancy, however, between the tight-
binding calculation and the first-principles calculation.22,25

The crossing between the �̄1 and �̄2 bands in Figs. 3�c� and
4�a� is not found in the first-principles calculation. Since it is
likely that this crossing would be pushed above the Fermi
energy by Hartree corrections �so that the crossing occurs
inside a hole pocket�, the tight-binding model predicts that
the hole pockets of Bi �111� enclose a Dirac point, as shown
schematically in Fig. 4�b�. The existence of this band cross-
ing is not directly probed by ARPES, which only probes
occupied states, though it could be probed using inverse pho-
toemission. There is, however, indirect experimental evi-
dence that the crossing does not occur. Spin polarized
ARPES measurements22 have measured the spin on both
sides of the hole pocket. Though the signal appears weak, the
sign of the spin is resolved and determined to be the same on
both sides, indicating that there is no crossing, as shown
schematically in Fig. 4�c�. This agrees with the predictions of
the first-principles calculations that both sides are in the

same �̄1 band. In contrast, our tight-binding model predicts
that the opposite sides of the hole pockets correspond to the

�̄1 and �̄2 bands, which have opposite spins.
It thus appears likely that the prediction of the level cross-

ing which implies that the hole pockets enclose a Dirac point
is an artifact of the tight-binding model. This brings into
question the related prediction of the tight-binding model

that the hole pockets of the alloy also enclose a Dirac point.
In Sec. V we will argue that this artifact is a consequence of
a subtle error in the Liu-Allen tight-binding model.

IV. INVERSION SYMMETRY AND THE SURFACE
FERMION PARITY

An inversion-symmetric crystal can have no bulk electric
polarization. In this section we show that this fact in combi-
nation with surface charge neutrality has nontrivial implica-
tions for the surface-state structure because it allows the out-
side of the surface Fermi surface to be unambiguously
defined. It is then possible to define electron pockets to be
regions in the surface Brillouin zone where an extra band is
occupied and hole pockets as regions where an otherwise
occupied band is empty. Charge neutrality dictates that the
area of the electron pockets should equal that of the hole
pockets. We will show that the locations of the electron and
hole pockets in the surface Brillouin zone are topologically
constrained by the bulk parity invariants ���i�. In addition to
fixing the number of Fermi energy crossings, we find that
���i� determine which TRIM are on the inside of an electron
or hole pocket and which TRIM are on the outside. We de-
fine the surface fermion parity, which specifies whether a
given surface TRIM is enclosed by an even or an odd num-
ber of Fermi lines. We will begin with a general discussion
of the relationship between the surface fermion parity to the
bulk parity invariants. We will then apply our general result
to the surfaces of Bi1−xSbx and Bi.

A. Surface fermion parity

The total surface charge density may be expressed as a
sum over the surface Brillouin zone �SBZ�,

 = e
SBZ

d2q

�2��2N�q� , �4.1�

where the surface fermion number N�q� represents the ex-
cess charge in the vicinity of the surface due to states with
momentum q in the plane of the surface. If we assume that
the bulk Fermi energy is inside the gap, then there will be
two contributions, N�q�=Nbulk�q�+Nsurface�q�. Nsurface�q� is
an integer which counts the occupied discrete surface states
inside the energy gap. Nbulk�q� is the total surface charge in
the continuum valence-band states. For a crystal with inver-
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FIG. 4. �Color online� �a� Bi surface states

between �̄ and M̄ calculated using tight-binding
model. �b� Schematic picture of Bi bands in �a� in
which Hartree effects raise the bands to accom-
modate charge neutrality. The crossing of �1 and
�2 results in a Dirac point enclosed by a hole
pocket. �c� Schematic picture without the cross-
ing between �1 and �2, which resembles a first-
principles calculation of surface states in Bi
�Refs. 22 and 25�.
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sion symmetry, there can be no bulk electric polarization,
and Nbulk�q� will also be quantized. In the Appendix we will
show that it must be an integer.39

The integer values of N�q� allow us to unambiguously
define the “outside” of the surface Fermi surface to be the
region for which N�q�=0. N�q�= + �−�1 define electron
�hole� pockets. N�q�= + �−�2 is a double electron �hole�
pocket, and so on. From Eq. �4.1�, charge neutrality implies
that the total area of the electron pockets equals that of the
hole pocket provided that the double pockets are appropri-
ately counted.

Kramers’ theorem requires that the surface states be two-
fold degenerate at the TRIM q=�a in the surface Brillouin
zone. Provided the Fermi energy is not exactly at the degen-
eracy point, this means that Nsurface��a� is even, so that the
parity of N��a� is equal to the parity of Nbulk��a�. In the
Appendix we will show that the surface fermion parity is
determined by the bulk parity invariants,

�− 1�N��a� � ���a� = �− 1�nb���a1����a2� . �4.2�

Equation �4.2� determines whether the TRIM �a is enclosed
by a single �or odd number� of Fermi lines, or whether it is
outside the Fermi surface �or enclosed by an even number�.
In the special case that the Fermi energy is exactly at a Dirac
point at �a, �a should be interpreted to be inside an electron
�or hole� pocket with vanishing size.

