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Optical forces near a plasmonic nanostructure
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We present a rigourous theory for the calculation of the optical trapping force exerted on a particle placed
near an externally illuminated periodic monolayer of spheres. The electromagnetic-field incident on the particle
is calculated by taking into account all the multiple-scattering processes taking place within the monolayer.
Having calculated the incident and scattered electromagnetic fields from the particle, we integrate the corre-
sponding Maxwell stress tensor over the surface of the body in order to find the exerted optical force. For a
complete treatment of the optical trapping problem, we also calculate the van der Waals—Casimir force exerted
on the particle from the monolayer, namely, we calculate the cross-spectral correlation functions of the vacuum
electromagnetic-field fluctuations by means of the fluctuation-dissipation theorem and a multiple-scattering
Green'’s tensor formalism. Having calculated the fluctuating electromagnetic fields entering the Maxwell stress
tensor, we obtain the van der Waals—Casimir force. The formalism is applied to the case of a small dielectric
particle placed in proximity to an illuminated monolayer of close-packed metallic nanospheres in various
transmission geometries. It is found that, under strong laser intensities, the optical force can trap the particle

near the plane of the spheres due to the gradient of the optical near field.

DOLI: 10.1103/PhysRevB.78.045412

I. INTRODUCTION

Since the first demonstration of trapping of neutral par-
ticles by optical means!? and, especially, by the optical
tweezing technique,>™ there has been a wide application of
the optical forces in atomic physics, biology, and chemistry.®
A focused beam, such as those used in the optical tweezing
technique, exerts a gradient force on a particle toward the
focal point allowing for the transfer of the particle to a pre-
scribed location. Apart from a focused beam, optical manipu-
lation of particles takes place by other gradient fields such as
a standing wave formed by two counter-propagating beams’
or an exponentially decaying near field close to a planar
surface.3-1° In the presence of many particles, a gradient field
may even induce the formation of ordered arrays''-'® or
stabilize/dismantle colloidal structures.'® The use of complex
beams such as Bessel,”® Laguerre-Gaussian,>! and helical
Laguerre-Gaussian beams?? (as well as beams created by
programmable holograms),?3-2® enable (in principle) the re-
alization of tailor made two-dimensional (2D) and three-
dimensional (3D) optical potential landscapes.

Another route for creating optical traps for neutral par-
ticles is to make use of the large gradient (near) fields gen-
erated by the scattering of light on microstructured surfaces”’
and photonic-crystal based structures.”®3° The advantage of
these optical potential landscapes over the holographic ones
lies in the ability to trap large numbers of particles. The
optical forces exerted on the trapped particles can be further
strengthened by tuning the frequency of incident light with
possible inherent resonances of the trapped particles’! such
as surface plasmons.’?3

Based on this context, we study the optical forces exerted
on a nanoparticle near a plasmonic nanostructure, namely,
near a monolayer of close-packed plasmonic (metallic) nano-
spheres. This nanostructure can induce strong optical forces
on a neighboring neutral test particle due to the near-field
landscape generated by light incident on the monolayer. Un-
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der suitable laser power and frequency, the optical forces can
overcome the van der Waals—Casimir (VDWC) forces and
the thermal noise, leading to local confinement of the par-
ticle. Under plane-wave illumination, the electromagnetic
(EM) field reaching the test particle is calculated by the
layer-multiple-scattering (LMS) method.3* The correspond-
ing EM force is obtained by integrating the Maxwell stress
tensor over the surface of the test particle. The calculated
optical forces are compared against the VDWC forces ex-
erted on the test particle from the nanostructure. These forces
are calculated by a fluctuational electrodynamics multiple-
scattering approach for macroscopic bodies. The paper is or-
ganized as follows: Sec. II presents the theory for the calcu-
lation of the optical force acting on small test particle in the
vicinity of a nanostructure. Sec. III briefly presents the
theory for the calculation of the VDWC force. Sec. IV pre-
sents the results for the optical and VDWC force acting on
small dielectric sphere near a monolayer of plasmonic nano-
spheres and Sec. V concludes the paper.

