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We study the effects of site dilution disorder on the electronic properties in graphene multilayers, in par-
ticular the bilayer and the infinite stack. The simplicity of the model allows for an easy implementation of the
coherent-potential approximation and some analytical results. Within the model we compute the self-energies,
the density of states, and the spectral functions. Moreover, we obtain the frequency and temperature depen-
dence of the conductivity as well as the dc conductivity. The c-axis response is unconventional in the sense that
impurities increase the response for low enough doping. We also study the problem of impurities in the biased
graphene bilayer.
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I. INTRODUCTION

The isolation of single layer graphene by Novoselov et
al.1 has generated enormous interest in the physics commu-
nity. On the one hand, the electronic excitations of graphene
can be described by the two-dimensional �2D� Dirac equa-
tion, creating connections with certain theories in particle
physics.2 Moreover, the “relativistic” nature of the quasipar-
ticles, albeit with a speed of propagation, vF, 300 times
smaller than the speed of light, leads to unusual spectro-
scopic, transport, and thermodynamic properties that are at
odds with the standard Landau-Fermi-liquid theory of
metals.3 On the other hand, graphene opens the doors for an
all-carbon based microelectronics.4

Due to the strong nature of the � bonds in graphene and
strong mechanical stability of the graphene lattice, miniatur-
ization can be obtained at sizes of order of a few nanometers,
beyond what can obtained with the current silicon technol-
ogy �the smallest size being of the order of the benzene mol-
ecule�. Furthermore, the same stability allows for creation of
entire devices �transistors, wires, and contacts� carved out of
the same graphene sheet, reducing tremendously the energy
loss, and hence heating created by contacts between different
materials.5 Early proposals for the control of the electronic
properties in graphene, such as the opening of gaps, were
based on controlling its geometry either by reducing it to
nanoribbons6 or producing graphene quantum dots.7 Never-
theless, current lithographic techniques that can produce
such nanostructures do not have enough accuracy to cut
graphene to angstrom precision. As a result, graphene nano-
structures unavoidably have rough edges which have strong
effects in the transport properties of nanoribbons.8 In addi-
tion, the small size of these structures can lead to strong
enhancement of the Coulomb interaction between electrons
which, allied to the disorder at the edge of the nanostruc-
tures, can lead to Coulomb blockade effects easily observ-
able in transport and spectroscopy.9

Hence, the control of electronic gaps by finite geometry is
still very unreliable at this point in time and one should look
for control in bulk systems which are insensitive to edge

disorder. Fortunately, graphene is an extremely flexible ma-
terial from the electronic point of view and electronic gaps
can be controlled. This can be accomplished in a graphene
bilayer with an electric field applied perpendicular to the
plane. It was shown theoretically10,11 and demonstrated
experimentally12,13 that a graphene bilayer is the only mate-
rial with semiconducting properties that can be controlled by
electric-field effect. The size of the gap between conduction
and valence bands is proportional to the voltage drop be-
tween the two graphene planes and can be as large as 0.1–0.3
eV, allowing for terahertz devices12 and carbon-based quan-
tum dots14 and transistors.15

Nevertheless, just as single layer graphene,16 bilayer
graphene is also sensitive to the unavoidable disorder gener-
ated by the environment of the SiO2 substrate: adatoms, ion-
ized impurities, etc. Disorder generates a scattering rate �
and hence a characteristic energy scale � /� which is the or-
der of the Fermi energy EF=�vFkF �kF��n is the Fermi
momentum and n is the planar density of electrons� when the
chemical potential is close to the Dirac point �n→0�. Thus,
one expects disorder to have a strong effect in the physical
properties of graphene. Indeed, theoretical studies of the ef-
fect of disorder in unbiased17 and biased18 graphene bilayers
�and multilayer� show that disorder leads to strong modifica-
tions of its transport and spectroscopic properties. The under-
standing of the effects of disorder in this class of materials is
fundamental for any future technological applications. In this
context it is worth mentioning the transport theories based on
the Boltzmann equation,19,20 a study of weak localization in
bilayer graphene,21 and also corresponding further experi-
mental characterization.22,23 dc transport in few-layer
graphene systems has been studied in Ref. 24, both without
and in the presence of a magnetic field.

In this paper, we study the effects of site dilution �or
unitary scattering� on the electronic properties of graphene
multilayers within the well-known coherent-potential ap-
proximation �CPA�. Our choice of disorder potential has the
advantage that it allows for a simple analytical treatment. In
addition, because of the finite density of states �DOS� in
graphene bilayers and multilayers, even an external Coulomb
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potential becomes short range due to screening. While the
CPA does not take into account electron localization,25,26 it
does provide quantitative and qualitative information on the
effect of disorder in the electronic excitations. Furthermore,
this approximation allows for analytical results of electronic
self-energies, allowing us to compute physical quantities
such as spectral functions �measurable by angle-resolved
photoemission spectroscopy �ARPES� �Refs. 27–31�� and
density of states �measurable by scanning tunneling micros-
copy �STM� �Refs. 32–35��, besides standard transport prop-
erties such as the dc and ac conductivities.17 Furthermore, in
the case of the semi-infinite stack of graphene planes, we can
compute the c-axis response of the system which is rather
unusual since it increases with disorder at low electronic
densities, in agreement with early transport measurements in
graphite.36

The paper is organized as follows. In Sec. II we discuss
the band model of the graphene bilayer within the tight-
binding approximation. We also connect our notation with
the one established for graphite, namely, the Slonsczewki-
Weiss-McClure �SWM� parametrization. In Sec. III we intro-
duce several simplified band models and compare the elec-
tronic bands in different approximations. The Green’s
functions that we will use later on in the paper are given in
Sec. IV.

We employ a simplified model for the disordered
graphene bilayer in Sec. V and work out the consequences
on the single-particle properties encoded in the self-energies,
the DOS, and the spectral function. Section VI contains re-
sults for the graphene multilayer. In Sec. VII we introduce
the linear-response formulas that we use to calculate the
electronic and optical response. The results for the conduc-
tivities in the bilayer are presented in Sec. VIII, while those
for the multilayer can be found in Sec. IX.

The rest of the paper concerns the problem of impurities
in the biased graphene bilayer. The model of the system and
some of its basic properties are discussed in Sec. X. In Sec.
XI we solve the problem of a Dirac delta impurity exactly
within the effective-mass approximation. A simple estimate
of when the interaction among impurities becomes important
is presented in Sec. XII. We treat more general impurity
potentials with variational methods in Sec. XIII, and the spe-
cial case of a potential well with finite range is studied in
Sec. XIV. In Sec. XV we study the problem of a finite den-
sity of impurities in the CPA. The effects of trigonal distor-
tions on our results for the biased graphene bilayer are dis-
cussed briefly in Sec. XVI. Finally, the conclusions of the
paper are to be found in Sec. XVII. We have also included
four appendixes with technical details of the calculations of
the minimal conductivity in bilayer graphene �Appendix A�,
the DOS in multilayer graphene �Appendix B�, the conduc-
tivity kernels �Appendix C�, and the Green’s function in the
biased graphene bilayer �Appendix D�.

II. ELECTRONIC BANDS OF THE GRAPHENE BILAYER

Many of the special properties of the graphene bilayer
have their origin in its lattice structure that leads to the pe-
culiar band structure that we will discuss in detail in this

section. A simple way of arriving at the band structure of the
graphene bilayer is to use a tight-binding approximation. The
positions of the different atoms in the graphene bilayer are
shown in Fig. 1 together with our labeling convention.

The advantage of this notation is that one can discuss
collectively about the A �B� atoms that are equivalent in their
physical properties such as the weight of the wave functions,
the distribution of the density of states, etc. This notation was
used in early work on graphite.37,38 Many authors use instead

a notation similar to A1→A, B1→B, A2→ B̃, and B2→ Ã.
In this notation the relative orientation within the planes of

the A �Ã� and B �B̃� atoms is the same; but for the other
physical properties the equivalent atoms are instead A �B�
and B̃ �Ã�. Because the other physical properties are often
more relevant for the physics than the relative orientation of
the atoms within the planes, we choose to use the, in our
view, most “natural” labeling convention.

A. Monolayer graphene

Let us briefly review the tight-binding model of mono-
layer graphene.39 The band structure can be described in
terms of a triangular lattice with two atoms per unit cell. The
real-space lattice vectors can be taken to be a1= a

2 �3,�3� and
a2= a

2 �3,−�3�. Here a ��1.4 Å� denotes the nearest-
neighbor carbon distance. Three vectors that connect atoms
that are nearest neighbors are �1= a

2 �1,�3�, �2= a
2 �1,−�3�,

and �3=a�−1,0�; we take these to connect the A1 atoms to
the B1 atoms. In terms of the operators that create �annihi-
late� an electron on the lattice site at position Ri and lattice
site �j ��= �A ,B� denotes the atom sublattice and j �j=1�
denotes the plane�, c�j,Ri

† �c�j,Ri
�, the tight-binding Hamil-

tonian reads

Htb = t�
Ri

�
j=1–3

�cA1,Ri

† cB1,Ri+�j
+ H.c.� . �1�

Here t ��3 eV� is the energy associated with the hopping of
electrons between neighboring � orbitals. We define the
Fourier-transformed operators,

c�j,Ri
=

1
�N

�
k

eik·Ric�j,k, �2�

where N is the number of unit cells in the system. Through-
out this paper we use units such that �=kB=1 unless speci-
fied otherwise.