Equation �4.2� is a central result of this paper which pro-
vides information about the structure of the surface Fermi
surface beyond that determined by the Z2 invariants
��0 ;�1�2�3�. We will show below that this result can have
nontrivial consequences even in materials which are not to-
pological insulators. For example, we will see that Eq. �4.2�
constrains the surface states of pure Bi.

In order to apply Eq. �4.2�, it is essential to use the parity
eigenvalues associated with an inversion center in the plane
on which the crystal is terminated. As a simple example, Fig.
5 shows a one-dimensional inversion-symmetric lattice,
which has two distinct inversion points. In general, a three-
dimensional inversion-symmetric crystal has eight distinct
inversion centers, which are related to each other by half a
Bravais lattice vector: c�=c+R /2. The parity eigenvalues
associated with inversion center c� will be related to those
associated with c by


m� ��i� = 
m��i�ei�i·R = � 
m��i� . �4.3�

An inversion plane will contain four of those points. For a
given surface orientation, there are two distinct parallel in-
version planes. For a surface terminated on one of those

inversion planes, ���a� does not depend on which of the
four inversion centers within the inversion plane are used.
This can be seen by noting that

����a� = ���a�exp	inb��a1 − �a2� · R
 , �4.4�

where nb is the number of occupied bands. When c and c�
are in the plane of the surface, the dot product in the expo-
nent is zero. Crystals terminated on inequivalent inversion
planes, however, will have different N��a�. For odd nb,
����a�=−���a�, so that the parity of N��a� changes at all
four �a. Thus, changing the inversion plane amounts to fill-
ing �or emptying� a single surface band throughout the sur-
face Brillouin zone. Since N��a� depends on how the crystal
is terminated, it is not a bulk property. However,
�N��a ,�b�=N��a�−N��b�mod 2 is a bulk property, which
is determined by the Z2 invariants ��0 ;�1�2�3�.

B. Application to Bi1−xSbx

We now apply our general result to Bi1−xSbx surfaces. In
order to apply Eq. �4.2�, it is necessary to identify the appro-
priate inversion centers. The eight inversion centers of the
rhombohedral A7 lattice are the following:

�1� c0=0, the origin in Fig. 1, which is between two bi-
layers.

�2�–�4� c j=1,2,3=a j /2. Here a j are the three rhombohedral
primitive Bravais lattice vectors, which connect an atom to
the nearest three atoms on the same sublattice of the neigh-
boring bilayer.13 These points are at the center of a nearest-
neighbor bond in the middle of a bilayer.

�5�–�7� cij ��ai+a j� /2 for i� j. These three points are at
the center of a second-neighbor bond between two bilayers.

�8� c123= �a1+a2+a3� /2, which is directly above the ori-
gin in Fig. 1, in the middle of a bilayer. For a given surface
orientation, these inversion centers are divided into two
groups of four, which reside in two possible cleavage planes.

In Ref. 13, the �111�, �110�, and �100� faces of Bi are
discussed, where the Miller indices �mno� refer to the rhom-
bohedral reciprocal-lattice vector mb1+nb2+ob3 with ai ·b j
=2��ij. In these cases the preferred cleavage plane is the one
which minimizes the number of broken first-neighbor bonds.
In Table II we list the four inversion centers in the cleavage
plane for each of these faces. For comparison, we have also
included the �111�� face, which is terminated in the middle
of a bilayer �breaking three nearest-neighbor bonds�. Table II
also shows how the bulk TRIM project onto the surface
TRIM, using the notation �a= ��a1�a2�. These data, com-
bined with Table II, are sufficient to determine the surface
fermion parity ���a� for both the alloy Bi1−xSbx �BiSb� and
pure Bi for each surface, as shown in Table II.

First, consider the 111 surface. The parity eigenvalues
quoted in the literature, which determined Eq. �2.1� in Table
I, are with respect to an inversion center between two bilay-
ers 	point O in Fig. 1�a�
. Thus, for a crystal cleaved between
two bilayers, N��a� can be deduced by combining Eq. �4.2�
with

c c'

R/2

FIG. 5. Two inequivalent inversion centers c and c� in an
inversion-symmetric crystal, which differ by half a lattice vector.
The parity eigenvalues of Bloch state at momentum k=� /R with
inversion center chosen at c and c� are different. Crystals termi-
nated at c and c� will have surface charges that differ by an odd
integer.
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���a� = − ���a1����a2� , �4.5�

as shown in Table II. This implies the surface Fermi surface

encloses �̄, but not M̄, as shown schematically in Fig. 6�a�.
Equation �4.2� says nothing about either the hole pockets
seen in experiment and our calculation or the double electron

pocket at M̄ observed in experiment24 on Bi1−xSbx but not in
our calculation. In order for the surface to be neutral, how-

ever, the Fermi energy must either be at a Dirac point at �̄
�so that the Fermi surface has vanishing area� or there must
also be compensating electron/hole pockets elsewhere in the

surface Brillouin zone �but not enclosing M̄�.
It is also instructive to first consider a �111�� face cleaved

between the monolayers in a bilayer, despite the fact that
such a surface would likely be unstable. Since the origin c0 is
not in the cleavage plane, the parity eigenvalues in Eq. �2.1�
need to be modified using Eq. �4.4�. This has the effect of
changing the sign of all of the ���a�, so that