II. OPTICAL FORCE
A. Scattering by a single scatterer

In this subsection we present a brief summary of the so-
lution to the problem of EM scattering from a single sphere
(Mie scattering theory*>-36). We consider a sphere of radius S,
with its center at the origin of coordinates, and we assume
that its electric permittivity €, and/or magnetic permeability
g are different from those, €, and w, of the surrounding
homogeneous medium. We also consider a harmonic EM
wave of angular frequency w, which is described by its
electric-field component,

E'(r,7) = Re[E(r)exp(—iwr)], (1)
where

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.78.045412

VASSILIOS YANNOPAPAS

E’(r) =E(q)exp(iq - r). (2)

If the above wave is incident on the sphere, it is convenient
to express it as a sum of vector spherical waves which are
incident on the sphere,®

© ! .
1
Eo(r) = E 2 {a?ﬂm,h(qr)xlm(f) + aglmc_l v

=1 m=-1

X [iz(qr)sz(f)]}, 3)

where g=1'e,u, 0/ c. X,,(F) are the so-called vector spherical
harmonics® and j; are the spherical Bessel functions. The
corresponding magnetic field can be readily obtained from
E’(r) using Maxwell equations.?® The expansion coefficients
a%,, (P=E,H) are given elsewhere.’

The wave of Eq. (3) will be scattered off the sphere and
the scattered electric field is provided by

o0 1 .
R 1
E+(I') = 2 2 {azlmhr(qr)xlm(r) + azlm; V

=1 m=-1

X [hf(qr)le(f)]}, (4)

where h; are the spherical Hankel functions.

By applying the requirement that the tangential compo-
nents of E and H be continuous at the surface of the scat-
terer, we obtain a relation between the expansion coefficients
of the incident and the scattered field as follows:

+ 0
Apim = 2 Tle;P’I’m’aP/l/m/a (5)
P'l'm’

where Tpj,,.pr;1,, are the elements of the so-called scattering
transition 7 matrix.’® Eq. (5) is valid for any shape of scat-
terer; for spherically symmetric scatterers, each spherical
wave scatters independently from all others, which leads to a
transition 7" matrix, which does not depend on m and is di-
agonal in [, i.e., Tpyy.pry1m' =T ppyuOpim:pry - Analytic expres-
sions are given elsewhere.3¢

B. Maxwell stress tensor and EM force

The time-averaged electromagnetic force acting on a
sphere when an incident plane wave [such as that of Eq. (1)]
impinges on the sphere, is given by the integral of the Max-
well stress tensor over the surface A of the sphere,

(F)= 2 <Tij>tnde7 (6)
A j

where (..), denotes the time average, n is the normal vector at
the surface surrounding the object, and i,j=x,y,z. The com-
ponents of the Maxwell stress tensor (7};), are given by
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(T = eneol E[x, ) E(x, 1)), + pppolH,(x, 1) H (x, 1)),

1
= 20| @€ (Ex (6,0 E; (x,0),

+ MhM()E <Hi/(rvt)Hi’(r’t)>z s (7)

!
1

where &; is the Kronecker symbol, and €, and u, are the
electric permittivity and magnetic permeability of vacuum,
respectively. The field appearing in Eq. (7) is the total field
outside the sphere, i.e., the sum of the incident and scattered
fields: E(r)=E°"(r)=E%r)+E*(r), where E%(r) and E*(r)
are given by Egs. (3) and (4), respectively. By substituting
Egs. (3) and (4) into Eq. (7) and by performing the surface
integration analytically, we obtain a final formula for the EM
force. Explicit relations for the EM force can be found
elsewhere 3738

C. EM field near a plane of spheres

Let us consider a sphere placed at a distance 4 from the
right side of a monolayer (plane) of spheres. We assume that
the sphere is small enough so that it would not disturb sig-
nificantly the EM field near the plane of spheres when the
latter is illuminated by a plane wave. We consider that the
plane of spheres is placed at z=0 and the spheres are cen-
tered on the sites R, of a given 2D lattice. We define the 2D
reciprocal vectors as g, and the surface Brillouin zone (SBZ)
corresponding to this lattice in the usual manner.>*

Let the plane wave, described by Eq. (2), be incident on
this plane of spheres. We can always write the component of
its wave vector parallel to the plane of spheres as follows:

q=k+g’, (8)

where the (reduced) wave vector k; lies in the SBZ and g’ is
a certain reciprocal-lattice vector. We write the wave vector
of a plane wave of given wave number g=1\uew/c and given
q,=k;+g as follows:

K, ={k+g, = [¢" - (k+g)]"%, )

where the + and — sign define the sign of the z component of
the wave vector. We note that when ¢ < (k;+g)?, the above
defines a decaying wave; the positive sign in Eq. (9) de-
scribes a wave propagating or decaying to the right and the
negative sign describes a wave propagating or decaying to
the left.