A1 B1

A2

B2

FIG. 1. �Color online� Lattice structure of the graphene bilayer.
The A �B� sublattices are indicated by the darker �lighter� spheres
and the planes are labeled by 1 and 2.
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Because of the sublattice structure it is often convenient
to describe the system in terms of a spinor, �k

†

= �cA1,k
† ,cB1,k

† �, in which case the Hamiltonian can be written
as

Htb = �
k
�k

†� 0 	�k�
	��k� 0

	�k, �3�

where

	�k� = t�
i

eik·�i = teikxa/2
2 cos� kya�3

2
	 + e−i3kxa/2� .

�4�

The reciprocal-lattice vectors can be taken to be b1

= 2�
3a �1,�3� and b2= 2�

3a �1,−�3� as is readily verified. The
center of the Brillouin zone �BZ� is denoted by 
, but for the
low-energy properties one can expand close to the K point
of the BZ, which has coordinates K= 4�

3�3a
�0,−1�. One

then finds 	�K+p���=vFpei�, where vF=3ta /2 and �
=−arctan�px / py�. Note that �=0 along the K−
 line of the
BZ and that it increases anticlockwise. With these approxi-
mations one finds that the spectrum of Eq. �3� is that of
massless 2D Dirac fermions: E�=�vFp.

B. Bilayer graphene

Since the system is two dimensions only the relative po-
sition of the atoms projected onto the x-y plane enters into
the model. The projected position of the different atoms is
shown in Fig. 2 together with the BZ. Since the A atoms are
sitting right on top of each other in the lattice, the hopping
terms between the A1 and A2 atoms are local in real space
and hence a constant that we denote by t� in momentum
space. Referring back to Sec. II A we note that the hopping
B1→A1 �A1→B1� gives rise to the factor 	�k� �	��k��, with
	�k� defined in Eq. �4�. Since the geometrical roles of the A
and B atoms are interchanged between plane 1 and plane 2,
we immediately find that in Fourier space the hopping A2
→B2 �B2→A2� gives rise to the factor 	�k� �	��k��. Fur-
thermore, the direction in the hopping B1→B2 �projected
onto the x-y plane� is opposite to that of hopping B1→A1.

Thus we associate a factor v3	
��k� to the hopping B1→B2,

where the factor v3=�3 /�0 is needed because the hopping
energy is �3 instead of �0= t. Similarly, the direction of hop-
ping B1→A2 �projected onto the x-y plane� is the same as
B1→A1 and therefore the term −v4	�k� goes with the hop-
ping B1→A2. The minus sign in front of v4=�4 /�0 follows
from the conventional definition of �4 in graphite that we
will discuss below �this is because we follow the convention
of Ref. 40 which has a minus sign in front of the �0 param-
eter compared to the convention used in most graphite pa-
pers; by a gauge transformation this minus sign can be ab-
sorbed into the sign of �4�. Continuing to fill in all the entries
of the matrix the full tight-binding Hamiltonian in the
graphene bilayer becomes

Htb�k� =
V/2 +  	 t� − v4	

�

	� V/2 − v4	
� v3	

t� − v4	 − V/2 +  	�

− v4	 v3	
� 	 − V/2

� , �5�

where the spinor is �k
† = �cA1,k

† ,cB1,k
† ,cA2,k

† ,cB2,k
† �. Here we

have also introduced the conventional �from graphite�  that
parametrizes the difference in energy between A and B at-
oms. In addition we included the parameter V which gives
different values of the potential energy in the two planes;
such a term is generally allowed by symmetry and is gener-
ated by an electric field that is perpendicular to the two lay-
ers. The system with V�0 is called the biased graphene
bilayer �BGB� and has a gap in the spectrum, in contrast the
spectrum is gapless if V=0.

It is also possible to include further hoppings into the
tight-binding picture; this was done for graphite by Johnson
and Dresselhaus.41 The inclusion of such terms is necessary
if one wants an accurate description of the bands throughout
the whole BZ. If we expand the expression in Eq. �5� close to
the K point in the BZ we obtain the matrix

H0�p� =
V/2 +  � t� − v4�

�

�� V/2 − v4�
� v3�

t� − v4� − V/2 +  ��

− v4� v3�
� � − V/2

� , �6�

where � was introduced after Eq. �4�.
The typical behavior of the bands obtained from Eq. �6� is

shown in Fig. 3. Two of the bands are moved away from the
Dirac point by an energy that is approximately given by the
interplane hopping term t� for V� t�. In the figure we have
taken V�0; but for V=0 there is no gap for the two bands
closest to zero energy �i.e., the Dirac point�.

C. SWM model

First we make the observation that the graphene bilayer in
the A-B stacking is just the unit cell of graphite that we
depict in Fig. 1. Therefore, if the two planes are equivalent
much of the symmetry analysis of graphite is also valid for
the graphene bilayer. Thus we could alternatively use the
SWM for graphite with the proper identification of the pa-
rameters. The SWM model for graphite37,38 is usually written
as

A1
A2

B2

B1 K

Γ

K’

M

FIG. 2. �Color online� The real-space lattice structure of the
graphene bilayer projected onto the x-y plane showing the relative
positions of the different sublattices. The upper right corner shows
the BZ of the graphene bilayer including the labeling of the high-
symmetry points.
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HSWM =
E1 0 H13 H13

�

0 E2 H23 − H23
�

H13
� H23

� E3 H33

H13 − H23 H33
� E3

� , �7�

where

E1 =  + �1
 +
1

2
�5


2, �8a�

E2 =  − �1
 +
1

2
�5


2, �8b�

E3 =
1

2
�2


2, �8c�

H13 =
1
�2

�− �0 + �4
�ei�	 , �8d�

H23 =
1
�2

��0 + �4
�ei�	 , �8e�

H33 = �3
ei�	 . �8f�

Here 	=3ak /2 and 
=2 cos�k�d�, with d�3.7 Å being the
interplane distance. Typical values of the parameters from
the graphite literature are shown in Table I.

It is straightforward to show that by identifying �1= t�

and taking �2=�5=0, 
=1, and V=0, the matrices in Eqs.
�6� and �7� are equivalent up to a unitary transformation.
Hence they give rise to identical eigenvalues and band struc-
tures. This completes the correspondence between the tight-

binding model and the SWM model �see also Refs. 40 and
41 for a discussion on the connection between the tight-
binding parameters and those of SWM.�

The accepted parameters from the graphite literature re-
sult in electrons near the K point �k�=0� and holes near the
H point �k�=� / �2d�� in the BZ, as sketched in Fig. 4. These
electron and hole pockets are mainly generated by the cou-
pling �2 that in the tight-binding model corresponds to a
hopping between the B atoms of next-nearest planes. Note
that this process involves a hopping of a distance as large as
�7 Å.

Finally, it is interesting to note that at the H point in the
BZ, 
=0, and therefore the two planes “decouple” at this
point. Furthermore, if one neglects  the spectrum is that of
massless Dirac fermions just like in the case of graphene.
Note that in graphite A and B atoms are different, however,
and that the term parametrized by , which breaks sublattice
symmetry in each plane, opens a gap in the spectrum leading
to massive Dirac fermions at the H point. Since the value of
 in the literature is quite small, the almost linear massless
behavior should be observed by experimental probes that are
not sensitive to this small energy scale.

The values of the parameters used in the graphite litera-
ture are consistent with a large number of experiments. The
most accurate ones are various magnetotransport measure-
ments discussed in Ref. 36. More recently, ARPES was used
to directly visualize the dispersion of massless Dirac quasi-
particles near the H point and massive quasiparticles near the
K point in the BZ.27,28,30

The band structure of graphite has been calculated and
recalculated many times over the years, a recent reference is
Ref. 43. It is also worth mentioning that because of the �rela-
tively� large contribution of the nonlocal van der Waals in-
teraction to the interaction between the layers in graphite, the
usual local-density approximation or semilocal-density ap-
proximation schemes are off by an order of magnitude when

TABLE I. Values of the SWM parameters for the band structure of graphite. The upper row from Ref. 36
and the lower row from Ref. 42.

�0 �1 �2 �3 �4 �5 �6= �F

3.16 0.39 −0.02 0.315 0.044 0.038 0.008 −0.024

3.12 0.377 −0.020 0.29 0.120 0.0125 0.004 −0.0206

-0.2 -0.1 0 0.1 0.2
-0.5

0

0.5

p (eV)

E
(e
V)

-0.2 -0.1 0 0.1 0.2
-0.5

0

0.5

p (eV)
E
(e
V)

FIG. 3. �Color online� Band dispersions near the K points in the
bilayer along the direction �=0, with V=50 meV and vF=1. Left:
bands obtained from the full model in Eq. �6� with t�=0.35 eV,
v3=0.1, and v4=0.05; right: bands obtained from the simplified
model in Eq. �10�.

H

H

K'

H'

H'
K

A1 B1

A2

B2

FIG. 4. �Color online� Left: graphite lattice; right: three-
dimensional BZ with the symmetry points K and H indicated. The
accepted parameters for graphite result in electron pockets near the
K points and hole pockets near the H points as sketched in the
figure.
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the binding energy of the planes is calculated and compared
with experiments. For a discussion of this topic and a pos-
sible remedy, see Ref. 44.

III. SIMPLIFIED ELECTRONIC BAND MODELS

In this section we introduce three simplified models that
we employ for most of the calculations in this paper. We also
show how to obtain an effective two-band model that is
sometimes useful.

