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We investigate a generalized two-dimensional Weyl Hamiltonian, which may describe the low-energy prop-
erties of mechanically deformed graphene and of the organic compound �-�BEDT-TTF�2I3 �BEDT-TTF
=bis�ethylenedithio�tetrathiafulvalene� under pressure. The associated dispersion has generically the form of
tilted anisotropic Dirac cones. The tilt arises due to next-nearest-neighbor hopping when the Dirac points,
where the valence band touches the conduction band, do not coincide with crystallographic high-symmetry
points within the first Brillouin zone. Within a semiclassical treatment, we describe the formation of Landau
levels in a strong magnetic field, the relativistic form of which is reminiscent of that of graphene, with a
renormalized Fermi velocity due to the tilt of the Dirac cones. These relativistic Landau levels, experimentally
accessible via spectroscopy or even a quantum-Hall-effect measurement, may be used as a direct experimental
verification of Dirac cones in �-�BEDT-TTF�2I3.
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I. INTRODUCTION

The discovery of a particular quantum Hall effect in
graphene1,2 has shown that the low-energy electronic proper-
ties in this two-dimensional �2D� carbon crystal are de-
scribed not in terms of a Schrödinger-type wave equation but
by a relativistic Dirac equation.3 Due to a � band, which
shrinks at half filling to two inequivalent points at the cor-
ners of the first Brillouin zone �BZ�, the electronic energy
dispersion is almost linear, resulting in Dirac cones. This is
reminiscent of the case of massless relativistic particles,
where the speed of light, c, is replaced by a Fermi velocity
vF, which is roughly 300 times smaller than c.

Another material where Dirac cones are expected to
occur is the organic 2D compound �-�BEDT-TTF�2I3
�BEDT-TTF=bis�ethylenedithio�tetrathiafulvalene� under
pressure.4–6 The relativistic behavior of the carriers may be
at the origin4 of an experimentally observed T2 dependence
of the carrier density.7,8 Whereas in graphene, the Dirac
cones at the corners of the first BZ are isotropic, they are
situated within the first BZ in �-�BEDT-TTF�2I3, strongly
anisotropic, and tilted in the wave-vector energy space
�k ,E�.4,5 The electronic properties are described by a gener-
alized Weyl Hamiltonian with terms linear in the 2D wave
vector k. However, in contrast to graphene, there is yet no
direct experimental evidence for the presence of Dirac cones
in �-�BEDT-TTF�2I3 or whether the system is simply a
narrow-gap semiconductor.

In the present paper, we study the structure of the gener-
alized Weyl Hamiltonian, which yields energy dispersions in
the form of tilted anisotropic Dirac cones. In the presence of
a strong magnetic field, the dispersion is quantized in rela-
tivistic Landau levels �LLs�, with the characteristic ��nB
behavior known from graphene. The tilt and the anisotropy
of the Dirac cones give rise to a renormalization of the ef-
fective Fermi velocity and therefore of the typical LL spac-
ing.

One example of a 2D system described by such general-
ized Weyl equation may be the above-mentioned organic ma-
terial �-�BEDT-TTF�2I3. We show, within an effective tight-

binding model on an anisotropic triangular lattice with two
atoms per unit cell,9 that the tilting of the Dirac cones is due
to next-nearest-neighbor �nnn� hopping, which in
�-�BEDT-TTF�2I3 may be on the same order of magnitude
as nearest-neighbor �nn� hopping.10,11 A necessary condition
for nnn hopping to cause a tilt of the Dirac cones is for them
to be situated at points in the first BZ different from those of
high crystallographic symmetry, such as its corners. Further-
more, we show that it may equally apply to graphene when
the Dirac points D and D� move away from the high-
symmetry points K and K� at the corners of the first BZ. In
this case the wave-vector expansion of the nnn term yields a
linear contribution, whereas it is quadratic when the Dirac
points coincide with the BZ corners K and K�. Such motion
of the Dirac points may indeed be induced by a quinoid-type
lattice distortion12 of the graphene sheet. However, we show
that the tilt of the Dirac cones is much less pronounced than
in �-�BEDT-TTF�2I3. Alternatively, this motion of Dirac
points may be studied in cold atoms in an optical lattice
where one may deform the honeycomb lattice and fine-tune
the nn and nnn hopping parameters with the help of the laser
intensities, wavelengths, and relative orientation.13

The paper is organized as follows: We start with a theo-
retical discussion of the generalized Weyl Hamiltonian in
Sec. II. Section III is devoted to the LL formation in a strong
magnetic field, for the case of tilted Dirac cones. Possible
experimental realizations in distorted graphene and
�-�BEDT-TTF�2I3 are discussed in Sec. IV, which we con-
clude with an analysis of a possible quantum Hall effect in
�-�BEDT-TTF�2I3.

II. GENERALIZED WEYL HAMILTONIAN

We consider a model of two-spinor fermions restricted to
a 2D space. Whereas the two-spinor form is in general dic-
tated by relativistic invariance in two space dimensions, it
naturally arises in the condensed-matter situation of a lattice
with two inequivalent sites. The most general Hamiltonian
linear in the 2D wave vector k= �kx ,ky� is given by the “gen-
eralized Weyl Hamiltonian,”
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H = �
�=0, . . .,3

v� · k��, �1�

in terms of the velocities v�= �v�
x ,v�

y �, and the 2�2 Pauli
matrices �0�1 ,�� = ��1 ,�2 ,�3�. Here and in the following
parts, we choose a unit system with ��1. Both 2D space
components of the velocities, v�

x = �v0
x ,v�x���v0

x ,v1
x ,v2

x ,v3
x�

and v�
y = �v0

y ,v�y���v0
y ,v1

y ,v2
y ,v3

y�, are in themselves vectors
in the four-dimensional �4D� spin space �the space of SU�2�
matrices� spanned by the Pauli matrices. The usual 2D Weyl
Hamiltonian, which describes, for instance, low-energy
massless electrons in graphene,3 is included in Eq. �1� if one
considers v0=v4=0, v1= �vF ,0�, and v2= �0,vF�, in terms of
the Fermi velocity vF.