����a� = + ���a1����a2� . �4.6�

From Table II we thus conclude that the three M̄ points are

enclosed by the Fermi surface, but not �̄, as shown in Fig.
6�b�.

For the 110 surface the cleavage plane with one broken
bond includes the origin c0. Thus ���a� can be determined
with Eq. �4.5� along with the projections of the bulk TRIM
shown in Table II. This leads to the predictions for the sur-
face Fermi surface shown in Fig. 6�c�. Experimental data for
this face of Bi1−xSbx are currently unavailable. However, it is
instructive to compare this prediction with experiments on

pure Bi. In Ref. 15, single hole pockets are clearly seen at �̄

and M̄, and at X1 single surface Dirac point is present inside

the bulk gap. The situation at X̄2 is obscured due to the
overlap of the bulk conduction and valence bands at L and T.

For the 100 surface the cleavage plane with one broken
bond does not include c0. Thus, as was the case for the
�111�� surface, the surface fermion parity follows from Eq.
�4.6�. The surface Brillouin zone shown in Fig. 6�d� has

TRIM �̄, M̄, and two equivalent M̄�. Again, there are pres-
ently no data for this surface of Bi1−xSbx. The �100� face of
pure Bi is discussed in Ref. 20 and appears to be consistent
with the prediction of Table II that none of the TRIM are
enclosed by a Fermi surface.

TABLE II. For each crystal face �hkl�, we list the four inversion centers cj on the cleavage plane along
with the projections relating the four surface TRIM �a to the bulk TRIM �a1,2. For each � we list the surface
fermion parity ���a� for both Bi1−xSbx and Bi. ���a� is a product of parity invariants at �a1,2.

Face c j �a= ��a1�a2� �BiSb��a� �Bi��a�

�111� c0 c12 �̄= ��T� −1 −1

c13 c23 3M̄ = �LX� +1 −1

�111�� c1 c2 �̄= ��T� +1 +1

c3 c123 3M̄ = �LX� −1 +1

�110� c0 c3 �̄= ��X� −1 −1

c12 c123 X̄1= �LL� −1 −1

X̄2= �LT� +1 −1

M̄ = �XX� −1 −1

�100� c1 c13 �̄= ��L� −1 +1

c23 c123 M̄ = �TX� +1 +1

2M̄�= �LX� −1 +1

Γ

M
M

M

Γ

M
M

M

Γ

M

X1

X2

Γ

M'
M

M'

(111) (111)'

(100)(110)

(a) (b)

(c) (d)

FIG. 6. �Color online� Schematic diagram showing which sur-
face TRIM are enclosed by an odd number of electron or hole
pockets for different faces of Bi1−xSbx predicted by the surface fer-
mion parity in Table II. �a�–�d� show the �111�, �111��, �110�, and
�100� faces. The �111�� surface is a hypothetical surface cleaved in
the middle of a bilayer.
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V. MIRROR CHERN NUMBER AND THE MIRROR
CHIRALITY AT THE L POINT OF BISMUTH

In this section we will explore the consequences of mirror
symmetry on the band structure of Bi and Bi1−xSbx. This will
address the disagreement between our calculation of the sur-
face band structure and previous experimental and theoreti-
cal results. As discussed in Sec. III, the tight-binding model
predicts that the hole pockets enclose Dirac points, while
experiment and first-principles calculations suggest that they
do not. Here we will show that the presence of this crossing
probes a fundamental, but previously unexplored, property of
the bulk electronic structure of Bi.

We will begin by pointing out that the mirror symmetry of
the rhombohedral A7 structure leads to an additional topo-
logical structure of the energy bands which we refer to as a
mirror Chern number. We will then show that the value of
this integer in the topological insulator phase depends on the
structure of the nearly degenerate Ls and La bands in pure Bi.
We will identify a previously unexplored parameter in the
k ·p theory of Bi, which we refer to as the mirror chirality.
We will show that the mirror chirality at the L point in Bi
determines the value of the mirror Chern number in the to-
pological insulator phase of Bi1−xSbx.

We find that the value of the mirror chirality predicted by
the Liu-Allen tight-binding model26 disagrees with the value
predicted by a more fundamental calculation by Golin.34

This, combined with the disagreement with the surface-state
experiments and first-principles calculations, suggests that
the Liu-Allen tight-binding model has a subtle but topologi-
cal error.