We write the electric field of the incident wave in the
form,

2
E}, () = 2 [Ely exp(K;, - 1)é, (10)

i'=1
where s'=+(-) corresponds to a propagating or decaying
wave incident on the plane of spheres from the left (right),
and €, and é, are the polar and azimuthal unit vectors, re-
spectively, which are perpendicular to K;,. In the same man-

ner [according to Eq. (9)] we define, for the given k; and ¢,
a wave vector K; and the corresponding €; for any g and s
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== In this way we can expand the electric-field component
of an EM wave into p- and s-polarized transverse plane
waves, i.e., polarized along €, and é,, respectively. We note
that, in the case of a decaying wave, the unit vectors €; and
€, are complex but they are still orthonormal (€;-€;=6;,i,j
=1,2).

When the plane wave of Eq. (10) is incident on the plane
from the left (s'=+), the EM field at the right side of the
plane is written as

2
Ei(r)=2 X [EJsexp(K; - 1)é, >0, (1)
i=l g

with

[Etr];i = [Ein];'iégg’ + [Esc]g[ = E Q;i;g',"[Ein];f," . (12)

The Q! matrix appearing in Eq. (12) is the transmission ma-
trix of the plane of spheres and along with other relevant
scattering matrices can be found in Ref. 34. In order to find
the EM force exerted on a small sphere placed at the right
side of the plane of spheres, the field of Eq. (12) must be
expressed as a sum of vector spherical waves incoming to the
sphere in the manner of Eq. (3). Then, the EM force is cal-
culated by means of Egs. (6) and (7).

III. VAN DER WAALS-CASIMIR FORCE

Recently, there has been significant theoretical effort in
developing methods for the calculation of the VDWC forces
between macroscopic bodies, which are based on rigorous
electrodynamic techniques.’*~*> Here, we present a relatively
simpler approach for the VDWC forces among a finite num-
ber of macroscopic spheres than that described in Ref. 39.
The VDWC forces for an array of spheres are calculated
similar to the optical forces, i.e., by means of Egs. (6) and (7)
for each sphere. However, for the case of the VDWC forces,
the EM field entering Eq. (7) is the vacuum zero-point fluc-
tuating field (for 7=0) or the thermal field (7# 0) emitted
from all spheres. The time correlation function
(E{r,t)E(r,1)), contained in Eq. (7) is calculated within the
framework of fluctuational electrodynamics,*** namely
from,*

(E{r,t)E(r,1)), = Re{fw d—wWiEjE(r,r;w)] . (13)
0 2m

The quantity WgE(r,r;w) is the cross-spectral correlation
function for the electric field. For a system at thermal equi-
librium, i.e., the scatterer, the surrounding medium, and its
neighboring scatterers at the same temperature 7, W;; is pro-
vided by the fluctuation-dissipation theorem,*

WiE(r.r0) = 4ouyuec® Im G (r,r; 0)fio

1
X\ 1+ ——, 14
exp(hw/kgT) — 1 (14)

where 7 is the reduced Planck constant, kz is the Boltzmann
constant, and Gf]-E(r,r’;w) is the component of the electro-
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dynamic Green’s tensor G;;, which provides the electric field
at r due to an electric dipole source at r’. The time correla-
tion function (H,(r,t)H (r,1)), for the magnetic field is simi-

lar to Eq. (13) with Wf;E substituted by

WgH(r,r;w) =4we,exc? Im G,?H(r,r;w)ﬁw

1
X[ 1T+————|. 15
exp(hw/kgT) — 1 (13)
The EM field in Eq. (13) stems from the fluctuating vacuum/
thermal fields emitted from all neighboring spheres (denoted
by the index n), i.e.,

N
Ei(rst) = 2 Ei(rmt)s (16)
n=1

where r,=r—R,. The time correlation function for the elec-
tric field of Eq. (13) for the case of N thermal sources is
written as

N N

<Ei(r’t)Ej(r’t)>r:<E 2 Ei(rn’t)Ej(rn”t)>l

n=1p'=
N

= 2 <Ei(rn3t)Ej(rmt)>t
n=1

+ 2 (Edr,0E (r,,0),  (17)