A. Unbiased bilayer

For the unbiased bilayer, a minimal model includes only
the nearest-neighbor hopping energies within the planes and
the interplane hopping term between A atoms; this leads to a
Hamiltonian matrix of the form

HB�k� =
0 kei��k� t� 0

ke−i��k� 0 0 0

t� 0 0 ke−i��k�

0 0 kei��k� 0
� �9�

near the K point in the BZ. Here we write kx+ iky =kei��k�,
where k=�kx

2+ky
2 and ��k� is the appropriate angle. Note

that the absolute value of the angle can be changed by a
gauge transformation into a phase of the wave functions on
the B sublattices. This reflects the rotational symmetry of the
model. If one includes the “trigonal distortion” term param-
etrized by �3 the rotational symmetry is broken and it is
necessary to keep track of the absolute value of the angle.
From now on in this paper, we most often use units such that
vF=1 for simplicity.

This Hamiltonian has the advantage that it allows for rela-
tively simple calculations. Some of the fine details of the
physics might not be accurate but it works as a minimal
model and capture most of the important physics. It is im-
portant to know the qualitative nature of the terms that are
neglected in this approximation, this will be discussed later
in this section. It is also an interesting toy model as it allows
for �approximately� “chiral” particles with mass �i.e., a para-
bolic spectrum� at low energies.10

B. Biased graphene bilayer

For the biased bilayer, a minimal model employs Eq. �9�
augmented with the bias potential V,

HBB�k� =
V/2 kei��k� t� 0

ke−i��k� V/2 0 0

t� 0 − V/2 ke−i��k�

0 0 kei��k� − V/2
� . �10�

This model was introduced in Refs. 11 and 45. It correctly
captures the formation of an electronic gap of size �V at the
K point and the overall features of the bands as can be seen
in Fig. 3. Nevertheless, the fine details of the bands close to
the band edge are not captured correctly in this simple
model; this fact is illustrated in Figs. 5 and 6. In particular
the simple model is cylindrically symmetric; whereas the

trigonal distortion breaks this symmetry. Thus the inclusion
of v3 results in a “trihorn” structure for small values of V and
a weaker modulation of the band edge for larger values of V,
as illustrated in Fig. 5.

C. Multilayer graphene

In the graphene multilayer, a minimal model for the bands
is again given by Eq. �9� with the understanding that the
momentum label also includes the perpendicular direction:
k→ �k� ,k��. The only change is that we must make the sub-
stitution t�→2t� cos�k�d� everywhere. Note that this is ex-
actly the 
 factor appearing in the SWM model discussed in
Sec. II C. In the following we often use units such that the
interplane distance d is set to 1, then—since the unit cell
holds two layers—the allowed values of k� lie in the interval
�−� /2,� /2�. We note that this band model was used already
in the seminal paper by Wallace39 as a simple model for
graphite. More recent works on the band structure of few-
layer graphene systems include Refs. 24, 40, and 45–47.

D. Approximate effective two-band models

There are two main reasons for constructing approximate
two-band models. First, on physical grounds the high-energy
bands �far away from the Dirac point� should not be very
important for the low-energy properties of the system. Sec-

-0.05 0 0.05
0.0246

0.0248

0.025

0.0252

0.0254

0.0256

0.0258

0.026
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-0.2 -0.1 0 0.1 0.2
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0.12

p (eV)

E
(e
V)

FIG. 5. �Color online� Band dispersions near the band edge
�note the energy scale� in the biased graphene bilayer. Left: V
=50 meV; right: V=200 meV. The solid line is the simplified
model in Eq. �10� that is cylindrically symmetric. The other lines
are along different directions in the BZ for the full model in Eq. �6�:
�=0 �dotted line�, �=� /9 �dash-dotted line�, and �=2� /9 �dashed
line�. The parameters are the same as in Fig. 3.

px (eV)

p y
(e
V)

-0.08 -0.04 0 0.04 0.08
-0.08

-0.04

0

0.04
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p y
(e
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-0.08 -0.04 0 0.04 0.08
-0.08

-0.04

0

0.04

0.08

FIG. 6. �Color online� Contour plots of the band dispersions
near the band edge in the biased graphene bilayer for V=50 meV.
Left: full model in Eq. �6�; right: simplified model in Eq. �10�. The
parameters are the same as in Fig. 3.
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ond, it is sometimes easier to work with 2�2 instead of 4
�4 matrices. Nonetheless, it is not always a simplification to
use the two-band model when one is studying inhomoge-
neous systems as it generally leads to two coupled second-
order differential equations, whereas the four-band model in-
volves four coupled linear differential equations. The
matching of the wave functions in the two-band case then
involves both the continuity of the wave function and its
derivative, whereas in the four-band model only continuity
of the wave function is necessary. We note that the two-band
description of the problem is only valid as long the electronic
density is low enough, that is, when the Fermi energy is
much smaller than t�. At intermediate to high densities a
four-band model is required in order to obtain the correct
physical properties.48

In this section, we derive the low-energy effective model
by doing degenerate second-order perturbation theory. The
quality of the expansion is good as long as vFp� t�

�0.35 eV. We first present the general expression for the
second-order 2�2 effective Hamiltonian, thereafter various
simplified forms are introduced. Analyses similar to the one
here were previously described in Refs. 10 and 49.

First we introduce the projector matrices P0
=diag�0,1 ,0 ,1� �P1=diag�1,0 ,1 ,0�� that project onto �out
of� the low-energy subspace of the B atoms. Then we split
the Hamiltonian in Eq. �6� according to H0=K0+K1+K2,
with

K0 =
 + V/2 0 t� 0

0 V/2 0 0

t� 0  − V/2 0

0 0 0 − V/2
� , �11�

K1 = vF
0 pei� 0 − v4pe−i�

pe−i� 0 − v4pe−i� 0

0 − v4pei� 0 pe−i�

− v4pei� 0 pei� 0
� ,

�12�

K2 = vF
0 0 0 0

0 0 0 v3pei�

0 0 0 0

0 v3pe−i� 0 0
� . �13�

Introducing the vectors ��l�� that to zeroth order only have
components in the low energy subspace �i.e., P1�l�0��=0� and
following the standard procedure �see, e.g., Ref. 50� for de-
generate perturbation theory, we arrive at

�l�P0H0P0�l�� � �l�P0�K0 + �2K2�P0�l��

+ �2�l�P0K1P1
1

Ê − K0

P1K1P0�l�� ,

�14�

where we explicitly assume that K2 is of the same order as
K1

2 /K0. This expression is correct to second order in �. Note
that we are doing second-order perturbation theory for all of
the components of the 2�2 matrix in the low-energy sub-
space. Working to first order in �2 �and then setting �=1�
one obtains for this matrix �taking vF=1 for brevity�,

Klow = � V/2 v3pei�

v3pe−i� − V/2 	 +
− V + 2t�v4 + �1 + v4

2�
t�
2 − � − V�

−
t��1 + v4

2� + 2v4

t�
2 + V2/4 − 2 e−2i�

−
t��1 + v4

2� + 2v4

t�
2 + V2/4 − 2 e2i� V + 2t�v4 + �1 + v4

2�
t�
2 − � + V�

�p2. �15�

Taking =0 leads to an even simpler expression, in particular the effective spectrum becomes

Elow,� �
2v4p2

t�

��
1 −
2p2

t�
2 �2V2

4
+ �v3p�2 + � p2�t��1 + v4

2��
t�
2 + V2/4 �2

−
2v3p3�t��1 + v4

2��
t�
2 + V2/4

cos�3�� . �16�

That this approximation to the bands is excellent near the
band edge for small values of the bias V is illustrated in Fig.
7. For larger values of the bias the agreement is less accurate
because the assumption of smallness of certain terms in the
perturbation expansion is no longer valid.

IV. GREEN’S FUNCTION IN THE GRAPHENE BILAYER

As discussed in Sec. III we use the minimal model Hamil-
tonian in Eq. �9�. We note that the phases ����k� can be

gauged away by an application of a unitary transformation
defined by the matrix

M1�k� =
1 0 0 0

0 e−i��k� 0 0

0 0 1 0

0 0 0 ei��k�
� . �17�

It is also easy to compute the energy eigenvalues that are
given by t� /2��t�

2 /4+k2 and −t� /2��t�
2 /4+k2. Before
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we solve for the Green’s functions it is convenient to allow
for a local frequency dependent self-energy in the problem.
In the general case the self-energies on all of the inequivalent
sites in the problem are allowed to be different, and we ex-
plicitly introduce the matrix

H���� =
�A1��� 0 0 0

0 �B1��� 0 0

0 0 �A2��� 0

0 0 0 �B2���
� �18�

to describe this. The Green’s function matrix is then given by
the equation

G−1��,k� = � − H0�k� − H���� . �19�

In the case of the unbiased bilayer the A �B� sites in both
of the layers are equivalent and we only need two self-
energies, �A��� and �B���, which are local but we allow for
a frequency ��� dependence. In this case the matrix inver-
sion is simple since it factorizes into two 2�2 matrices. An
explicit form is given by

G��,k� = M1�k�� gD��,k� gND��,k�
gND��,k� gD��,k�

	M1
†�k� , �20�

where k= �k�. Here D �ND� stands for diagonal �nondiagonal�
in the layer index. The components of the g matrices are
given by

gAA
D,ND =

� − �B

2D−
�
� − �B

2D+
, �21a�

gBB
D,ND =

� − t� − �A

2D−
�
� + t� − �A

2D+
, �21b�

gAB
D,ND =

k

2D−
�

k

2D+
, �21c�

where

D���,p� = ��� t� − �A������ − �B���� − k2. �22�

Note that we often suppress the momentum and frequency
dependence in the following when no confusion arises. We
will come back to the biased case in Sec. XV.