Although, at first sight, the Weyl Hamiltonian is described
by eight different parameters, given by the four two-
component velocities v�, it is indeed overspecified. In order
to illustrate this point, we rewrite Hamiltonian �1� in a dif-
ferent manner as

H = v0 · k�0 + �v�xkx + v�yky� · �� . �2�

One may get rid of two parameters �v3=0� by choosing the
three-quantization axis in the SU�2� space perpendicular to
the vectors v�x and v�y.

This point is indeed remarkable and needs to be discussed
in the light of graphene physics. In this case, a constant �3

term breaks the inversion symmetry of the honeycomb lat-
tice, e.g., due to a different on-site energy of the two trian-
gular sublattices. Usually, this gives rise to a mass term and
breaks the particle-hole symmetry. In the generalized Weyl
Hamiltonian, this is not the case because the �3 term is linear
in the wave vector and therefore does not affect the zero-
energy state at k=0.

One may furthermore reduce the number of relevant
model parameters by a simple rotation of the 2D frame of
reference, accompanied by a unitary transformation in the
SU�2� space, which leaves the three-quantization axis invari-
ant. One, thus, obtains the “minimal” Weyl Hamiltonian,

H = w0 · q�0 + wxqx�
x + wyqy�

y , �3�

in terms of the four effective velocities w0= �w0x ,w0y�, wx,
and wy. A detailed discussion of the involved transformations
and a derivation of the exact expressions for the effective
velocities are found in Appendix A.

The diagonalization of the minimal Weyl Hamiltonian
yields the energy dispersions

	
�q� = w0 · q + 
�wx
2qx

2 + wy
2qy

2, �4�

where 
=� plays the role of the band index. For wx=wy
=vF and w0=0, one obtains the isotropic model, which ap-
plies, e.g., to the low-energy electronic properties in
graphene: The Fermi velocities are the same in the x and y
directions. The rotational symmetry is broken if wx�wy �an-
isotropic model�. Such a case may be obtained, e.g., if the
graphene sheet is constrained by a uniaxial pressure, as dis-
cussed in Sec. IV A. For w0�0, the Dirac cones are tilted
away from the z axis, as shown in Fig. 1.

Note that not all values of the tilt parameter w0 are indeed
physical. In order to be able to associate 
=+ with a positive

energy state and 
=− with a negative energy state, one ob-
tains the condition

�w0x

wx
	2

+ �w0y

wy
	2

� 1. �5�

Unless this condition is satisfied, the isoenergetic lines are no
longer ellipses but hyperbolas . Note that, here, we aim to
use generalized Weyl Hamiltonian �1� and its resulting en-
ergy dispersion �Eq. �4�� to describe the electronic properties
of particular 2D materials. Although it may be interesting to
speculate about the resulting properties of a model that vio-
lates condition �5�, we are not aware of any physical example
which might correspond to such a case.

In a 2D lattice system with valley degeneracy, a general-
ized Weyl Hamiltonian may describe the low-energy excita-
tions in different valleys separately. In the remainder of this
paper, we will in general consider a single valley only �and
explicitly mention the inclusion of the twofold valley degen-
eracy when needed�. Note also that we do not consider the
true electron spin and do not include the corresponding two-
fold spin degeneracy.

In order to discuss the symmetry properties of generalized
Weyl Hamiltonian �3�, it is convenient to introduce the uni-
tary and Hermitian chirality operator

C =
wxqx�

x + wyqy�
y

�wx
2qx

2 + wy
2qy

2
, �6�

which commutes naturally with the Hamiltonian. The asso-
ciated eigenvalues are �=�1 and coincide with the band
indices �=
. As exemplified in Sec. IV, this is generally not
the case in a physical condensed-matter situation—the Weyl
Hamiltonian corresponds to the effective model at Dirac
points, where the conduction band touches the valence band.
These Dirac points occur in pairs, at inequivalent points in
the first BZ, which yields a twofold valley degeneracy. In
this case, the effective model is rather given by �H, where
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FIG. 1. �Color online� Energy dispersion �4� for the special
choice of wx=wy =1 and w0= �0,0.6�, in natural units. The Dirac
cone is tilted in the y direction.
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�=� denotes the two valleys, and the relation between band
index, chirality, and valley index is given by


 = �� . �7�

In the present discussion, we may however identify the band
index with the chirality, for simplicity.

The eigenstates of the chirality operator are

� =
1
�2

�e−i�k

�
	 , �8�

where tan �k�wyky /wxkx. These eigenstates are also the
natural eigenstates for the generalized Weyl Hamiltonian.

III. TILTED DIRAC CONES
IN A MAGNETIC FIELD

We use the Peierls substitution to obtain the generalized
Weyl Hamiltonian in a magnetic field,

q → � = q + eA , �9�

where A is the vector potential that generates the �uniform�
magnetic field Bez=��A perpendicular to the 2D plane.
With the help of the ladder operators

a =
lB

�2wxwy

�wx�x − iwy�y� ,

a† =
lB

�2wxwy

�wx�x + iwy�y� , �10�

in terms of the magnetic length lB=1 /�eB, one obtains the
Hamiltonian

HB =
�2wxwy

lB 

w̃0

2
�aei� + a†e−i�� a

a† w̃0

2
�aei� + a†e−i�� � ,

�11�

where we have defined

w̃0ei� �
w0x

wx
+ i

w0y

wy
,

in terms of the effective tilt parameter

w̃0 ���w0x

wx
	2

+ �w0y

wy
	2

. �12�

Instead of the full solution of Hamiltonian �11�, we con-
sider the effect of the magnetic field in a semiclassical treat-
ment. The Onsager relation14 states that the surface S�	� en-
closed by a trajectory of constant energy 	 in reciprocal
space is quantized as

S�	�lB
2 = �2��2�

0

	

d	���	�� = 2��n + �� ,

where n is an integer denoting the energy level which coin-
cides with the Landau level in the full quantum treatment.