’
n#n

When the spheres are made from different materials, they
can be viewed as totally incoherent thermal sources. In this
case, the second term of Eq. (17) vanishes,

<Ei(rn7t)Ej(rn”t)>z = <Ei(rn7t)>t<Ei(rn”t)>z = 0’ (1 8)

since for the vacuum fluctuations the time-averaged field
vanishes, i.e., (E;(r,s,1)),=0. The same holds for the corre-
sponding time averages of the magnetic field H,(r,t). We
note that Eq. (18) can also be justified in the case where the
spheres are made from the same material for frequencies
away from resonant states such as the surface-plasmon states
in metals. In the latter case, the excitation of surface plas-
mons in each sphere could lead to a collective emission/
scattering from all spheres. However, when it comes to the
calculation of VDWC forces, an integral over frequency
spectrum is needed [see Eq. (13)] and, therefore, the fre-
quency regions, where the approximation of Eq. (18) is not
entirely justified, do not influence significantly the final re-
sult. Due to Eq. (18), Eq. (14) becomes

Wg-E(r,r;w) = dou,pocho

i
, N
+——————— [Im>, G5F(r, 1, ),

exp(hw/kgT) — 1] z § (Flai@)

(19)

where Gj'J?EE(r,,,rn;w) is the EM Green’s tensor for a single
sphere; explicit relations can be found elsewhere.*” We note
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(b) z

FIG. 1. (Color online) (a) Top view a monolayer of close-
packed spheres. (b) Side view of the monolayer and the test sphere.

that Eq. (19) is a far easier means to calculate WﬁE since it
only involves the calculation of the single sphere Green’s
tensor Gl‘] and not the full Green’s tensor G;;. The latter in-
cludes all the multiple-scattering processes in which the
vacuum/thermal field undergoes,47 which constitute an un-
necessary complication to our problem since the spheres are
considered incoherent.

A final note is done on the integral of Eq. (13). Due to the
analytic properties of the EM Green’s tensor, we can perform
the integral over the imaginary frequency axis rather than the
real frequency axis. The VDWC force spectrum for imagi-
nary frequencies is a much smoother function than the cor-
responding integrand for real frequencies.*>*8

IV. RESULTS

We consider a monolayer of close-packed plasmonic (me-
tallic) spheres, i.e., the underlying 2D lattice is hexagonal
[see Fig. 1(a)]. Recent advances in fabrication allow for the
realization of well defined ordered arrays of such
particles.*>* Since the spheres are in a close-packed ar-
rangement, nonlocal effects come into play.’'>? Therefore,
we have made use of a nonlocal dielectric function for the
metallic spheres, according to the hydrodynamic model.’*3
Namely, within the hydrodynamic model, the transverse e
and longitudinal €; dielectric functions are given by

2

efw)=1-—2 (20)
w(w+1y)
2
w
) = iy .

where w), is the bulk plasma frequency of the metal and vy is
the loss factor. 8= %v%, where v is the Fermi velocity of the
metal. Equation (20) is the ordinary Drude dielectric func-
tion, which is widely used to describe metals within the local
response approximation. We have chosen fiw,=8.99 eV and
fiy=0.07 eV, which are suitable parameters for gold
nanospheres.”> The Fermi velocity of gold is taken v

=1.39 cm/sec (Ref. 56). The radius of the plasma (gold)
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FIG. 2. (Color online) (a) Optical force exerted on a test poly-
styrene nanoparticle (,=2.56 and S,=0.05¢/w,) placed above the
center [r,=(0,0,/#)—point A of Fig. 1] of a plasmonic (gold, fw),
=8.99 eV, and fiy=0.07 eV) nanosphere belonging to a (hexago-
nal) monolayer of close-packed (S,,=0.5¢/w),) spheres at various
distances & from the center of the sphere. The monolayer is illumi-
nated by a normally incident plane wave of intensity /=5
% 10" W/m? polarized along the x axis, which coincides with the
direction of one of the 2D primitive vectors of the hexagonal lattice
of the monolayer. (b) Transmittance (T), reflectance (R), and absor-
bance (A) spectra of light incident normally on the monolayer of
spheres described above.

spheres is taken to be S, w,/c=0.5. In order to probe the
trapping features of the above plasmonic nanostructure, we
place a much smaller (compared to the metallic spheres of
the monolayer) dielectric (€,=2.56—polystyrene) sphere of
radius S,0,/c=0.05. The small size of this test sphere en-
sures the applicability of the theory of Sec. II, which does
not take into account the presence of the test sphere in the
calculation of the total EM field incident on this sphere. The
small size of the dielectric sphere as compared to the char-
acteristic length of the nanostructure renders the inclusion of
the light multiple-scattering processes between the sphere
and the nanostructure, an unnecessary complexity to our
problem. This physical picture is analogous to the case of
atom trapping within an optical lattice; there, the size of an
atom is much smaller than the characteristic scale of the
optical potential lattice.