V. IMPURITY SCATTERING: t-MATRIX AND COHERENT-
POTENTIAL APPROXIMATION

We are interested in the influence of disorder in the bi-
layer. To model the impurities we use the standard t-matrix
approach and the CPA. The effect of repeated scattering from
a single impurity can be encoded in a self-energy which can
be computed from51

� j = Vj + VjNḠVj + VjNḠVjNḠVj + ¯ = Vj�1 − NḠVj�−1.

�23�

Here Vj is a matrix that encodes both the strength and the
lattice site of the impurity in question. For example, an im-
purity on an A1 lattice site of strength U at the origin is
encoded in Fourier space by the matrix

V1 =
U

N
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
� , �24�

implying that the potential is located only on a single site.
We have also introduced the quantity

Ḡ�j��� =
1

N
�
k

G�j�j��,k� �
1

�2�
0

�2

d�k2�� d�

2�
G�j�j��,k� ,

�25�

which is the local propagator at the impurity site, and in the
second step the k sum is to be taken over the whole BZ. The
last line is an approximate expression that is obtained by
expanding the propagator close to the K points and taking the
continuum limit with the introduction of the cutoff �. We
estimate the cutoff by a Debye approximation that conserves
the number of states in the BZ. Then ��7 eV and in units
of the cutoff we have t��0.05 �taking t��0.35 eV�. Due
to the special form of the propagator and the impurity poten-
tial the self-energy we get from this is diagonal. The result
for site dilution �or vacancies� is obtained by taking the limit
U→�, so that the electrons are not allowed to enter the site
in question. We also introduce a finite density ni of impurities
in the system. To leading order in the impurity concentration
the equations for the self-energies then become

ni

�A
= − ḠA, �26a�

ni

�B
= − ḠB. �26b�

The explicit form of the propagators in Eq. �21� makes it

easy to compute the Ḡ’s. The t-matrix result for the self-
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FIG. 7. �Color online� Band dispersions near the band edge in
the biased graphene bilayer along two directions in the BZ. Left:
V=50 meV; right: V=200 meV. The solid �dash-dotted� line is the
effective model in Eq. �16� along �=0 ��=� /6�. The dotted
�dashed� line is the full model in Eq. �6� along �=0 ��=� /6�. The
parameters are the same as in Fig. 3. For V=50 meV the different
curves are almost not discernible.
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energies is obtained by using the bare propagators on the
right-hand side of Eq. �26�. In the CPA one assumes that the
electrons are moving in an effective medium with recovered
translational invariance which in this case is characterized by
the local self-energies. To determine what the medium is, one
must solve the equations self-consistently with the full
propagators on the right-hand side of Eq. �26�. Because of
the simple form of the propagators this is a simple numerical
task in the model we are using. To simplify the equations
further we assume that ��� , t� ,�A ,�B. This is a physical
assumption since when the self-energies become of the order
of the cutoff the effective theory breaks down. The self-
consistent equations then read


�A

ni
�−1

= − ḠA

=
� − �B

2�2 �
�=�

log
 �2

− �� + �t� − �A��� − �B�� ,

�27a�


�B

ni
�−1

= − ḠB

=
� − �A

2�2 �
�=�

log
 �2

− �� − �t� − �A��� − �B��
+

t�

2�2 log
− �� − t� − �A��� − �B�
− �� + t� − �A��� − �B�� . �27b�

This includes intervalley scattering in the intermediate states.
It is easy to obtain the nondisordered density of states from
these equations by taking �A=�B=0 and �→�+ i� �here �
is a positive infinitesimal� resulting in

�A
0��� = −

1

�
Im ḠA =

���
2�2 �1 +����� − t��� , �28a�

�B
0��� = −

1

�
Im ḠB =

���
2�2 �1 +����� − t���

+
t�

2�2 �1 −����� − t��� . �28b�

Observe in particular that the density of states on the A sub-
lattice goes to zero in the limit of zero frequency; this fact is
responsible for much of the unconventional physics in the
graphene bilayer. In contrast the density of states on the B
sublattice is finite at �=0. We discuss how this result is
changed with disorder and the solution of Eqs. �27a� and
�27b� in the following.

A. Zero-frequency limit

One interesting feature of the CPA equations in Eqs. �27a�
and �27b� is that it is easy to see that they do not allow for a
finite �A in the limit of �→0. Since by setting �=0 the last
term in Eq. �27b� must vanish, and this is not possible for
finite values of �A. Then one also must have that �B→0
there. This implies that the density of states on sublattice A is

still zero even within the CPA in the limit �→0. More ex-
plicitly, by defining �A�B=−��2 one can show �assuming
�A� t� and �B��� that �A and �B are given asymptotically
by

�A = � t�
2 �2�2

ni�
	1/3

e−i�/3, �29a�

�B = �ni�
4��

t�
2 	1/3

e−i2�/3, �29b�

and � satisfies

ni = � log�1/�� . �30�

Notice that �����ni� is exactly the energy scale that is
generated by disorder of the same kind in the single layer
case.16 We have checked that the expressions in Eqs. �29a�
and �29b� seem to agree with the numerical calculations in
the small frequency limit, and the frequency range in which
they holds grows with increasing ni.

B. Uncompensated impurity densities

The divergence of the self-energy �A on the A sublattice
in the CPA above is due to the fact that there is a perfect
compensation between the number of impurities on the two
sublattices: ni,A=ni,B. For the more general case where ni,A
�ni,B the divergence is not present so that �A may become
finite at �=0. To make comparison with other work on the
graphene bilayer it is fruitful to consider another extreme
limit where only the B sites are affected by the disorder.
Explicitly this means that we take ni,A=0 and ni,B�0. The
generalization of the CPA equations in Eqs. �27a� and �27b�
for this case then immediately implies that �A����0. In the
limit of �→0, �B is finite, purely imaginary, and given by

�B�� = 0� = − i
2�2

�t�

ni,B � − i
 . �31�

C. Born scattering

Another often studied limit is one of the weak impurities,
in particular Koshino and Ando52 studied electron transport
in the graphene bilayer in this approximation. This is the
Born limit and it can be studied using perturbation theory in
the strength of the impurities U. The leading nontrivial con-
tribution to the self-energies is given by the contribution to
second order,

�A = niUḠAU , �32a�

�B = niUḠBU . �32b�

If one substitutes the bare propagators on the right-hand side
one finds �A=0 and �B=−i�nit��U /��2 /2 at the Dirac
point. Thus, to leading-order Born scattering is formally
equivalent to the previous case with vacancies on only sub-
lattice B exactly at �=0. The frequency range for which the
�=0 result is valid is different however.
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D. Self-energy comparisons and the density of states

We compare the self-energies obtained from the t-matrix
and the CPA. Within the t-matrix the self-energies are given
by

�A =
ni

FA
0 + i��A

0���
, �33a�

�B =
ni

FB
0 + i��B

0���
, �33b�

where the �0’s are given in Eqs. �28a� and �28b� and

FA
0 � − Re�ḠAA

0 � =
�

2�2 log� �4

�2��2 − t�
2 �	 , �34a�

FB
0 � − Re�ḠBB

0 � = FA
0 +

t�

2�2 log�� − t�

� + t�

� . �34b�

The results for the self-energies in the two different approxi-
mations are shown in Figs. 8 and 9. Note that at least on the
scale of the figures the �A diverges as �→0 in the CPA, as
discussed above. The solution to the self-consistent equations
also does not converge very well when they are pushed close
to the limit of �→0. The total DOS on the A sublattice and
B sublattice is pictured in Fig. 10. Note in particular that the
case of ni=0.0001 closely resembles the noninteracting case
except for the low-energy feature. A possible interpretation
of the enhancement of the DOS on the B sublattice near �
=0 is in terms of the “half-localized” states �meaning they do
not decay fast enough to be normalizable at infinity� that
have been studied for monolayer graphene.53 Because these
states have weight on only one sublattice �the opposite one
of the vacancy� the construction in Ref. 53 is valid also in the
graphene bilayer when there is a vacancy on one of the A
sublattices. For a discussion of the related problem of edge
states in bilayer graphene, see Ref. 54.

E. Spectral function

The electron spectral function A�k ,��, which is observ-
able in ARPES experiments, is defined by A�k ,��
�−Tr�Im G�k ,��� /�, so that in our case

A�k,�� = −
2

�
�Im�GAA

D �k,��� + Im�GBB
D �k,���� . �35�

The spectral function in the k�� plane, calculated within
the CPA, is pictured in Fig. 11. As can be seen in the figures
the low-energy branch becomes significantly blurred, espe-
cially for the higher impurity concentrations. Note also that
the gap to the high-energy branch becomes slightly larger as
the disorder value increases due to the fact that �A is not
negligible there.

Examples of the momentum distribution curves �MDCs�
and the energy distribution curves �EDCs� in the disordered
graphene bilayer are shown in Figs. 12 and 13. The evolution
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of the peaks from delta functions to broader peaks with in-
creasing disorder is clear in the figure.

VI. GREEN’S FUNCTION AND ONE-PARTICLE
PROPERTIES IN MULTILAYER GRAPHENE

We will use the extension of the bilayer model to the
multilayer that we introduced in Sec. III C. As discussed
there we can immediately use the Hamiltonian in Eq. �9�
with the understanding that the momentum label also in-

cludes the perpendicular direction k→ �k� ,k�� and by sub-
stituting t�→2t� cos�k�d� everywhere. In particular the
Green’s function including the self-energies are again given
by the expressions in Eqs. �20�–�22� with the substitution
t�→2t� cos�k�d�.