The additional contribution � is related to a Berry phase
acquired by an electron during its cyclotron orbit. Usually,
one has �=1 /2 except if there is an extra Berry phase of �,
which in our case yields �=0, as in the case of graphene with
no tilt.15 If one considers a density of states which scales as
��	��	�, the energy levels thus scale as

	n  �B�n + ���1/�1+�� �13�

in the large-n limit. In usual �nonrelativistic� 2D electron
systems, one finds a constant density of states, i.e., �=0, and
�=1 /2. The scaling of the conventional Landau levels is
therefore 	n�B�n+1 /2�. In the relativistic case of electrons
in graphene, the density of states vanishes linearly at the
Dirac points, and one therefore obtains 	n��Bn because �
=1 and �=0. Relation �13� was generalized to the case of a
spatially anisotropic density of states by Dietl et al.16

From scaling argument �13� in the large-n limit, one may
notice that the B-field scaling of the levels must be the same
as the n scaling. Furthermore, one sees from quantum Hamil-
tonian �11� that the energy must scale as 1 / lB��B. There-
fore, the energy levels must obey, in the large-n limit, the
equation

	
,n � 
�2
vF

�

lB

�n , �14�

as in the case of the Weyl equation for massless charged
particles, such as in graphene, apart from a renormalization
of the Fermi velocity.

The renormalization of the Fermi velocity may be ob-
tained from the calculation of the density of states. The total
number of states below a given energy 	 within the positive
energy cone is given by

N+�	� =
1

�2��2wxwy
�
	+�q̃��	

dq̃xdq̃y =
1

2�vF
�2

	2

2
,

where we have defined q̃x/y �wx/yqx/y, and the renormalized
Fermi velocity is written in integral form,

1

vF
�2 =

1

wxwy
�

0

2� d�

2�

1

�1 + w̃0 cos ��2 , �15�

in terms of effective tilt parameter �12�. The renormalized
Fermi velocity is plotted in Fig. 2 as a function of w̃0. One
notices from Eq. �15� that if condition �5�, �w̃0�2�1, is not
satisfied, the expression under the integral diverges because
the denominator may become zero. This result is not surpris-
ing because the Onsager quantization relation, which yields
the energy levels in Eq. �14�, is valid only for closed orbits,
given, e.g., by the elliptic isoenergetic lines. As already men-
tioned, the orbits for �w̃0��1 are open hyperbolas, and ex-
pression �14� is no longer valid. The density of states is
obtained by differentiation of the number of states,

��	� =
�	�

2�vF
�2 , �16�

which is the concise expression for both the positive and the
negative parts of the tilted Dirac cones.
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The �nB behavior of Eq. �14� is, strictly speaking, valid
only in the large-n limit. However, usually it yields ex-
tremely good estimates for the levels down to values as small
as n=1. Special care is needed for the discussion of the n
=0 level, which requires a quantum treatment of Hamil-
tonian �11�. In the following, we prove that there indeed
exists a zero-energy Landau level.

The behavior of this level may be understood with the
help of the quantum treatment of the Hamiltonian for w0
=0. In this case, expression �14� is exact with vF

� =�wxwy,
which is also the w0=0 limit of expression �15�. There exists
thus a zero-energy level for n=0, which has the same degen-
eracy NB as all other levels �
 ,n�, in terms of the number of
flux quanta NB=AB / �h /e� threading the total surface A.

For nonzero values of w0, Hamiltonian �11� may not be
diagonalized by a simple canonical transformation. However,
Hamiltonian �11� is transformed as HB→−HB under space
inversion, r→−r, as shown in Appendix B. This implies that
the energy spectrum is symmetric around zero energy �see
Appendix B�. Therefore, starting from w0=0 and adiabati-
cally turning on w0�0, there are only two possibilities for
the evolution of the zero-energy level: Either �i� it remains at
zero energy or �ii� it splits into �at least� two sublevels 0+ and
0−, which are symmetric around zero energy. However, split-
ting of the zero-energy level into sublevels can be excluded
on account of the degeneracy of this level. Indeed, when
w0=0, the exact degeneracy of the zero-energy �n=0� Lan-
dau level is given by NB �remember that we consider only a
single valley here�. When w0�0, it, therefore, cannot split
since this would indeed lead to an unphysical doubling of the
number of quantum states because each level, 0+ and 0−,
would have to be NB times degenerate. Therefore, for all
magnetic-field strengths, there exists a zero-energy Landau
level. The explicit expressions for the zero-energy wave
functions may be found in Appendix C. Note that this is
consistent with the semiclassical spectrum with �=0.

In the above treatment, we considered a single valley
only. We note however that the magnetic field might intro-
duce a coupling between the two valleys. In such a case, we
do not exclude a parity anomaly which consists of a different
behavior of the n=0 level at the two inequivalent Dirac
points at nonzero wave vectors in a lattice model. In this
case, space inversion would involve the low-energy Hamil-
tonians at both Dirac points, and the spectrum is symmetric

only around zero energy if one accounts for both valleys. The
parity anomaly is, however, expected to play no physical role
in the continuum limit with a / lB→0, where a is the lattice
spacing.

In conclusion, we have obtained the semiclassical spec-
trum of Landau levels �see Eqs. �14� and �15�, valid when
n�1� and checked that the zero-energy level �n=0� indeed
exists in a full quantum treatment. Based on this two calcu-
lations, we expect the semiclassical spectrum to be a very
good approximation of the true quantum spectrum of Landau
levels, for all n. This is one of the main results of the present
paper.

IV. PHYSICAL EXAMPLES OF TILTED DIRAC CONES

After this rather technical discussion of the generalized
Weyl Hamiltonian and tilted Dirac cones, we discuss here
two physical systems which may display these properties.
We find that, whereas the tilt of the Dirac cones is well
pronounced and thus strongly affects the Landau-level quan-
tization in �-�BEDT-TTF�2I3, it is much more difficult to
induce a tilt in graphene via a lattice deformation. However,
a quinoid-type lattice deformation is also discussed for peda-
gogical reasons because the general physical origin of tilted
Dirac cones becomes transparent.