A. Mirror Chern number

The Dirac points in the hole pockets in our tight-binding

calculation arise because the �̄1 and �̄2 bands cross on the

line connecting �̄ and M̄ in Fig. 3�b�. This crossing is pro-
tected by the invariance of the Hamiltonian under the mirror

operation M�x̂�= PC2�x̂�, which takes x to −x. �̄1��̄2� trans-
form under different representations of M�x̂� with eigenval-
ues +i�−i�. This mirror symmetry implies that all the bulk
electronic states in the plane kx=0 can be labeled with a
mirror eigenvalue �i. Within this two-dimensional plane in
momentum space, the occupied energy bands for each mirror
eigenvalue will be associated with a Chern invariant n�i.
Time-reversal symmetry requires that n+i+n−i=0, but the dif-
ference defines a nontrivial mirror Chern number,

nM = �n+i − n−i�/2. �5.1�

The situation is analogous to the quantum spin Hall state in
graphene,1,2 where the conservation of spin Sz in the two
band model leads to the definition of a spin Chern number,27

whose parity is related to the Z2 topological invariant. Since
mirror symmetry is a physical lattice symmetry, the mirror
Chern number is a fundamental characterization of a band
structure. This distinguishes it from the spin Chern number,
which is a property of a simplified model. Since the mirror
Chern number relies on a spatial symmetry, it is a “weak”
topological invariant in the sense discussed in Refs. 7 and

12. It loses its meaning in the presence of symmetry-
breaking disorder. In principle there is a second mirror Chern
number associated with the mirror-invariant plane kx=� /a in
the Brillouin zone. For the band structures considered in this
paper, this second invariant is zero, and will not be consid-
ered further.

The mirror Chern number determines how the surface
states connect the valence and conduction bands along the

line qx=0 between �̄ to M̄. To see this, consider the M
= � i sectors independently. The bulk states with kx=0 are
then analogous to a two-dimensional integer quantum Hall
state with Hall conductivity n�ie

2 /h. The sign of n�i deter-
mines the direction of propagation of the edge states, which
connect the valence and conduction bands. Thus, the sign of

nM determines whether the �̄1 band or the �̄2 band connects

the valence and conduction bands between �̄ and M̄ �which
we take to be in the +ŷ direction�. For nM= +1 �−1� we find

that the �̄1 ��̄2� band crosses.
The predictions of the tight-binding model are more likely

to be robust near �̄ than near M̄, because near �̄ they are not
sensitive to the detailed treatment of the small bulk energy
gap at the L point. This is supported by the fact that the

ordering of the �̄1 and �̄2 bands near �̄ predicted by the

tight-binding model �in which �̄2 emerges first� agrees with
other calculations and experiment. Given this ordering near

�̄, the mirror Chern number determines whether or not the
�1 and �2 bands have to cross. Referring to Fig. 3�c�, if the
mirror Chern number were to have the opposite sign, then

the �̄2 band would connect to the conduction band rather

than the �̄1 band, and the bands would not have to cross.
Pure Bi is very close to the transition between the �0;000�
and �1;111� phases. Therefore, it is likely that the presence of

the crossing between �̄1 and �̄2 will be unaffected by the
transition. Therefore, the sign of the nM in the topological
insulator phase of Bi1−xSbx should be correlated with the
alternatives shown in Fig. 4, with nM= + �−�1 corresponding
to Fig. 4�b� 	Fig. 4�c�
.

Since the valence band of pure Bi is in the trivial �0;000�
topological class, pure Bi does not have surface states which
connect the valence and conduction bands. Thus the mirror
Chern number for the kx=0 plane of the valence band of pure
Bi is nM=0. The transition to the strong topological insulator
in Bi1−xSbx occurs for small x because the Ls and La bands in
pure Bi are nearly degenerate. At the transition to the topo-
logical insulator, the two bands cross and form a three-
dimensional Dirac point at L. At this transition both the Z2
topological invariants ��0 ;�1�2�3� and the mirror Chern
number nM change. The change �nM across this transition
is an intrinsic property of this Dirac point. Thus the value of
nM in the topological insulator phase can be determined by
studying the properties of this Dirac point. Since pure Bi is
very close to this transition, this information can be extracted
from the structure of the k ·p Hamiltonian for pure Bi in the
vicinity of the L point.

In Sec. V B we will analyze the k ·p theory and show that
the value of �nM predicted by the Liu-Allen tight-binding
model disagrees with the value predicted by an earlier
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pseudopotential calculation by Golin.34 This provides evi-

dence that the crossing of the �̄1 and �̄2 bands is an artifact
of the incorrect sign of nM predicted by the tight-binding
model.

B. k·p theory and the mirror chirality

The k ·p analysis of Bi near the L point has a long history.
Originally developed by Cohen and Blount29 in 1960, the
theory was given an particularly elegant formulation by
Wolff,30 who emphasized the similarity with the relativistic
Dirac equation. This theory and its refinements31–33 played
an important role in the early development of band theory,
and formed the framework for interpreting a large body of
magnetic, transport, and optical data. In this section we point
out a previously unexplored sign which characterizes this
theory: the mirror chirality. We show that it is this sign which
determines the sign of nM in the topological insulator phase.