A. Self-energies and the density of states

To get the CPA equations we must evaluate the local

propagator Ḡ that is given by the straightforward generaliza-
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FIG. 11. Intensity plot of the spectral function in the k�� plane �normalized by the cutoff� in the bilayer for different impurity
concentrations in the CPA approximation. From left to right: ni=10−4, 10−3, and 5�10−3.
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tion of Eq. �25� to include an extra sum over k�,

Ḡ��� =
1

N
�
k�

1

Nc
�
k�

G��� . �36�

Here Nc is the number of unit cells in the perpendicular
direction. This extra sum can be transformed into an integral
using the relation 1

Nc
�k�

→�−�/2
�/2 dk�

� . It is possible to perform
the integrals analytically as we explain in Appendix B. Using
the integrals defined there �I1 and I2� we obtain for
� ,�A ,�B , t���,

ni

�A
= − ḠAA

D = −
� − �B

�2 I1, �37a�

ni

�B
= − ḠBB

D = −
� − �A

�2 I1 −
1

�2 I2. �37b�

From these equations one can easily obtain the noninteract-
ing density of states by considering the clean retarded case
and take �A=�B=0 and �→�+ i�, from which we get

�A
0 =

���
��2
�2 + tan−1� ���

�4t�
2 − �2	���2t� − ����

+
���
�2����� − 2t�� , �38a�

�B
0 = �A

0 +
�4t�

2 − �2

��2 ��2t� − ���� . �38b�

The equivalent expressions were previously obtained in
Ref. 45 using a different method. The self-energy within the
t-matrix is again given by the expression in Eqs. �33a� and
�33b�, with the �’s given by the noninteracting density of
states in Eqs. �38a� and �38b�. The F’s are obtained from the
real parts of the noninteracting local propagators,

FA
0 =

�

�2 log� �2

t����	��2t� − ����

+
�

�2 log� 2�2

������� + ��2 − 4t�
2 �
	����� − 2t�� ,

�39a�

FB
0 = FA

0 −
�

�2 + sgn���
��2 − 4t�

2

�2 ����� − 2t�� . �39b�

The self-energies obtained within the t-matrix are shown in
Fig. 14, while those obtained from the CPA are shown in Fig.
15. A comparison between the density of states in the differ-
ent approximations is shown in Fig. 16. In general the curves
are similar to the ones in the bilayer but somewhat smoother.

The behavior of the self-energies at the Dirac point in the
multilayer is similar to the case of the bilayer treated in Secs.
V A and V C. We have more to say about this when we
discuss the perpendicular transport in the multilayer in Sec.
IX A.

B. Spectral function

The spectral function for the graphene multilayer is given
by a generalization of Eq. �35�,

A�k�,k�,�� = −
2

�
�Im�GAA

D �k�,k�,��� + Im�GBB
D �k�,k�,���� .

�40�

Given the form of the Green’s function and the CPA self-
energies it is straightforward to obtain this quantity. The
spectral function is depicted in Fig. 17 for three values of the
perpendicular momentum, since the model we use is
electron-hole symmetric we only show the results for nega-
tive frequencies. We would like to stress that for a large part
of the BZ the spectra are reminiscent of the bilayer spectra.
At the edges of the BZ however, where 2t� cos�k�d�=0, the
spectrum is that of massless Dirac fermions.
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multilayer as a function of the frequency �. Left: sublattice A; right:
sublattice B.

0 0.05 0.1 0.15

0

0.02

0.04

Re
Σ
x
/Λ

CPA,ΣA

0 0.05 0.1 0.15

0

0.02

0.04

ΣB

0 0.05 0.1 0.15
0

0.01

0.02

0.03

0.04

0.05

ω/Λ

-Im
Σ
x
/Λ

0 0.05 0.1 0.15
0

0.01

0.02

0.03

0.04

0.05

ω/Λ

ni = 0.001
ni = 0.0001

ni = 0.005

FIG. 15. �Color online� Self-energies within the CPA in the
multilayer as a function of the frequency �. Left: sublattice A; right:
sublattice B.

ELECTRONIC PROPERTIES OF BILAYER AND… PHYSICAL REVIEW B 78, 045405 �2008�

045405-11



Examples of the MDCs and the EDCs in the disordered
graphene multilayer are shown in Figs. 18 and 19 for two
different values of k�. The evolution of the peaks from delta

functions to broader peaks with increasing disorder is clearly
seen. One can also note that the influence of the impurities is
more severe close to the H point of the BZ since the overlap
of the peaks is larger there. The reason for this is that the
particles there are dispersing linearly leading to peaks that
are closer together than for particles with a parabolic disper-
sion.

VII. ELECTRON TRANSPORT IN BILAYER AND
MULTILAYER GRAPHENE

Having worked out the self-energies in the previous sec-
tions we now turn to linear response �Kubo formula� to study
electron transport. We saw in Secs. V and VI that the low-
energy states are mainly residing on the B sublattice. Never-
theless, electron transport coming from nearest-neighbor
hopping must go over the A sublattice. This is particularly
important for the case of perpendicular transport, since in the
simple model that we are using, hopping comes exclusively
from states with weight on the A sublattice.

This feature implies that although the total density of
states at half-filling is finite, because the density of states on
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FIG. 16. �Color online� Local density of states � on the different
sublattices as a function of the frequency � in the multilayer. Top:
sublattice A; bottom: sublattice B.
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the A sublattice goes to zero as the Dirac point is ap-
proached, the in-plane and out-of-plane transport properties
are unconventional. The main purpose of this section and
Secs. VIII and IX is to show how this comes about in detail
through concrete calculations. We calculate conductivities
�or optical response� parallel and perpendicular to the planes
in both bilayer graphene and multilayer graphene. The result-
ing conductivities are very anisotropic and we find a univer-

sal nonzero minimum value for the in-plane dc conductivity
as a function of the chemical potential.

A. Conductivity formulas

To calculate the conductivity we use the Kubo formula.55

We only consider the homogeneous �q=0� response, but we
investigate both the temperature dependence and the fre-
quency dependence of the various conductivities.

The conductivity is computed from the Kubo formula,

���� =
1

S�
�

0

�

dtei�t��J†�t�,J�0��� =
i

� + i�
���� . �41�

Here S is the area of the system, J is the current operator of
interest, and � is the appropriate current-current correlation
function. A contribution to � from a term of the form
��A�t� ,B�0���, where A=�k��k�a1k

† a2k and B
=�k��k�b1k

† b2k, can be shown by the usual methods to give
a contribution to the real part of the conductivity of the form

Re������ =
1

S
�
k
� d�

�

−

nF�� + �� − nF���
�

�
� Im�Gb2,a1��,k��Im�Ga2,b1�� + �,k����k���k� .

�42�

Here the imaginary parts only involve the frequency part and
not the angular �spatial� parts of the propagators. In terms of
the expression in Eq. �20� this implies that the imaginary
parts involve gD and gND but not the spatial information en-
coded in M1�k� and M1

†�k�. With the inclusion of the two
spin projections and two valleys we get �putting back h
=2�� and extracting the electric charge from the current
operators�

Re������ =
2e2

�h
� d�
−

nF�� + �� − nF���
�

����,� + �� .

�43�

Here nF is the Fermi distribution function. We have also
introduced the kernel � that for the case of the operators
above becomes

���,� + �� = �
0

�

d�k2�� d��k�
2�

��k���k�

� Im�Gb2,a1��,k��Im�Ga2,b1�� + �,k�� .

�44�

Thus the contribution to the in-plane dc conductivity at zero
temperature is

�dc,� =
2e2

�h
��0,0� � �0���0,0� . �45�

Finally we also note that—since we are using the approxi-
mation of purely local impurities—there are no vertex cor-
rections appearing in the model.

B. Bilayer graphene

The current operators can be obtained from the Peierls’
substitution16,56 and an expansion close to the K �or K�� point
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FIG. 18. �Color online� MDCs in the graphene multilayer for
two values of the perpendicular momentum: k�=0 �i.e., at the K
point, parabolic dispersion, dashed line� and k�=� /2 �i.e., at the H
point, linear dispersion, solid line�. The three panels are for differ-
ent values of the density of impurities in the CPA. From the top the
energy cuts are at the energies 0.0005, 0.0055, 0.0105, 0.0155,
0.0205, 0.0255, and 0.0305 in units of the cutoff �. The curves are
uniformly displaced for clarity.
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in the BZ. Alternatively the current operators can be obtained
directly from the Hamiltonian in Eq. �9� using J=env with
the velocity being given by v=�H0�k� /�k. In any case, the
current operators needed for the calculation of the conduc-
tivities are given by

Jx1 = vFe�
k

�cA1,k
† cB1,k + cB1,k

† cA1,k� , �46a�

Jx2 = vFe�
k

�cA2,k
† cB2,k + cB2,k

† cA2,k� , �46b�

J� = iedt��
k

�cA1,k
† cA2,k − cA2,k

† cA1,k� . �46c�

From the contributions of the form ��Jx1 ,Jx1�� to the current
correlator we get a contribution to the kernel which is

�x1,x1 = �
0

�2

d�vF
2k2��Im�gAA

D ��,k��Im�gBB
D �� + �,k��

+ Im�gBB
D ��,k��Im�gAA

D �� + �,k��� . �47�

Similarly from the cross term ��Jx1 ,Jx2�� we get

�x1,x2 = 2�
0

�2

d�vF
2k2� Im�gAB

ND��,k��Im�gAB
ND�� + �,k�� ,

�48�

while for the interplane optical response the contribution
from ��J� ,J��� is

�� = 2�2dt�

3at
	2�

0

�2

d�vF
2k2��Im�gAA

D ��,k��Im�gAA
D �� + �,k��

− Im�gAA
ND��,k��Im�gAA

ND�� + �,k��� . �49�

Due to the phases in the Green’s functions the other terms
such as those involving GAB

D GAB
D vanish upon performing the

angle average. To get the total �� per plane in the bilayer one
should add the contributions from �x1,x1 and �x1,x2.