A. Quinoid-type graphene under uniaxial strain

As the first example, we consider a graphene sheet which
is deformed in one of its principal symmetry axes. This par-
ticular deformation results in a quinoid variety of the honey-
comb lattice.17 We treat its electronic properties within the
tight-binding approximation. Starting from the graphene
honeycomb lattice, with equal bond length a�0.14 nm and
equal nn hopping energy t�3 eV, the bond length and hop-
ping energy are modified in the deformation axis �see Fig. 3�,

a → a� = a + �a and t → t� = t +
�t

�a
�a ,

and kept unchanged otherwise. We call �=�a /a the relative
strain. Here, we consider a moderate deformation, ����1,
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FIG. 2. Renormalized Fermi velocity vF
� /�wxwy as a function of
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velocity vanishes for w̃=1, where the orbits change from ellipses to
hyperbolas.

� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
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FIG. 3. Quinoid-type deformation of the honeycomb lattice—
the bonds parallel to the deformation axis �double arrow� are modi-
fied. The shaded region indicates the unit cell of the oblique lattice,
spanned by the lattice vectors a1 and a2. The dashed and dashed-
dotted lines indicate next-nearest neighbors, with characteristic hop-
ping integrals tnnn and tnnn� , respectively, which are different due to
the lattice deformation.
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such that one may linearize the hopping energy around its
nondeformed value t, and �t /�a�−5 eV/Å.17,18 This value
agrees with an evaluation based on Harrison’s law,19 accord-
ing to which t=C�2 /ma2, where C is a numerical prefactor
of order 1. Derivation with respect to a yields

�t

�a
= −

2t

a
 − 4.3 eV/Å. �17�

For simplicity and as a first approximation, one may keep the
bond angles fixed at 2� /3. The underlying Bravais lattice is
no longer triangular but oblique with the basis vectors

a1 = �3aex and a2 =
�3

2
aex + �3

2
a + �a	ey ,

and the reciprocal lattice is spanned by the vectors

a1
� = 2�� ex

�3a
−

ey

3a + 2�a	 and a2
� =

4�ey

3a + 2�a
.

Furthermore, we take into account nnn hopping, with a char-
acteristic energy of20 tnnn�0.1t in the undeformed horizontal
axes. The deformation yields, in the same manner as for the
nn hopping energies, different hopping energies for the other
directions �see Fig. 3�,

tnnn → tnnn� = tnnn +
�tnnn

�a
�a .

The tight-binding model may be described by the Hamil-
tonian

H = �
q

�aq
†,bq

†�Hq�aq

bq
	 �18�

in reciprocal space, where aq
�†� and bq

�†� are the Fourier com-
ponents of the annihilation �creation� operators on the A and
B sublattices, respectively. The Hamiltonian 2�2 matrix

Hq = �h��q� h��q�
h�q� h��q�

	
is given in terms of the elements

h�q� = − t�ei�qy+�3qx�a/2 + ei�qy−�3qx�a/2� − t�e−iqy�a+�a�

= − 2t cos
qya

2
cos

�3qxa

2
− t� cos�qy�a + �a��

− i�2t sin
qya

2
cos

�3qxa

2
− t� sin�qy�a + �a���

�19�

and

h��q� = 2tnnn cos �3qxa + 2tnnn� �cos��3qxa

2
+ qy�3

2
a + �a	�

+ cos�−
�3qxa

2
+ qy�3

2
a + �a	�� . �20�

The energy dispersion is obtained from the eigenvalues of
Hq,

	
�q� = h��q� + 
�h�q�� , �21�

and is plotted in Fig. 4 for a deformation of �a /a=0.4. The
two bands, 
=+ and 
=−, touch each other at the Dirac
points qD, which are obtained from the condition h�qD�=0,16

qy
D = 0 and qx

Da = �
2
�3

arccos�−
t�

2t
	 , �22�

where �=� denotes the two inequivalent Dirac points D and
D�, respectively. In the absence of any distortion, the Dirac
points D and D� coincide with the crystallographic points K
and K�, respectively, at the corners of the first BZ. The dis-
tortion makes both pairs of points move in the same direction
due to the negative value of �t /�a. However, unless the pa-
rameters are fine-tuned, this motion is different, and the two
pairs of points no longer coincide.21

The low-energy properties of electrons in a quinoid-type
distorted graphene sheet are described by the linearized
model around the Dirac points, which is exactly of form �3�
of the Weyl Hamiltonian,

H� = ��w0 · k�0 + wxkx�
x + wyky�

y� , �23�

with the effective velocities

wx = �3ta sin � ,

wy =
3

2
t�a�1 +

2�a

3a
	 ,

w0x = 2�3�tnnna sin 2� + tnnn� a sin �� ,

w0y = 0, �24�

where we have defined ��arccos�−t� /2t�. The correspond-
ing energy dispersion is independent of �, which is at the
origin of the twofold valley degeneracy. In order to obtain
the concise form of Eq. �23�, we have chosen the spinor
representation ��A ,�B� at the �=+ Dirac point and ��B ,�A�

FIG. 4. �Color online� Energy dispersion of the quinoid-
type deformed honeycomb lattice for a lattice distortion of �a /a
=0.4, with t=3 eV, tnnn / t=0.1, �t /�a=−5 eV/Å, and �tnnn /�a
=−0.7 eV/Å The inset shows a zoom on one of the Dirac points,
D�.
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for �=−, i.e., interchanged the sublattice components at D�.
As mentioned in Sec. II, the relation between the band index

, chirality �, and valley index � is given by Eq. �7�, 

=��, due to the global sign � in Hamiltonian �23�. The con-
stant term h��q=�qD�1 has been absorbed in a renormaliza-
tion of the chemical potential, the position of which is deter-
mined by the electronic half filling of the graphene sheet.