The four relevant states at the L point are denoted
	Ls ,La
= 	�L6 ,L5� , �L7 ,L8�
.37 The two states comprising Ls
and La are degenerate due to time-reversal symmetry. These
states are distinguished by their symmetry under parity P
�with eigenvalues 	�1,1� , �−1,−1�
�, under the twofold rota-
tion C2�x̂� �with eigenvalues 	�−i , i� , �i ,−i�
� and under the
mirror M�x̂�= PC2�x̂� �with eigenvalues 	�−i , i� , �−i , i�
�. We
have chosen the unconventional order of the states to sim-
plify the mirror operator, which makes the connection with
the mirror Chern number in Sec. V C the most transparent. In
this basis the inversion, rotation, and mirror operators have
the direct product form

P = �z � 1 ,

C2�x̂� = − i�z � �z,

M�x̂� = − i1 � �z, �5.2�

while the time-reversal operator can be chosen as

� = i1 � �yK , �5.3�

where K is complex conjugation. �� and �� are Pauli matrices
operating within and between the Ls and La blocks, and 1 is
the identity matrix. In the following we will simplify the
notation by omitting the � and the 1.

To first order in k the k ·p Hamiltonian has the form

H�k� = m�z + kx�x + ky�y + kz�z, �5.4�

where EG=2m is the energy gap �positive for Bi� and �a are
4�4 matrices. Invariance of H�k� under P and � requires
��a , P�= ��a ,��=0, and invariance under M�x̂� requires
��x ,M�x̂��= 	�y,z ,M
=0. The allowed terms are thus

�x = t1�x�x + t2�x�y ,

�y = u11�x�z + u12�y ,

�z = u21�x�z + u22�y , �5.5�

where ti and uij are real numbers. Equations �5.4� and �5.5�
are equivalent to the k ·p theory introduced by Cohen and

Blount,29 who expressed the Hamiltonian in terms of the
complex vectors t and u. These are related to our parameters
via t= �t1+ it2�x̂ and u= �−u11+ iu12�ŷ+ �−u21+ iu22�ẑ. In the
following it will be useful to express these in terms of three
complex numbers t= x̂ · t and u�= �ŷ� iẑ� ·u.

Equation �5.4� has a simpler form when expressed in
terms of the principle axes in both momentum space and spin
space. We thus perform a rotation �ky + ikz�=ei��ky�+ ikz��
along with a unitary transformation ���=exp	i�z��
+��z�
����. These transformations have the effect of chang-
ing the phases, t→ tei� and u�→u�e−i�����. For appropri-
ately chosen �, � and �, t and �u� can be made real and
positive. The Hamiltonian then takes the diagonal form

H = m�z + v1kx�x�x + �v2ky��x�z + v3kz��y , �5.6�

where

v1 = �t� ,

�v2 = ��u+� − �u−��/2,

v3 = ��u+� + �u−��/2. �5.7�

Here we have defined v2 to be positive and introduced a
previously unexplored quantity �= �1, which is simply
given by �=sgn�det	uij
�. � is a mirror chirality, which dis-
tinguishes two topologically distinct classes of Dirac Hamil-
tonians.

For a system with full rotational symmetry, � must be
equal to +1. This can be seen by noting that the twofold
rotation operator specifies the generator of continuous rota-
tions about x̂ via C2�x̂�=exp	−i�Sx
. Since C2�x̂�=−i�z�z,
this implies Sx=�z�z /2. When �=−1, Eq. �5.6� is not invari-
ant under continuous rotations generated by Sx even when
v2=v3, since the spin and orbital degrees of freedom are
rotated in opposite directions. The twofold rotational symme-
try, however, remains intact. �= +1 corresponds to the be-
havior of a free electron and should be considered normal
behavior. �=−1 is anomalous.

The sign of � is not ordinarily discussed in the k ·p theory
of Bi because it has no effect on the electronic dispersion
E�k�, which depends only on �va�. � does, however, have a
subtle effect in the presence of a magnetic field. A magnetic
field in the x̂ direction leads to a splitting of states according
to their spin angular momentum Sx, which can be defined as
above in terms of the twofold rotation operator C2�x̂�. This
defines a magnetic moment, which symmetry restricts to be
either parallel or antiparallel to x̂. The form of this magnetic
moment is discussed in Refs. 30 and 31, and it is straightfor-
ward to show that �� ��Sxx̂. This means � determines the
sign of the g factor, which describes the relation between the
magnetic moment and angular momentum. For �= +1 the
sign is the same as that for a free electron, while for �=−1
the sign is opposite.