C. Multilayer graphene

The expressions for the current operators in the multilayer
are obtained in a similar way. J� is given by the same expres-
sion as in Eqs. �46a�–�46c� except that the momentum vari-
able is now three dimensions. The current operator in the
perpendicular direction is

J� = − 2et�d �
k�,k�

sin�k���cA1,k
† cA2,k + cA2,k

† cA1,k� . �50�

To get the conductivities in the multilayer, we should divide
by the volume V=S2dNc instead of the area S. Here Nc is the
number of unit cells in the perpendicular direction. We then
turn the sums into integrals using 1

Nc
�k�

→�−�/2
�/2 dk

� . Thus to
get �� we use the expressions in Eqs. �43�, �47�, and �48� and
add the perpendicular integral according to

��,multi =
1

d
�

−�/2

�/2 dk�

�
��x1,x1 +�x1,x2� . �51�

Similarly for the perpendicular conductivity we use Eq. �43�
with

��,multi =
1

d
�4dt�

3at
	2�

−�/2

�/2 dk�

�
�

0

�2

d�vF
2k2�sin2�k��

��Im�gAA
D ��,k��Im�gAA

D �� + �,k��

+ Im�gAA
ND��,k��Im�gAA

ND�� + �,k��� . �52�

The numerical value of the dimensionless prefactor in ��

is approximately 0.15 �using d�2.5a�. When we present
the results in Secs. VIII and IX it is convenient to
use a unit that combines the prefactor in this kernel with
the factor from Eq. �45� according to ��0
= �2e2 / ��h���1 /d��4dt� / �3at��2.

VIII. RESULTS FOR THE CONDUCTIVITIES IN THE
GRAPHENE BILAYER

Using the formulas for the kernels �i.e., the �’s� from Sec.
VII and the explicit forms of the propagators from Sec. IV
�in particular Eqs. �20�, �21a�–�21c�, and �22��, we have cal-
culated the kernels for arbitrary values of the self-energies.
Details of this calculation are provided in Appendix C. In
this section we present results for the conductivities �via Eqs.
�43� and �45�� using the kernels obtained with the t-matrix
and CPA self-energies discussed in Sec. V.

A. Chemical-potential dependence

The results for the dc conductivities at T=0 in the
t-matrix and CPA approximations for different values of the
chemical potential are shown in Figs. 20 and 21. The only
difference between these figures is in the scales of the axes.
It looks as if the minimum value for �� per plane in the
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FIG. 20. �Color online� dc conductivities in the bilayer as a
function of the chemical potential �in units of the cutoff� at zero
temperature. Left: t-matrix; right: CPA. Top: in plane; bottom: c
axis.
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bilayer is approximately 2��0=4e2 / ��h�, which is identical
to the result one obtains using the same methods in single
layer graphene.16 We will discuss the minimum conductivity
later in this section.

The low-energy feature in the t-matrix curves comes
about at the energy scale at which the two planes start to
decouple. The scale at which this takes place ��A� t�� is
easily found numerically with the results shown in Table II.
The local maximum in the conductivities is readily identified
with this energy scale. In the CPA this scale is suppressed
and the curves show no peak. Quite generally it is seen that
the CPA curves are smoother than the ones for the t-matrix.

Another interesting feature of �� is that it is increased by
disorder. This is due to the fact that disorder enhances the
DOS on sublattice A where all the contribution to �� is
coming from. At the lowest values of the chemical potential
the perpendicular conductivity still goes to zero however.

B. Minimal dc conductivity

By studying the curves more closely, it looks as if the
CPA curves actually give a value that is smaller than 2 in the
limit �→0. In fact, we find that the minimum in the in-plane
dc conductivity is again �as in the single layer case of mass-
less Dirac fermions16� universal in the sense of being inde-
pendent of the particular impurity concentration. In the bi-
layer the minimum value per plane obtained from the CPA is

��min,CPA =
3

�

e2

h
. �53�

This value is obtained by using the form of the self-energies
in the low frequency limit that are given in Eqs. �29a� and

�29b�. Explicitly one finds for the propagators via Eqs.
�21a�–�21c�,

gAA
D ��→ 0,k� �

�B

��2 + k2 , �54a�

gBB
D ��→ 0,k� �

�A

��2 + k2 , �54b�

gAB
ND��→ 0,k� � 0. �54c�

Using these asymptotic forms in Eqs. �47� and �48� the con-
tribution from the latter equation drops out. The value in Eq.
�53� is obtained from the first term after employing the rela-
tion Im��A�Im��B����3 /2�2��A�B��3��2 /4.

We note that our value for the minimal conductivity is
different from the values obtained in works by other groups.
In particular Koshino and Ando52 �using a two-band model
in conjunction with a second-order self-consistent Boltz-
mann approximation� and Snyman and Beenakker57 �using
the conductance formula for coherent transport� both found
the value 4e2 / ��h� per plane. �The minimal conductivity
problem in bilayer graphene has also been discussed in Refs.
58 and 59.� We can reproduce their result in our formalism
by considering the case that the impurities only affect the B
sublattice, as discussed in Sec. V B �or the case of Born
scattering discussed in Sec. V C�. In particular, taking �A
=0 and �B��=0�=−i
 �from Eq. �31�� one finds

gAA
D �� = 0,k� =

− i
k2

�t�
�2 + k4 , �55a�

gBB
D �� = 0,k� =

− i
t�
2

�t�
�2 + k4 , �55b�

gAB
ND�� = 0,k� =

i
t�k

�t�
�2 + k4 . �55c�

Using these expressions in Eqs. �47� and �48�, �x1,x1 and
�x1,x2 are found to contribute equally to the conductivity
with the total value being 4e2 / ��h�. This result shows that
the minimal conductivity is not really “universal” in the
graphene bilayer since it actually depends on how the impu-
rities are distributed among the inequivalent sites of the
problem. Furthermore, the ballistic results correspond to the
case where the disorder is only affecting the B sublattice.
Nevertheless, the general conclusion is that there is a non-
zero minimum in the in-plane conductivity of the order of
e2 /h. Further evidence for this conclusion is hinted by the
related issue of how other hopping terms, such as �3 and �4,
affect the value of the minimal conductivity. The case of
trigonal warping �i.e., �3�0� has been discussed in detail by
Cserti et al.,60 and they found that the minimal value of the
conductivity per plane is �12 /���e2 /h� in this case �see Ap-
pendix A for an alternative derivation of this result�. The
introduction of �4 �or , or a next-nearest-neighbor hopping
within the planes�—which breaks the symmetry in energy
between the central Dirac point and the three elliptical cones

TABLE II. Energy scale � at which the planes start to decouple
within the t-matrix approximation �this happens when �A���� t��.
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FIG. 21. �Color online� dc conductivities in the bilayer as a
function of the chemical potential �in units of the cutoff� at zero
temperature. Left: t-matrix; right: CPA. Top: in plane; bottom: c
axis.
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away from k=0—will likely further influence the minimal
value.

C. Frequency dependence

The frequency dependence of the conductivities is pic-
tured in Figs. 22–25. The figures reveal some interesting fea-
tures of the band structure and the semimetallic behavior. For
the case of a finite chemical potential the temperature does
not make a big difference since it �at 300 K� is still much
smaller than the Fermi energy, this is manifested in the small
difference between Figs. 24 and 25. Near zero chemical po-
tential the effect of the temperature is more dramatic. The
temperature increases the number of carriers and is respon-
sible for the Drude-type peaks that appear in the plots for
low impurity concentrations. A well-known feature of semi-
metals is that the temperature is an important factor in deter-
mining the number of carriers in the system. The peak at �

� t�=0.05� is due to the onset of interband transitions. The
frequency dependence of the absorption of electromagnetic
radiation has also been studied by Abergel and Fal’ko61 with
similar results; they also studied transitions between Landau
levels in a magnetic field.

D. Temperature dependence

The temperature dependence of the dc conductivity can be
found in Figs. 26 and 27. For the case of a finite chemical
potential the in-plane conductivity curves are flat and propor-
tional to 1 /ni, as is expected in a normal Fermi-liquid
metal.55 The contribution to the scattering from impurities is
very weakly temperature dependent. Nevertheless, there is a
small temperature dependence for the lowest impurity con-
centration which is due to the fact that T /EF is still not
negligible. Near the Dirac point the characteristics of a semi-
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FIG. 22. �Color online� Conductivity as a function of frequency
�in units of the cutoff� for the bilayer at the Dirac point �=0 for
T=0. Left: t-matrix; right: CPA. Top: in plane; bottom: c axis.