One notices from Eq. �24� that the quinoid-type distortion
yields an anisotropy in the Fermi velocities, wx�wy, and that
the Dirac cones are tilted due to w0x�0. The isotropic
graphene model is retrieved at �a=0—one has then wx=wy
=vF=3ta /2�6.3 eV Å and w0x=w0y =0 because t= t�, tnnn
= tnnn� , and sin �=�3 /2=−sin 2�, in the undeformed case.
Without deformation, nnn hopping therefore does not affect
the energy dispersion at linear order, but only that at second
order. This is due to the fact that the Dirac points are then
situated at the high-symmetry crystallographic points K and
K�. Indeed, this yields a parabolic correction, which breaks
the original electron-hole symmetry.3,22

To summarize, in order to obtain tilted Dirac cones in
graphene, two ingredients are required: �i� nnn hopping,
which generates the diagonal components h��q� in Hamil-
tonian �18�; and �ii� for a linear contribution arising from this
term, the Dirac points D and D� need to be shifted away
from the high-symmetry points K and K�. This shift may be
obtained by constraining the graphene sheet into such a
quinoid type.

In the presence of a magnetic field, the LL spacing is
affected by the deformation because the Fermi velocity is
renormalized according to Eq. �15�,

vF
� � �wxwy�1 −

3

4
w̃0

2	 , �25�

for small values of the effective tilt parameter w̃0. It may be
evaluated from the model parameters,

w̃0 = 2� tnnn

t

sin 2�

sin �
+

tnnn�

t
	 �

2

t2 �ttnnn� − t�tnnn� . �26�

In order to estimate tnnn� , we use the “atomic orbitals overlap
law” familiar in the context of the extended Hückel model,23

tnnn�b,a� � t�a�e−�b−a�/d�a�,

where a is the nn distance, b is the nnn distance, and d
�a /3.5�0.4 Å is a characteristic distance related to the
overlap of atomic orbitals. In the undeformed graphene b
=a�3, whereas in the quinoid-type graphene b�=b�1+� /2�
and a�=a�1+��. This gives tnnn� = tnnn�1−2�+b� /2d� and t�
= t�1−2��. Therefore, the effective tilt parameter is given by

w̃0 �
b

d

tnnn

t
� � 0.6� .

As the correction to the Fermi velocity appears as 1
−3w̃0

2 /4 �see Eq. �25��, this effect remains extremely small,
and the tilt affects the LL spacing in a negligible manner.

The main contribution to the renormalized Fermi velocity
therefore arises not from the tilt of the Dirac cones �effect of
order �2� but from the anisotropy in the Fermi velocities
�effect of order ��. One then finds

vF
� � vF�1 +

1

3
� �t

�a

�a

t
+
�a

a
	� � vF�1 −

�

3
	 , �27�

which may yield an experimentally observable effect in the
percent range for a strain of �10%.

From an experimental point of view, such quinoid-type
deformation may be realized if one uses a piezoelectric sub-
strate, on which the graphene sheet is posed, instead of the
most commonly used SiO2. Another possibility would be to
use a mechanical deformation of the underlying substrate.
Such bending has been exploited, e.g., to investigate carbon
nanotubes under strain.24 More recently, graphene on poly-
dimethylsiloxane �PDMS� has been put under uniaxial strain
by bending of the PDMS.25 The elastic regime in graphene
requires that the strain is smaller than 10% and the rupture
occurs around 20%. Therefore an upper bound for � is cer-
tainly 10%.

B. Organic 2D compounds

Another example of a 2D metal, where tilted Dirac cones
may occur, is the layered organic compound
�-�BEDT-TTF�2I3 under �uniaxial� pressure.4–6 Each layer
may be described by an oblique lattice with four sites per
unit cell, and the electronic filling is 3/4. In the vicinity of
the Fermi energy, only two out of the four bands are relevant
for the low-energy electronic properties. It has indeed been
shown that the band structure may be modeled with great
precision within a tight-binding model on a half-filled aniso-
tropic triangular lattice with nn and nnn hopping, where each
site corresponds to a dimer.9 This is a natural assumption for
�- and 
-�BEDT-TTF�2I3, where there exists one hopping
energy which is largely enhanced with respect to the others.
In contrast to these compounds, the assumption may seem
hazardous at first sight in the case of �-�BEDT-TTF�2I3,
where there is no such clearly enhanced hopping energy,
such that the dimerization is expected to be rather weak.
Furthermore, these organic materials exhibit strong elec-
tronic correlations, and a tight-binding calculation for quasi-
free electrons sweeps a lot of interesting physics under the
carpet. However, the high-pressure limit corresponds to a
regime where the electrons are less strongly correlated and
where interaction effects may be taken into account via
renormalized effective hopping parameters.5

The tight-binding model on the anisotropic triangular lat-
tice is depicted in Fig. 5. The nn’s are situated at the vectors
�a1 and �a2, with

�1 =
1

2
�ex + ey� and �2 =

1

2
�ex − ey� ,

which connect sites on the different sublattices, A and B; and
the vectors

a1 = �1 + �2 = ex and a2 = �1 − �2 = ey

span the underlying Bravais lattice, which is chosen to be a
square lattice, for simplicity. Notice that the lattice may also
be viewed as an anisotropic 2D NaCl lattice �two inequiva-
lent interpenetrating square lattices�. The bond length is set
to unity, ��1. The nn hopping energies are t1 and t1� in the
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directions ��1, and t2 and t2� in the directions ��2, respec-
tively. The nnn hopping energy in the y direction is tnnn,
whereas that in the x direction is neglected in the model.

The effective tight-binding model may be written in the
same manner as Eq. �18� as for the case of quinoid-type
graphene, with the matrix elements

h�q� = 2��t1 + t1��cos
qx + qy

2
+ �t2 + t2��cos

qx − qy

2
�

+ 2i��t1 − t1��sin
qx + qy

2
+ �t2 − t2��sin

qx − qy

2
�

and

h��q� = 2tnnn cos qy .

The energy dispersion is obtained from Eq. �21�, and the
position of the Dirac points is calculated from

tan2qx
D

2
= −

�t1� + t2�2 − �t1 + t2��
2

�t1� − t2�2 − �t1 − t2��
2 ,

tan2qy
D

2
= −

�t1� + t2��
2 − �t1 + t2�2

�t1� − t2��
2 − �t1 − t2�2 .