Unfortunately, this sign is difficult to probe experimen-
tally. In addition to complications which arise due to the
presence of three equivalent L points, measurement of the
sign requires measurement of the spin angular momentum in
addition to the change in energy with magnetic field. The
selection rules discussed in Ref. 30 are unaffected by the
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sign. We are not aware of any experiments on Bi which
directly probe this sign.

C. Relation between mirror chirality, mirror Chern number,
and surface states

We will now argue that the sign of � determines the sign
of the mirror Chern number in the topological insulator
phase of Bi1−xSbx. This leads to an experimentally testable
prediction regarding the crossing of the surface states. Thus,
probing the surface states of the topological insulator may
well be the best experimental method for determining this
fundamental parameter of the k ·p theory of Bi.

The connection between � and the mirror Chern number
can be established by considering the mirror plane kx=0. H
then decouples into two independent two band Hamiltonians
for M�x̂�=−i�z= � i with the form

h = m�z + sv2ky��x + v3kz��y , �5.8�

where s=��z. m=0 describes a transition where the Chern
number n−i�z

changes. When m changes sign from negative
to positive, �n−i�z

=��z. Thus, the change in the mirror
Chern number,

�nM = nM�m � 0� − nM�m 	 0� = − � , �5.9�

depends on the mirror chirality �. Since nM=0 for Bi �with
m�0�, we conclude that the topological insulator, with m
	0, has

nM = � . �5.10�

nM determines the direction of propagation of the �̄1 and

�̄2 surface states along the mirror line qx=0. The direction of
propagation of the surface states on the top surface which
connect the valence and conduction bands can be determined
by solving Eq. �5.8� with a z dependent mass m�z�
=m sgn�z� with m�0. The bound state at the surface has a
wave function proportional to exp�−�mz� /v3�. The dispersion
for the surface states on the top surface along qx=0 is

E�qy� = − ��zvqy , �5.11�

with v�0. This means that the �1 band, which has �z=−1,
propagates in the +�ŷ direction, while the �2 band, with
�z= +1, propagates in the −�ŷ direction. Therefore, the sur-
face state connecting the valence band to the conduction
band which has the positive velocity in the ŷ direction will be
�1 for �= +1 and �2 for �=−1.

D. Comparison of tight-binding and pseudopotential models
with experiment

In this subsection we show that the value of � predicted
by the Liu-Allen tight-binding model26 disagrees with that
predicted by an early calculation by Golin.34 Specifically, we
find that the Liu-Allen model predicts the conventional value
�=1, while the Golin model predicts the anomalous value
�=−1. We will then argue that the value of � can be ex-
tracted from the structure of the surface-state spectrum. The
presently available spin polarized ARPES data on the Bi 111

surface22 provide indirect evidence that the mirror chirality
has the anomalous value �=−1.

The k ·p parameters can be determined by evaluating the
matrix elements

�a
ij = ��Li�v̂a�Lj��k=L, �5.12�

where v̂= ��kH�k��k=L is determined by the Bloch Hamil-
tonian H�k�. From this it follows that

t = �x
57, �5.13�

u� = − �y
67 � i�z

67. �5.14�

These matrix elements are listed in Table II of Golin’s
paper34 �the relevant band is j= j�=3�. They may also be
extracted from the Liu-Allen tight-binding model. In Table
III we compare the values of v1, v2, v3, and � computed
from these matrix elements. The signs of � predicted by the
two theories disagree. Since the parameters of the Liu-Allen
model were simply fitted to reproduce the energies of the
bands, there is no reason to expect that it gets � right. In
contrast, Golin’s calculation,34 which is based on a pseudo-
potential approach, starts from more fundamental premise.

In Sec. V C we showed that provided there is only a
single transition between pure Bi and the topological insula-
tor phase of Bi1−xSbx, the mirror chirality deduced from the
pure Bi band structure determines the mirror Chern number
in the topological insulator. This, in turn, determines the di-

rection of propagation of the �̄1 and �̄2 states along the line
qx=0. The surface-state structure predicted by the tight-
binding model is shown in Fig. 3�c�. The crossing of the �1
band is consistent with �= +1. This crossing guarantees that
there is a Dirac point enclosed by the hole pocket. This can
be probed either by inverse photoemission or by spin polar-
ized photoemission. In the latter case, the presence of the
Dirac point would lead to a change in the sign of the spin on
either side of the hole pocket. It will be interesting to experi-
mentally determine this property for Bi1−xSbx using spin po-
larized ARPES.

Currently available spin polarized photoemission data on
the 111 surface of pure Bi �Ref. 22� provide an indirect probe

of �. Hole pockets are observed along the line from �̄ to M̄
in both Bi1−xSbx and pure Bi. Provided we make the plau-
sible assumption that no additional level crossings occur near
the transition to the topological insulator, then the presence
or absence of Dirac points in the hole pockets should be the
same on both sides of the transition. In Ref. 22, the spin in
either side of the hole pocket was found to point in the same
direction, which indicates that in pure Bi, the hole pockets do

TABLE III. Parameters of the k ·p theory, Eq. �5.6�, extracted
from the pseudopotential model �Ref. 34� and the tight-binding
model �Ref. 26�.

v1 �eV Å� v2 v3 �

Golin pseudopotential 4.16 1.37 7.01 −1

Liu-Allen tight-binding 5.89 0.92 9.67 +1
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not enclose a Dirac point. This conclusion was supported by
first-principles surface-state calculations, which also find no
crossing.22 This suggests that in the alloy, it should be the �2
band which connects the conduction and valence bands,
which is consistent with �=−1.