0 0.05 0.1 0.15 0.2
0

1

2

3

4

5

σ
||
/σ

0|
|

T-matrix, T = 300K, � = 0

0 0.05 0.1 0.15 0.2
0

1

2

3

4

5
CPA

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

ω / Λ

σ
⊥
/σ

0⊥

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

ω / Λ

ni = 0.001
ni = 0.0001

ni = 0.005
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metal appear again as the conductivities become temperature
dependent. Note however that we are not considering scat-
tering by phonons which is important at finite temperatures.

IX. RESULTS FOR THE CONDUCTIVITIES IN
MULTILAYER GRAPHENE

Using the same procedure as for the bilayer in Sec. VIII
we have calculated the kernels for arbitrary values of the
self-energies. Details of this rather lengthy calculation are
provided in Appendix C. In this section we present results for
the conductivities using the kernels obtained with t-matrix
and CPA self-energies discussed in Sec. VI.

The dc conductivities in the multilayer as a function of the
chemical potential � are pictured in Figs. 28 and 29, the only
difference between the figures is in the scales of the axes.
The property of disorder-enhanced transport in the perpen-
dicular direction seems to survive in this model for the
multilayer but only for very low values of the chemical po-

tential. For larger values of the chemical potential the influ-
ence of disorder becomes more conventional. In this case,
because of the finite Fermi surface, the transport properties
are more like in a normal metal.

A. Perpendicular transport near the Dirac point

Generalizing Sec. V C to the multilayer we find again that
�A�0 and �B�−i
B is purely imaginary in the Born limit
at the Dirac point. Nevertheless, as we shall see it is neces-
sary for the computation of �� that �A remain finite. There-
fore we take �A�−i
A and assume that 
A�
B. We note
that this is also consistent with a self-consistent version of
the Born approximation for weak potentials. Thus, for �
→0 we have

Im�gAA
D � �

− 
B�k2 + 
A
B�
�2t�
B cos�k���2 + �k2 + 
A
B�2 , �56a�
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FIG. 26. �Color online� Temperature dependence of the dc con-
ductivities in the bilayer at the Dirac point �=0. Left: t-matrix;
right: CPA. Top: in plane; bottom: c axis.
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FIG. 27. �Color online� Temperature dependence of the dc con-
ductivities in the bilayer at finite chemical potential �=0.025�.

0 0.05 0.1 0.15
0

20

40

60

80

100

σ
||
/σ

0|
|

T-matrix, T = 0, ω = 0

0 0.05 0.1 0.15
0

20

40

60

80

100
CPA

0 0.05 0.1 0.15
0

2

4

6

8

10

� / Λ

σ
⊥
/σ

0⊥

0 0.05 0.1 0.15
0

2

4

6

8

10

� / Λ

ni = 0.001
ni = 0.0001

ni = 0.005

FIG. 28. �Color online� dc conductivities in the multilayer as a
function of the chemical potential �in units of the cutoff� at T=0.
Left: t-matrix; right: CPA. Top: in plane; bottom: c axis.
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FIG. 29. �Color online� dc conductivities in the multilayer as a
function of the chemical potential �in units of the cutoff� at T=0.
Left: t-matrix; right: CPA. Top: in plane; bottom: c axis.
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Im�gAA
ND� � 0. �56b�

Inserting these expressions into Eq. �52� it is possible to
perform the integrals exactly with the result

��,multi �
1

d
�4dt�

3at
	2� 
B

8t�
	log
 ��1 + �
A/2t��2 + 1�

��1 + �
A/2t��2 − 1�
� .

�57�

Thus there is a logarithmic singularity in the limit 
A→0 as
mentioned above. Intuitively this singularity comes from
“clean” chains of atoms along the A sublattice where trans-
port is unhindered once some weight has been pushed onto
the A sublattice by the impurities on the B sublattice. It is
plausible that ��,multi increases with increasing disorder. It is
so because the first factor grows linearly whereas the second
factor decays only logarithmically with the 
 in question.

For the case of vacancies in the CPA a result analogous to
the one in Eqs. �29a� and �29b� can be obtained. In fact, the
result is the same up to factors �A→21/3�A and �B
→2−1/3�B. Therefore the asymptotic expression in Eq. �53�
is valid also in the multilayer. In addition one finds that
gAA

ND��→0,k��0. Thus, asymptotically one finds that
��,multi��2/3, which leads to a temperature dependence of
�� at the Dirac point that is of the form T2/3. We also note
that ��,min is independent of t� in the bilayer, thus we con-
clude that it takes on the same value in both the bilayer and
the multilayer. Using the fact that ��,multi� constant at the
Dirac point we find that �� /�� diverges as T−2/3 as T→0 as
reported previously.17

B. Frequency and temperature dependence

The frequency dependence of the conductivities in the
multilayer is shown in Figs. 30–33 for two different tempera-
tures and both at the Dirac point and for a finite chemical
potential. For the cleaner systems a Drude-type peak appears
at finite temperatures for both in-plane and perpendicular
transports at the Dirac point. For a finite chemical

potential—because the system is metallic in both
directions—the system has a Drude peak in the conductivity
also at zero temperature. Moreover, it can be seen how the
suppression of the conductivity in the frequency range before
interband contributions set in �i.e., at �=2�� is affected by
both disorder and temperature. We note that our curves for
the frequency-dependent in-plane conductivity are very simi-
lar to the recent results of Ref. 62, which include both mea-
surements and calculations based on the full SWM model.

Our results for the temperature dependence of the conduc-
tivities in the multilayer are shown in Figs. 34 and 35. At the
Dirac point, the in-plane conductivity goes to a finite con-
stant, while the perpendicular conductivity goes to zero as
T→0. The disorder-enhanced transport at low temperatures
can also be seen in the figures. For a finite chemical poten-
tial, the system behaves like a metal with only a weak tem-
perature dependence of the conductivities.
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FIG. 30. �Color online� Conductivity as a function of frequency
�in units of the cutoff� at the Dirac point �=0 for T=0 in the
multilayer. Left: t-matrix; right: CPA. Top: in plane; bottom: c axis.
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Dirac point �=0 in the multilayer. Left: t-matrix; right: CPA. Top:
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X. IMPURITIES IN THE BIASED GRAPHENE BILAYER

In Secs. XI–XV we study the problem of impurities and
midgap states in a biased graphene bilayer. We show that the
properties of the bound states, such as localization lengths
and binding energies, can be controlled externally by an
electric-field effect. Moreover, the band gap is renormalized
and impurity bands are created at finite impurity concentra-
tions. Using the CPA we calculate the electronic density of
states and its dependence on the applied bias voltage. Many
of the results we present here were previously reported in a
brief form in Ref. 18. A recent detailed study of the impurity
states in the unitary limit in both biased and unbiased bilayer
graphenes can be found in Ref. 63.

A. Band model

In this section, we review the properties of the minimal
model introduced in Eq. �10�. Throughout this section we use

units such that vF=�=1 unless otherwise specified. For nu-
merical estimates we use t�=0.35 eV and insert the appro-
priate factors of vF=3ta /2, with t=3 eV and a=1.42 Å.
From Eq. �10� one finds two pairs of electron-hole symmet-
ric eigenvalues,

E�,s = ��k2 +
V2

4
+

t�
2

2
+ s

1

2
�4�V2 + t�

2 �k2 + t�
4 ,

�58�

where s=�. The lowest energy bands �with respect to the
“Dirac point” at zero energy� representing the valence and
conduction bands are the E�,− bands. The smallest gap takes
place at a finite wave vector given by

kg =
V

2
�V2 + 2t�

2

V2 + t�
2 , �59�

so that the size of the band gap becomes

Eg =
Vt�

�V2 + t�
2

. �60�

At k=0 the distance between the valence and the conduction
bands is given by the applied voltage difference V. Note that
V should in reality be taken to be not the bare applied voltage
difference but instead the self-consistently determined value
VMF, as discussed in Refs. 11, 12, 15, and 64. Near kg the
energy of the quasiparticles in the conduction band can be
expanded as

E+,− �
Vt�

2�V2 + t�
2

+
V�V2 + 2t�

2 �
t��V2 + t�

2 �3/2 �k − kg�2 �
Eg

2
+

�k − kg�2

2m�
,

�61�

and as long as this approximation is valid the density of
states per unit area is
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FIG. 33. �Color online� Conductivity as a function of frequency
�in units of the cutoff� at finite temperature T=300 K at finite
chemical potential �=0.025� in the multilayer. Left: t-matrix;
right: CPA. Top: in plane; bottom: c axis.
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FIG. 34. �Color online� Temperature dependence of the dc con-
ductivities at the Dirac point �=0 in the multilayer. Left: t-matrix;
right: CPA. Top: in plane; bottom: c axis.
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FIG. 35. �Color online� Temperature dependence of the dc con-
ductivities at finite chemical potential �=0.025� in the multilayer.
Left: t-matrix; right: CPA. Top: in plane; bottom: c axis.
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N��� =
k0

�
� 2m�

��� − Eg/2
�62�

for ��� Eg /2. This includes both the valley and the spin
degeneracy. Notice that the divergence of the density of
states �DOS� at the band edge is similar to what one would
get in a truly one-dimensional �1D� system. The fact that a

large DOS is accumulated near the band edge has important
consequences for the properties of the bound states as we
shall see in the following.