One may directly see that the right-hand sides of both equa-
tions must be positive in order to have a pair of Dirac points
�qD and −qD� within the first BZ, −� /2�qx ,qy�� /2.

An expansion around the Dirac points yields generalized
Weyl Hamiltonian �1�,

H� = ��
�=0

2

v� · k��,

in terms of the velocities

v0x = 0, v0y = − 2tnnn sin qy
D,

v1
x = �t1� + t1�sin

qx
D + qy

D

2
+ �t2� + t2�sin

qx
D − qy

D

2
,

v1
y = �t1� + t1�sin

qx
D + qy

D

2
− �t2� + t2�sin

qx
D − qy

D

2
,

v2
x = �t1� − t1�cos

qx
D + qy

D

2
+ �t2� − t2�cos

qx
D − qy

D

2
,

v2
y = �t1� − t1�cos

qx
D + qy

D

2
− �t2� − t2�cos

qx
D − qy

D

2
. �28�

Here, we have used the same spinor representation as for
quinoid-type graphene; i.e., we have interchanged the sublat-
tice components when changing the valley. One notices that
the Dirac cones are tilted only if the Dirac points are not
situated at the border of the first BZ, qy

D=� /2. This corre-
sponds to the high-symmetry crystallographic points in
graphene, and nnn hopping affects the effective model again
only at second order in the expansion around the Dirac
points.

The experimental evidence for �tilted� Dirac cones in
�-�BEDT-TTF�2I3 compounds under pressure is yet rather
weak. Whereas at ambient pressure the material is an insula-
tor due to charge ordering, temperature-dependent transport
measurements under high hydrostatic pressure have revealed
a T2 dependence of the carrier density below 50 K,7,8 as one
would expect for relativistic electrons with a linear disper-
sion relation.3,4 It is, however, not clear whether the com-
pound has, under these circumstances, a truly vanishing gap
as for massless relativistic electrons or whether a tiny gap
persists. Furthermore the T2 dependence of the carrier den-
sity is accompanied by a temperature-dependent mobility,
which results in an essentially constant conductivity over a
large temperature range.8

More direct evidence for the relevance of Dirac cones in
�-�BEDT-TTF�2I3 would be a measurement of the character-
istic properties of relativistic quantum Hall physics, as in the
case of graphene.1–3 The following final part of this paper is
devoted to the discussion of possible quantum Hall physics
in �-�BEDT-TTF�2I3.

C. Possible quantum Hall effect in �-(BEDT-TTF)2I3

Although it is a delicate issue to yield energy values for
the hopping parameters t1 , t1� , t2 , t2�, and tnnn from the
overlap integrals in �-�BEDT-TTF�2I3,10,11 we expect that
the good agreement between band-structure calculations in
the full model with four sites per unit cell and the anisotropic
triangular lattice model9 yields the correct orders of magni-
tude for the effective velocities in Eq. �28�. Using the pre-
scription proposed by Hotta9 and the overlap integrals calcu-
lated by Mori et al.,10 we may estimate t1=36 meV, t1�
=−86 meV, t2=−24 meV, t2�=−77 meV, and tnnn
=−60 meV. These values yield a pair of Dirac points at qD

� � � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � � �
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� � � � � � � � � � � � �
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� � � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � � �
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� � � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � � �
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a

FIG. 5. Anisotropic triangular lattice model with four different
nn hopping energies, t1 , t1� , t2, and t2�, and the nnn hopping energy
tnnn �dashed lines�. The unit cell with two inequivalent sites is rep-
resented by the shaded region. The sites of the A and B sublattices
are depicted as filled and open circles, respectively.

TILTED ANISOTROPIC DIRAC CONES IN QUINOID-… PHYSICAL REVIEW B 78, 045415 �2008�

045415-7



and −qD, with qD= �2.52,−3.08�, in units of the inverse lat-
tice constant, which is on the order of 10 Å.10,11,26 With the
help of Eq. �28�, one thus obtains the effective velocities
v1

x =−0.035 eV Å, v1
y =0.315 eV Å, v2

x =−0.222 eV Å, v2
y

=−2.121 eV Å, v0x=0, and v0y =0.074 eV Å. One notices a
variation by almost 2 orders of magnitude, and one may
therefore expect rather large anisotropies.

The effective velocities in the minimal model are calcu-
lated with the help of Eq. �A3�, and one finds a rotation angle
of �=0.102 and the velocities wx=2.14 eV Å, wy
=0.22 eV Å, w0x=−0.0075 eV Å, and w0y =0.736 eV Å.
The average Fermi velocity is therefore �wxwy =0.69 eV Å,
which is roughly 1 order of magnitude smaller than that in
graphene. Tilt parameter �12� is

w̃0 = 0.33

and is thus much larger than in the case of a quinoid-type
deformation of a graphene sheet. The tilt therefore leads to a
reduction in the average Fermi velocity, and one finds from
Eq. �25� a renormalized velocity of

vF
� � 0.92�wxwy � 0.63 eV Å.

The renormalized Fermi velocity allows one to extract the
typical energy scale for the Landau levels in
�-�BEDT-TTF�2I3. One then finds from Eq. �14� 	
,n
=
�C

� �n, with a characteristic “cyclotron” frequency of

�C
� = �2

vF
�

lB
� 3.4�B�T� meV, �29�

which is, due to the smaller Fermi velocity, roughly 1 order
of magnitude smaller than that in graphene. However, this
energy scale is comparable to the cyclotron frequency in
GaAs heterostructures ��C�1.6B�T� meV�, which are most
commonly used in the study of quantum Hall physics.27 One
may therefore expect that a relativistic quantum Hall effect1,2

could principally also occur in �-�BEDT-TTF�2I3 if disorder
does not prevent LL formation.

Experimentally, thin �BEDT-TTF�2I3 films have already
been synthesized.28 Alternatively, one may hope that the ex-
foliation technique,29 which has proven to be particularly
successful in the fabrication of single-layer graphene sheets,
also yields reasonably thin �-�BEDT-TTF�2I3 samples.
However, �BEDT-TTF�2I3 crystals are generally of lower
mechanical stability than carbon crystals, due to the rela-
tively large lattice constants and the reduced binding ener-
gies.