It thus appears likely that the mirror chirality in Bi has the
anomalous sign, �=−1. This conclusion contradicts the pre-
diction of the tight-binding model, but it is supported by �1�
the pseudopotential band structure of pure Bi and �2� the
observed and calculated surface-state structures of pure Bi.
Spin polarized ARPES experiments on the topological insu-
lator Bi1−xSbx could more directly determine this sign by
probing the mirror Chern number nM.

VI. CONCLUSION

In this paper we have analyzed the surface-state structure
of the topological insulator Bi1−xSbx. Using a simple tight-
binding model based on Liu and Allen’s26 tight-binding pa-
rameterization, we confirmed that the surface states have the
signature of the strong topological insulator by showing that
the surface Fermi surface encloses an odd number of Dirac
points. The tight-binding model also predicts that the surface

is semimetallic, with an electron pocket centered on �̄ along
with six hole pockets.

Using general arguments based on inversion symmetry,
we showed that the location of electron and hole pockets in
the surface Brillouin zone is constrained by a quantity which
we defined as the surface fermion parity. This quantity is
determined by the parity invariants of the bulk band struc-
ture, and for a given surface it determines which surface
TRIM are enclosed by an odd number of Fermi surface lines.
This argument establishes a simple and direct connection be-
tween the bulk electronic structure and the surface electronic
structure for crystals with inversion symmetry. Using this
general principle, we predicted the structure of the surface
states for several different faces of Bi1−xSbx. For the 111
face, these predictions agree both with our surface-state cal-
culations and with experiment. It will be interesting to test
these predictions experimentally on other faces of Bi1−xSbx.

Finally, we showed that the mirror symmetry present in
the rhombohedral A7 lattice leads to additional topological
structure in the bulk energy bands. We defined an integer
mirror Chern number nM, whose value is nonzero in the
topological insulator phase. The sign of nM determines the
direction of propagation of each of the surface states along
the mirror plane, and thus determines which surface states
connect the conduction and valence bands. We find that the
crossing of the �1 band predicted by the tight-binding model,
which leads to a Dirac point in the hole pockets, disagrees
with the natural extrapolation of experiments and first-
principles calculations on pure Bi, which find no Dirac point
in the hole pockets.

We traced this discrepancy to a previously unexplored
property of the k ·p band structure of pure Bi, which we
defined as the mirror chirality �. We showed that � in pure
Bi determines nM in the topological insulator. Moreover, we
showed that the Liu-Allen model predicts the conventional
value �= +1, while an earlier pseudopotential calculation by

Golin34 predicts the anomalous value �=−1. The latter value
is consistent with the available experimental data on Bi,
though the connection is rather indirect. A more direct test
would be to directly measure the mirror chirality nM in the
topological insulator by probing the surface states with spin
polarized ARPES.

It would be interesting to check that the value of � pre-
dicted by more accurate first-principles calculations of Bi
agrees with the pseudopotential prediction. Since the tight-
binding model was designed only to get the energies of the
bands right, there is no reason to expect that it would get �
right. It should be possible to come up with a new param-
etrization of the Liu-Allen model which would have �=−1.
We expect that the surface states computed within this model
would have band crossings which agree with experiment and
first-principles calculations, though of course a quantitative
description of the surface states requires an accurate descrip-
tion of the surface potential.

An important lesson to be learned from this paper is that
in addition to time-reversal symmetry, spatial symmetries
can play an important role in topologically constraining bulk
and surface band structures. Our analysis of these symme-
tries has not been exhaustive. A complete theory of topologi-
cal band theory, which accounts for the full point group
symmetry of a crystal, is called for.
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APPENDIX: SURFACE FERMION PARITY FROM BULK
PARITY INVARIANTS

In this Appendix we show that for an inversion- and time-
reversal-invariant crystal, the surface fermion number N�q
=�a� discussed in Sec. IV is an integer, whose parity is
determined by the product of bulk parity invariants ���a1,2�,
which are products of parity eigenvalues given in Eqs. �2.1�
and �3.5�. The simple proof outlined here provides a direct
connection between the topological structure of the surface
states and the parity eigenvalues characterizing the bulk crys-
tal.