Figure 2(a) shows the spectrum of the optical force acting
on the dielectric test sphere located exactly above the center
of a metallic nanosphere [point A of Fig. 1(a)] and for dif-
ferent values of the separation A [see Fig. 1(b)] from the
monolayer. The monolayer is illuminated from the left with a
normally incident plane wave of intensity [=5
%X 10'" W/m? and polarization parallel along the x axis,
which coincides with the direction of one of the 2D primitive
vectors of the hexagonal lattice of the monolayer. The sphere
is placed on the right side of the monolayer and, therefore,
the optical force is exerted from the transmitted wave [Egs.
(11) and (12)]. Figure 2(a) depicts the z component of the
force while the other components are zero due to symmetry.
Figure 2(b) depicts the transmittance, reflectance, and absor-
bance spectra of normally incident light on the nanostructure.
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FIG. 3. The same as Fig. 2(a) but for a different position of the
test sphere, i.e., r,=(S,,,0,h)—point B of Fig. 1.

By observing Fig. 2(a) we can infer that the optical force
acting on the test sphere is generated primarily by the gradi-
ent of the near-field optical landscape near the nanostructure
since the force decreases rapidly as the test particle moves
away from the nanostructure. Also, the force is attractive as
expected from the decaying nature of the near field away
from the nanostructure. Had the force been the result of ra-
diation pressure exerted by propagating waves, it would be
repulsive and independent of the distance i from the mono-
layer. We also observe that the optical force exhibits a main
dip at w/w,=0.65 and an accompanying structure up to
0/ w,<0.72. The force peak corresponds to a maximum of
the absorbance/reflectance curves.

For a relatively dilute monolayer of nontouching plas-
monic spheres of this size, the structure in the absorbance
curves is a result of the excitation of dipolar surfage plasma
modes at the spheres, occurring at w;/w,=1/y3~=0.577.
Namely, the surface plasmons of each sphere interact with
the corresponding modes of neighboring spheres in a tight-
binding fashion, resulting in a frequency band of states
within which light extinction (absorption and scattering) is
enhanced.’”® Higher multipolar surface plasmons occurring
around w;/w,=V1/(21+1), where [=1,2,3,---, can also be
excited leading to a secondary structure in the absorption
spectrum.>’>8 However, as the sphere size and/or the spheres
come closer (denser structure), higher multipolar surface
modes may dominate the absorbance spectrum. For the case
of a close-packed array (touching spheres) such as the one
considered here, the interaction among surface plasmons of
neighboring spheres is maximum, leading to large frequency
shifts and broadening of the various surface-plasmon bands;
the latter are formed away from the single sphere surface
plasmons as it is evident from Fig. 2(b). We note that, since
metal covers about 78.5% of the 2D space in a close-packed
arrangement of spheres, the optical response of such an array
can be alternatively described as that of a homogeneous
metal containing air holes (cavities) of nanometer scale.’>>°

Figure 3 is the same as Fig. 2 but for the point B of Fig.
1(a) (due to symmetry, the x and y components are again
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FIG. 4. Spectra of the y and z components of the optical force
exerted on the test polystyrene nanoparticle when the latter is lo-
cated at r,=(S,,,3/6,h)—point C of Fig. 1.

zero). At this point, the sphere lies above the touching point
of two spheres, at a distance 4 from the layer. We observe
that the absolute value of the optical force assumes at least
three times smaller values with respect to Fig. 2(a). The main
force minimum lies, again, at w/wp=0.65. For frequencies
o/ w,>0.7 the force becomes repulsive and practically inde-
pendent of the distance /. This means that the main contri-
bution to the optical force for w/w,>0.7 comes from the
radiation pressure rather than from the gradient of the near-
field intensity. One also observes additional dips at w/w),
~0.49 and at w/w,~0.58, which are not present in Fig.
2(a). These peaks correspond, more or less, to peaks of the
absorbance spectrum in Fig. 2(b). This might be an evidence
that the absorption process takes place primarily in the space
among the spheres. Similar features are evident for the opti-
cal force corresponding to point C of Fig. 1(a) (Fig. 4). For
symmetry reasons, the x component for point C is zero for
this point. We also note that the optical force assumes
smaller values than in Figs. 2 and 3.