Apart from a direct measurement of a quantum Hall effect
in �-�BEDT-TTF�2I3 compounds, one may probe the system
via transmission spectroscopy in a magnetic field. This
would allow for a direct measurement of the cyclotron
frequency and for a check of the relativistic character of
electrons in �-�BEDT-TTF�2I3. Transmission spectroscopy
has indeed been successfully applied to epitaxial30 and
exfoliated31 graphene and yields a �B��n+1��n� scaling of
the transmission lines, as expected for the relativistic quan-
tum Hall effect in graphene.

V. CONCLUSIONS

In conclusion, we have investigated tilted Dirac cones
in deformed graphene and the organic 2D material
�-�BEDT-TTF�2I3. The low-energy electronic properties are
described by a generalized Weyl Hamiltonian, which may in
both physical systems be derived from a tight-binding model
on a lattice with two inequivalent sites. Whereas the presence
of pairs of Dirac points is due to nn hopping, which couples
neighboring sites on inequivalent sublattices, the tilt of the
Dirac cones arises from nnn hopping if the Dirac points are
shifted away from the points of high crystallographic sym-
metry in the first Brillouin zone.

In the presence of a strong magnetic field, a semiclassical
analysis yields the same structure of relativistic LLs as in
nondeformed graphene, but with a renormalized effective
Fermi velocity due to the tilt and the anisotropy of the Dirac
cones. Whereas this effect is expected to be small in a
quinoid-type deformation of the graphene, our estimates of
the effective velocities for �-�BEDT-TTF�2I3 indicate that
the tilt yields a significant reduction in the effective Fermi
velocity, which determines the LL spacing. The largest spac-
ing of the 0→ +1 and −1→0 LL transitions is on the order
of 3.4�B�T� meV, which is on the order of the �equidistant�
LL spacing in GaAs heterostructures most commonly used in
quantum-Hall-effect measurements. Such measurements in
�-�BEDT-TTF�2I3, as well as LL spectroscopy, may be a
possible experimental verification of the yet weakly corrobo-
rated presence of Dirac cones in �-�BEDT-TTF�2I3.
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APPENDIX A: DERIVATION OF THE MINIMAL
WEYL HAMILTONIAN

In order to reduce the number of effective parameters in
Weyl Hamiltonian �2�, one rotates the 2D reference system in
the physical space,

kx = cos �qx + sin �qy ,

ky = − sin �qx + cos �qy ,

accompanied by a unitary transformation in the SU�2� space,

U��� = cos
�

2
1 + i sin

�

2
�z,

which leaves the three-quantization axis invariant and de-
scribes a rotation in the xy plane in the SU�2� spin space,

�1 = cos ��x + sin ��y , �A1�

�2 = − sin ��x + cos ��y . �A2�

If one chooses
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tan � =
v1

x sin � + v1
y cos �

v2
x sin � + v2

y cos �

and

tan 2� = −
2�v1

xv1
y + v2

xv2
y�

�v1
x�2 + �v2

x�2 − �v1
y�2 − �v2

y�2 = −
2v�x · v�y

�v�x�2 − �v�y�2
,

one obtains the minimal Weyl Hamiltonian �Eq. �3��. In
terms of the original velocities, the minimal set of effective
parameters �the velocities w0= �w0x ,w0y�, wx, and wy� reads

w0x = v0
x cos � − v0

y sin �, w0y = v0
x sin � + v0

y cos � ,

wx
2 =

�v1
x�2 + �v2

x�2 + �v1
y�2 + �v2

y�2

2

+���v1
x�2 + �v2

x�2 − �v1
y�2 − �v2

y�2

2
�2

+ �v1
xv1

y + v2
xv2

y�2,

wy
2 =

�v1
x�2 + �v2

x�2 + �v1
y�2 + �v2

y�2

2

−���v1
x�2 + �v2

x�2 − �v1
y�2 − �v2

y�2

2
�2

+ �v1
xv1

y + v2
xv2

y�2.

�A3�

APPENDIX B: TRANSFORMATION OF THE WEYL
HAMILTONIAN UNDER SPACE INVERSION

The ingredients which intervene in Peierls substitution
�9�, q→−i� +eA�r�, are vectors, which transform as V→
−V under space inversion. Because of this transformation
property and because generalized Weyl Hamiltonian �1� is
linear in the momentum, we have

HB�r,�� = − HB�− r,− �� , �B1�

in space representation, where HB is given in Eq. �11�. We
now consider a solution of the Schrödinger equation,

HB�r,���	�r� = 	�	�r� ,

of energy 	. Due to property �B1� under space inversion, one
finds that

HB�r,���	�− r� = − HB�− r,− ���	�− r� = − 	�	�− r� .

�B2�

This means that �	�−r� is a solution of the Schrödinger equa-
tion with energy −	, and to each energy 	 in the upper-energy
band there exists one at −	 in the lower one. The resulting

Landau-level energy spectrum is, therefore, symmetric
around zero energy.

Note, however, that this argument is valid only for the
generalized Weyl Hamiltonian if one neglects the underlying
lattice model for which the Weyl Hamiltonian describes the
low-energy properties. As mentioned in the text, Dirac points
occur in pairs at nonzero wave vectors, and one thus obtains
a twofold valley degeneracy �=�1. In this case, there is a
relative minus sign between the two copies of the Weyl
Hamiltonian �HB. Space inversion, therefore, becomes an ex-
act symmetry of the model and involves both valleys.

APPENDIX C: ZERO-ENERGY LANDAU LEVEL
FOR THE CASE WITH TILT

In this appendix, we show that there exists a zero-energy
mode for the Hamiltonian HB in Eq. �11�. We may represent
the ladder operators a and a† as

aei� = �x + x, a†e−i� = − �x + x ,

which act on states described as functions of the real variable
x. The latter is not necessarily identical to the x variable in
the plane, but it should rather be viewed as an auxiliary
variable that allows for a formal solution of the zero-energy
problem.