The Bloch Hamiltonian H��a ,kz� describes a parity- and
time-reversal-invariant one-dimensional system. In the fol-
lowing we will suppress the dependence on �a and consider
a purely one-dimensional system. To determine the end
charge N, we introduce the “cutting procedure” depicted in
Fig. 7�a�. We begin with a large but finite system with peri-
odic boundary conditions. We then replace the hopping am-
plitudes ti for all bonds that cross the cleavage plane z=0 by
�ti, where � is real. Provided z=0 corresponds to an inver-
sion plane, the one-dimensional Hamiltonian retains inver-
sion and time-reversal symmetry for all �. The fully cleaved
crystal corresponds to �=0.
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For �=1 the system is translationally invariant, so the
excess charge near z=0 is Q��=1�=0. Since the insulator
can have no bulk currents, the only way Q��� can change is
if a state localized near z=0 crosses the Fermi energy. Thus
Q�0� will be the difference between the number of states that
cross EF from above and from below for �� 	0,1
. Kramers’
theorem requires that every state is at least twofold degener-
ate, so the number of states crossing EF will be an even
integer. Since the charge will be divided evenly between the
two sides, N=Q�0� /2 is an integer, which may be written as

N = �N+ − �N−, �A1�

where �N� is the number of Kramers pairs that cross EF
from above or below.

We now relate the parity of N to the bulk parity eigenval-
ues. To this end it is useful to consider the evolution of the
spectrum for �� 	−1,1
 and to define

P��� = �
E2����	EF


2� �A2�

as the product of the parities of all of the occupied states,
where each Kramers pair ��2� ,�2�−1� is included only once.
This quantity is well defined because 
2�=
2�−1. Our proof
consists of two steps. We will first show that

P�1�P�− 1� = �− 1�N. �A3�

We will then show that

P�1�P�− 1� = �
m=1

nb

	− 
2m��1�
2m��2�
 � � . �A4�

Here 
2m��i� are the parity of the Bloch states in the mth
Kramers degenerate band at the TRIM kz=�i, and again each
Kramers pair is included only once. nb is the number of
occupied Kramers degenerate bands. Taken together, Eqs.
�A3� and �A4� establish the relationship summarized by Eqs.
�2.1� and �3.5� between the bulk parity eigenvalues and the
surface fermion parity.

Equation �A3� follows from the symmetry of the end-state
spectrum about �=0. The Hamiltonian H�−�� differs from
H��� only by a phase twist of � across z=0. This twist can
be spread over the entire circumference L by performing the
gauge transformation

���− ��� = ei�z/L��̃�− ��� �A5�

for 0	z	L. When L→� the Hamiltonian for ��̃�−��� near
z=0 becomes identical to H���. Thus every bound state
��l���� satisfies El�−��=El���. Since Eq. �A5� changes the
parity, ��l���� and ��l�−��� have opposite parities.

It follows that every Kramers pair that crosses the EF at
�0� 	1,0
 has a partner with opposite parity that crosses EF
in the opposite direction at −�0 as shown in Fig. 7�b�. Thus
between �=1 and �=−1, the conduction and valence bands
exchange two Kramers pairs with opposite parities, leading
to a change in the relative sign between P�1� and P�−1�. We
conclude that P�1�P�−1�= �−1��N++�N−, which leads directly
to Eq. �A3�.

Equation �A4� follows from a consideration of the parities
of the Bloch wave functions. Consider first the simplest case
where there is a single Kramers degenerate occupied band, as
shown in Figs. 7�c� and 7�d�. At �=1 the single-particle
states are labeled by momentum kz=2m� /L with m=−M /2
+1, . . . ,M /2, where M is the number of unit cells. At the two
TRIM �1=0 and �2=M� /L, the parity eigenvalues are

��1,2�. Every other kz has a partner −kz, and even- and odd-
parity combinations of the two can be formed. The M /2−1
�kz ,−kz� pairs thus each contribute −1 to the product in Eq.
�A2�. Therefore,

P�1� = �− 1�M/2−1
��1�
��2� . �A6�

For �=−1 gauge transformation �A5� leads to a periodic
Hamiltonian identical to H�1�, but with momenta shifted by
� /L, as shown in Fig. 7�d�. Thus all the momenta are paired,
so that

P�− 1� = �− 1�M/2. �A7�

Combining Eqs. �A6� and �A7� leads directly to Eq. �A4�,
which is straightforwardly generalized to the case of nb
Kramers degenerate bands.

t λ t

E E

E

k kΓ1 Γ2 Γ1 Γ2

0-1 1λ

+ξ−ξ

λ= −1λ= +1

EF

(a) (b)

(c) (d)

FIG. 7. �Color online� �a� A one-dimensional inversion-
symmetric insulator cut at z=0 by replacing hopping amplitudes t
across z=0 by �t. The fully cleaved crystal corresponds to �=0. �b�
Energy spectrum as a function of � between −1 and 1. The conduc-
tion and valence bands exchange a Kramers pair of states with
opposite parities. 	�c� and �d�
 The bulk energy levels at �= �1. For
�=−1 �d� every state at k has a partner at −k with the same energy
and opposite parity. For �= +1 �c� the states at k=�1 and k=�2 are
not paired.
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