Next, we examine the possibility of trapping the test par-
ticle with optical means. Therefore, we choose to study the
spatial dependence of the optical force for a particular fre-
quency, namely for w/w,=0.65. The latter frequency corre-
sponds to the main dip of the force spectra of Figs. 2—4.
However, for a comprehensive treatment of the problem, we
need to take into account the VDWC forces acting on the test
sphere from the plasmonic nanospheres of the monolayer. By
applying the formalism of Sec. III, we have calculated the
VDWC force between a single plasmonic nanoparticle of the
monolayer and the test polystyrene sphere, as a function of
their center-to-center distance (see Fig. 5). We note that, ac-
cording to Eq. (13) (a similar equation is obeyed by the
magnetic field), we need to integrate the corresponding
cross-spectral correlation functions Wf;P , where P=E,H over
the positive-frequency spectrum. As a result, for the polysty-
rene nanosphere, we have made use of an experimentally
obtained dielectric function,*® which is generally frequency
dependent (it contains contributions from the UV region). As
it is evident from Fig. 5, the VDWC force is attractive and it
decays very rapidly with distance (the power exponent is
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FIG. 5. (Color online) VDWC force between a plasmonic (gold,
hw,=8.99 eV, Ay=0.07 eV, and S,=0.5¢/w,) and polystyrene
nanosphere (e, given by Ref. 48 and §,=0.05¢/ w),).

around 9.6). Due to this rapid decrease, in order to obtain the
total VDWC acting on the polystyrene test sphere from the
monolayer of spheres, the contributions from neighboring
spheres are vectorially added in a pairwise fashion.

Figure 6 shows the optical and VDWC forces along the
line D of Fig. 1(a), for different distances /& from the mono-
layer. As stated above, the optical force is calculated for fre-
quency o/ w,=0.65. The y component of both forces is zero.
It is evident that there exist several points where the forces
are zero. The optical force contains more roots along the
given line. However, at symmetric points within the unit cell
(center of a sphere or touching point between two spheres)
both forces become zero and the test particle can be trapped
within a plane parallel to the monolayer (transverse trap-
ping). For more intense laser beams, the optical force can
render the VDWC force negligible and the particle can po-

0

/Wm vy

0 P

w

F_(fN)
F (fN)

e b A o e v dbebtorvusnb bbb O s @

xw /¢ X /¢
P P

FIG. 6. Optical (solid lines) and VDWC (broken lines) forces
exerted on a polystyrene nanoparticle near a monolayer of plas-
monic spheres along the direction r,=(x,0,h) with -2S,=x
=28, [line D of Fig. 1(a)] and different distances from the mono-
layer: [(a) and (d)] 2=0.6¢/ w,, [(b) and ()] 2=0.65¢/ w,, and [(c)
and (f)] h=0.7¢/ w,. The left figures depict the x component while
the right ones depict the z component.
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FIG. 7. (Color online) Magnitude of the parallel component of
(a) the optical force, (b) the VDWC force, and (c) the total
(optical+ VDWC) force within the area —25,,<x,y<2S,, at a dis-
tance h=0.6c/ w, from the plane of spheres.

tentially be trapped at all of the zeroes of the optical force.
However, for the given laser intensity, the VDWC is compa-
rable to the optical force. Figures 6(d)-6(f) depict the z com-
ponent of both forces. It is evident that both force compo-
nents are attractive and, therefore, cannot offer vertical
trapping of the particle. However, for distances smaller than
1 nm, the atomic structure of the spheres becomes evident
and a more accurate description of the VDWC interaction
possibly requires a microscopic treatment, which accounts
for Born repulsive forces stemming from exchange and elec-
trostatic interactions.%” The latter forces have to be taken into
account to estimate the equilibrium z distance from the
monolayer. Furthermore, a microscopic treatment of the
VDWOC interaction would also take into account surface phe-
nomena such as charge redistribution and surface reconstruc-
tion, which become significant for very small separations.
Figure 7 depicts the magnitude of the transverse compo-
nent of the (a) optical, (b) VDWC, and (c) total (optical
+VDWC) force within the xy plane at a distance &
=0.6c/ w, from the monolayer. We observe that the optical
force exhibits a much more complicated landscape than the
VDWC force. It is also evident that optical force contains
more zeroes (trapping points), which can be located at non-
symmetric points as well. This is due to the fact that the
optical force depends on the polarization vector of the inci-
dent plane wave. The VDWC force becomes zero at the