Hamiltonian �11�, thus, reads

HB =
�2wxwy

lB
� w̃0x �x + �x�e−i�

�x − �x�ei� w̃0x
	 , �C1�

and we may search the solutions of the zero-energy eigen-
value equation, HB�0�x�=0, with the ansatz

�0�x� = ��
 
	e−�x2/2.

This yields the system of linear equations

w̃0� + e−i��1 − �� = 0,

ei��1 + ��� + w̃0 = 0,

which has a nonzero solution if we choose

� = �1 − w̃0
2. �C2�

Thus,

� = −
w̃0e−i�

1 + �
 .

Note that we obtain only bound states, i.e., states that decay
at large values of x, for w̃0�1 ��!0 and real�, which cor-
responds to maximal-tilt condition �5�.

TILTED ANISOTROPIC DIRAC CONES IN QUINOID-… PHYSICAL REVIEW B 78, 045415 �2008�

045415-9



1 K. S. Novoselov, A. K. Geim, S. V. Morosov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature �London� 438, 197 �2005�.

2 Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature �Lon-
don� 438, 201 �2005�.

3 For a recent review, see A. H. Castro Neto, F. Guinea, N. M. R.
Peres, K. S. Novoselov, and A. K. Geim, arXiv:0709.1163, Rev.
Mod. Phys. �to be published�.

4 S. Katayama, A. Kobayashi, and Y. Suzumura, J. Phys. Soc. Jpn.
75, 054705 �2006�.

5 A. Kobayashi, S. Katayama, Y. Suzumura, and H. Fukuyama, J.
Phys. Soc. Jpn. 76, 034711 �2007�.

6 H. Fukuyama, J. Phys. Soc. Jpn. 76, 043711 �2007�.
7 K. Kajita, T. Ojiro, H. Fujii, Y. Nishio, H. Kokayashi, A. Koba-

yashi, and R. Kato, J. Phys. Soc. Jpn. 61, 23 �1992�.
8 N. Tajima, S. Sugawara, M. Tamura, Y. Nishio, and K. Kajita, J.

Phys. Soc. Jpn. 75, 051010 �2006�.
9 C. Hotta, J. Phys. Soc. Jpn. 72, 840 �2003�.

10 T. Mori, H. Mori, and S. Tanaka, Bull. Chem. Soc. Jpn. 72, 179
�1999�.

11 R. Kondo, S. Kagoshima, and J. Harada, Rev. Sci. Instrum. 76,
093902 �2005�.

12 L. Pauling, Proc. Natl. Acad. Sci. U.S.A. 56, 1646 �1966�.
13 S.-L. Zhu, B. Wang, and L.-M. Duan, Phys. Rev. Lett. 98,

260402 �2007�.
14 L. Onsager, Philos. Mag. 43, 1006 �1952�; I. M. Lifshitz and A.

M. Kosevich, Sov. Phys. JETP 2, 636 �1956�.
15 G. P. Mikitik and Yu. V. Sharlai, Phys. Rev. Lett. 82, 2147

�1999�.
16 P. Dietl, F. Piéchon, and G. Montambaux, Phys. Rev. Lett. 100,

236405 �2008�.
17 R. Saito, G. Dresselhaus, and M. Dresselhaus, Physical Proper-

ties of Carbon Nanotubes �Imperial College, London, 1998�.
18 R. O. Dillon, I. L. Spain, and J. W. McClure, J. Phys. Chem.

Solids 38, 635 �1977�.

19 W. A. Harrison, Phys. Rev. B 24, 5835 �1981�.
20 J.-C. Charlier, J.-P. Michenaud, X. Gonze, and J.-P. Vigneron,

Phys. Rev. B 44, 13237 �1991�.
21 J.-N. Fuchs, M. O. Goerbig, G. Montambaux, and F. Piéchon

�unpublished�.
22 F. Guinea, A. H. Castro Neto, and N. M. R. Peres, Phys. Rev. B

73, 245426 �2006�.
23 L. Salem, Molecular Orbital Theory of Conjugated Systems

�Benjamin, New York, 1966�, pp. 141–143.
24 B. Reulet, A. Yu. Kasumov, M. Kociak, R. Deblock, I. I. Kho-

dos, Yu. B. Gorbatov, V. T. Volkov, C. Journet, and H. Bouchiat,
Phys. Rev. Lett. 85, 2829 �2000�.

25 M. Huang, H. Yan, D. Song, C. Chen, T. Heinz, and J. Hone,
March Meeting 2008, abstract p29.00009, Bulletin of the APS,
Vol. 52, No. 2, �2008�.

26 S. Söderholm, P. R. Varekamp, and D. Schweitzer, Phys. Rev. B
52, 9629 �1995�.

27 For a review, see, e.g., Perspectives in Quantum Hall Effects,
edited by S. Das Sarma and A. Pinczuk �Wiley, New York,
1997�.

28 E. E. Laukhina, V. A. Merzhanov, S. I. Pesotskii, A. G.
Khomenko, E. B. Yagnbskii, J. Ulanski, M. Kryszewski, and J.
K. Jeszka, Synth. Met. 70, 797 �1995�.

29 K. S. Novoselov, D. Jiang, T. Booth, V. V. Khotkevich, S. M.
Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102,
10451 �2005�.

30 M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W.
A. de Heer Phys. Rev. Lett. 97, 266405 �2006�; For corrections
to the �Bn scaling at larger energies, see P. Plochocka, C.
Faugeras, M. Orlita, M. L. Sadowski, G. Martinez, M. Potemski,
M. O. Goerbig, J.-N. Fuchs, C. Berger, and W. A. de Heer, ibid.
100, 087401 �2008�.

31 Z. Jiang, E. A. Henriksen, L. C. Tung, Y.-J. Wang, M. E.
Schwartz, M. Y. Han, P. Kim, and H. L. Stormer, Phys. Rev.
Lett. 98, 197403 �2007�.

GOERBIG et al. PHYSICAL REVIEW B 78, 045415 �2008�

045415-10