045412-6



OPTICAL FORCES NEAR A PLASMONIC NANOSTRUCTURE

4 ()

fan) 2 ‘\\\\,. ,’_V\T
% . o - .
= —— how /c=0.6
s 2Lk - P
1 N hwp/c=0.65
4 i - hwl/c:0.70
1 1 1 1 1 " 1I "
(]I)) T T T T T
08 TN T
I . RS R
o6k N —A

1o 15 20 25 30 35 40
Photon energy (eV)
FIG. 8. (Color online) The same as Fig. 2 but for an experimen-

tal dielectric function (Ref. 61) describing the optical response of
the gold nanospheres.

sphere centers and at points in the space among the spheres
of the monolayer. However, for the given laser intensity, the
VDWOC force does not seem to affect dramatically the trap-
ping points, since the total force landscape does not seem to
differ significantly from that of the pure optical force.

The results presented until now are for a monolayer of
gold nanospheres described by a Drude-type dielectric func-
tion. It is well known that this type of dielectric function
takes into account only the free-electron excitations (plas-
mons) of a metal, neglecting other important contributions
such as the interband transitions. However, since there are no
analytic nonlocal dielectric functions beyond the Drude-type
one, the above contributions have not been considered in the
results presented so far. In order to study the effect of inter-
band transitions, we have recalculated Fig. 2 for gold spheres
whose dielectric function is taken from experiment (see Fig.
8).%! Note that, although the contribution of the interband
transitions is included in an experimental dielectric function,
the latter is still an approximation to our problem since a
local dielectric function is being used and the close-packed
arrangement of spheres requires a nonlocal one.>> From Fig.
8 it is evident that the optical force is, again, significant
around the (dipolar) surface-plasmon resonant band mani-
fested as a peak in the reflectance curve. Naturally, the force
is attractive due to the dominant role of the decaying near-
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field components of the scattered EM field. As the distance
from the monolayer of spheres increases, the contribution of
the near field diminishes in favor of the far field (propagating
components, which result in a repulsive force), leading to a
narrower spectrum of attractive force. The fine structure ap-
pearing in all spectra of Fig. 2 and stems from higher multi-
pole surface plasmons is evidently lost within the absorption
tail of the interband transitions.%> The optical force of Fig. 8
assumes much smaller values than the corresponding one of
Fig. 2. This implies that a higher radiation intensity is needed
(than that assumed in Figs. 2 and 8) in order to overcome the
VDWC forces. However, this may be only approximately
correct due to the local nature of the experimental dielectric
function used in Fig. 8.

Finally, we address briefly the issue of the thermal motion
of the test particle. We know that for stable optical confine-
ment of the particle, the optical potential trap should be deep
enough to prevent escape of the particle due to its thermal
motion. If we estimate the energy needed for a particle to
escape from the optical trap reported here, as the area (work)
below the force curve between two consecutive zeroes (see
Fig. 6), then this is of the order of one thousandth of the
thermal energy kzT. Therefore, for an experimental demon-
stration of the optical trapping, low temperatures or higher
laser intensities are prerequisites.

V. CONCLUSIONS

We have presented a formalism for the calculation of the
optical forces acting on particle placed next to an illuminated
plane of plasmonic nanospheres. The formalism is based on
exact accounting of the multiple-scattering of the EM field
within the plane of spheres and application of the Maxwell
stress tensor for the determination of the optical force on the
particle. The optical force is strong within frequency bands
corresponding to surface-plasmon excitations of the plas-
monic spheres. Within these frequency bands, the optical
force stems from the gradient of the optical near field gener-
ated by the scattering of incident light on the nanostructure.
Along with the optical force, we have calculated the VDWC
force exerted on the test particle from the plane of spheres.
For high enough laser intensities, the optical forces become
comparable to the VDWC leading to the trapping of the par-
ticle in a plane parallel to the monolayer of spheres. How-
ever, much higher intensities are needed to overcome the
thermal motion of the particle.
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