B. Bare Green’s function

An explicit expression for the bare Green’s function,
which is given by G0= ��−HBB�−1, is

G0 =
1

D
�� − V

2 ���� + V
2 �2

− k2� ��� + V
2 �2

− k2�kei� t���2 − V2

4 � t��� − V
2 �ke−i�

��� + V
2 �2 − k2�ke−i� �� − V

2 ���� + V
2 �2 − k2� − �� + V

2 �t�
2 t��� + V

2 �ke−i� t�k2e−2i�

t���2 − V2

2 � t��� + V
2 �kei� �� + V

2 ���� − V
2 �2

− k2� ��� − V
2 �2

− k2�ke−i�

t��� − V
2 �kei� t�k2e2i� ��� − V

2 �2 − k2�kei� �� + V
2 ���� − V

2 �2 − k2� − �� − V
2 �t�

2
� ,

�63�

where

D = �k2 − V2/4 − �2�2 + M4, �64�

M4 =
V2t�

2

4
− �2�V2 + t�

2 � . �65�

So that, for example, the important diagonal components are
given by

GA1A1
0 =

�� − V/2���� + V/2�2 − k2�
D

, �66a�

GB1B1
0 = GA1A1

0 −
�� + V/2�t�

2

D
. �66b�

The corresponding components for plane 2 are obtained by
the substitution V→−V. Note that M!0 inside of the gap.

XI. BOUND STATES FOR DIRAC DELTA
POTENTIALS

Bound states must be located inside of the gap so that
their energies fulfill ���"Eg /2, otherwise the asymptotic
states at infinity are not exponentially localized. If we decode
a number �say Ni� of local impurities in a matrix of the form

V̂ = diag�U1,U2, . . . ,UNi
� , �67�

where we let Ui denote the strength of the impurity potential
that is located at site xi. The total Green’s function is then
given by

G = G0 + G0V̂G = G0 + G0V̂G0 + G0V̂G0V̂G0 + ¯ = G0

+ G0�V̂ + V̂G0V̂ + V̂G0V̂G0V̂ + . . .�G0 � G0 + G0TG0.

�68�

Here T is the t-matrix of the system �see, e.g., Ref. 51�. The
interpretation of this expression is most transparent in the
real-space picture, where it includes the repeated scattering
off of all of the impurities in every possible way. Another

way of expressing T is �decomposing V̂ as V̂=�V̂�V̂�

T = �V̂�1 + �V̂G0�V̂ + ��V̂G0�V̂�2 + ¯��V̂

= �V̂
1

1 − �V̂G0�V̂

�V̂ . �69�

Bound states generated by the impurities can readily be iden-
tified by finding isolated poles in the full propagator of the
system. Therefore an equation that can be solved to find the
energies of the bound states of the system is given by

det��i,j − �UiGij
0 ����Uj� = 0. �70�

Here Gij
0 ��� denotes the �real-space� propagator from site j to

site i. In principle one can introduce an arbitrary number of
impurities in this expression. However, if two impurities are
located too close to each other the continuum approximation
to the propagators is not expected to be accurate and one
must instead work with the full tight-binding description �see
Ref. 65 for an illustration of this approach in monolayer
graphene�. If we specialize to one local impurity affecting
only one site the calculations simplify considerably. The
Fourier transform of the local potential is U /N �where N is
the number of unit cells in the system� so that we can write

T =
1

N

U

1 − UḠ0
. �71�

As mentioned previously, to locate the bound states we must
find isolated poles in G due to the potential. Explicitly we

need UḠ0���=1. Like in Sec. V, Ḡ0 is the local propagator at
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the impurity site that is given by the expression in Eq. �25�
with G0 taken from Eq. �63�. Using Eqs. �66a� and �66b� we
can perform the integrals exactly in the continuum approxi-
mation with the result

ḠA1
0 =

V/2 − �

2�2 �log� �4

M4 + �V2/4 + �2�2	
−

2�V

M2 
tan−1�V2/4 + �2

M2 	 + tan−1��2

M2	�� ,

�72a�

ḠB1
0 = ḠA1

0 −
�V/2 + ��t�

2

M2�2 
tan−1��2

M2	 + tan−1�V2/4 + �2

M2 	� ,

�72b�

where M2=�V2t�
2 /4−�2�V2+ t�

2 � and � ��7 eV� is the high
energy cutoff. The corresponding expressions in plane 2 are
obtained by the substitution V→−V. The typical behavior of

Ḡ0��� as a function of the frequency � is shown in Fig. 36.
From this we conclude that a Dirac delta potential always

generates a bound state �no matter how weak the potential is�
since Ḡ0 diverges as the band edge is approached �where
M→0�. The dependence on the cutoff �except for the overall
scale� is rather weak so that the linear in-plane approxima-
tion to the spectrum should be a good approximation as in
the case of graphene.65 For a given strength of the potential
U, there are four different bound-state energies depending on
which lattice site it is sitting on. In Fig. 36 we show the
energies of these bound states for strong impurities. Even at

these scales the bound state coming from ḠA1
0 is so weakly

bound that it is barely visible in the figure. In Fig. 37 we
show the binding energy as a function of U and V for the

deepest bound state �coming from ḠB1
0 �. In the limit of U

→� the electron-hole symmetry of the bound-state energies
is restored. For illustrative purposes we consider only attrac-
tive potentials in this work; analogous results hold for repul-
sive potentials because of the electron-hole symmetry of the

model that we are using. For smaller values of the potential
��U���� the binding energy measured from the band edge
Eb=Eg /2−� grows as U2 and the states are weakly bound.
For example, for V=40 meV and U#1 eV one finds
Eb#4�10−4Eg.

A. Angular-momentum states

For any potential with cylindrical symmetry it is useful to
classify the eigenstates according to their angular momentum
m. In the presence of the trigonal distortion parametrized by
�3 the calculations become more involved because of the
broken cylindrical symmetry. We discuss this issue briefly in
Sec. XVI. The real-space continuum version of the Hamil-
tonian matrix in Eq. �10� that includes a potential, which in
general is allowed to take on different values in the two
planes, is

H0 = �V/2 + g1�r� − i�� · � t��1 + �z�/2
t��1 + �z�/2 − V/2 + g2�r� − i� · �

	 .

�73�

Here �i �i=x ,y ,z� are the usual Pauli matrices. For example,
a symmetric Coulomb problem could then be approximated
by taking g1�r�=g2�r�=g /r. Going to cylindrical coordinates
the derivatives transform according to

�x� i�y = e�i$��r�
i

r
�$	 , �74�

where we use the coordinate convention x� iy=re�i$. For
the Hamiltonian in Eq. �73� one can now—in analogy with
the usual Dirac equation66—construct an angular-momentum
operator that commutes with the Hamiltonian. The angular
�$� dependence of the angular-momentum m eigenstates are
those of the vector

u�,m�$� = eim$
1

e−i$e−i��/2

1

ei$ei��/2
� , �75�

where parameter � is introduced for later convenience, it is
used later to obtain more compact expressions. It is conve-
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nient to define the following “star” product of two vectors
that results in another vector with components given by

�a � b��j = a�jb�j . �76�

By writing �=u0,m�%�r� /�r the eigenvalue problem
H0�=E� is transformed into a set of coupled ordinary
linear differential equations for the radial-wave function
%�r�,


g1�r� + V/2 − i�r + ij/r t� 0

− i�r − ij/r g1�r� + V/2 0 0

t� 0 g2�r� − V/2 − i�r − i�j + 1�/r
0 0 − i�r + i�j + 1�/r g2�r� − V/2

�%�r� = E%�r� . �77�

Here we have introduced j=m−1 /2 to render the equations
more symmetric. If the potential generates bound states in-
side of the gap these states decay exponentially �r�e−&r as
r→�. Assuming that the potential decays fast enough the
asymptotic behavior of Eq. �77� implies that the allowed val-
ues for & are &� satisfying

&� = �− ��2 + V2/4�� iM2, �78a�

�&�4 = �V2/4 − �2��V2/4 − �2 + t�
2 � , �78b�

&� = �&�exp��i
�
2

−
1

2
tan−1� M2

�2 + V2/4	�� . �78c�

So that, for weakly bound states we have

&� �
M2

�V2 + Eg
2
� i

1

2
�V2 + Eg

2, �79�

leading to a localization length

l �
2kg

Vt�

�Eg

Eb
, �80�

which diverges as the band edge is approached and decreases
as the bias voltage increases.

B. Free particle wave functions in the angular-momentum
basis

The free particle wave functions in the angular-
momentum basis can be conveniently expressed in terms of
the following vectors:

vZ,m�z� =
Zm�z�

Zm−1�z�
Zm�z�

Zm+1�z�
� , �81�

w�p� =
��� + V/2�2 − p2��� − V/2�

��� + V/2�2 − p2�p
t���2 − V2/4�
t��� − V/2�p

� . �82�

The last vector is useful as long as ��V /2 �cf. the discus-
sion of the two eigenvectors in Ref. 15.� The denominator
�actually a determinant� that determines the eigenstates is

D�p,�� = �p2 − V2/4 − �2�2 + V2t�
2 /4 − �2�V2 + t�

2 � .

�83�

Then, provided that D�k ,��=0 �k!0�, which corresponds to
propagating modes, the eigenfunctions are proportional to

�Z,m��,k,r� = u1,m � vZ,m�kr� � w�k� , �84�

where Zm�x�=Jm�x� or Ym�x� are Bessel functions and the
star product is defined in Eq. �76�. If on the other hand
D�i& ,��=0, �Re�&�!0� the eigenfunctions are instead

�K,m��,&,r� = u0,m � vK,m�&r� � w�i&� , �85�

�I,m��,&,r� = u0,m � vI,m�&r� � w�− i&� , �86�

with Im�x� and Km�x� being modified Bessel functions. That
these vectors are indeed free-particle eigenstates can be veri-
fied straightforwardly by applying the Hamiltonian in Eq.
�73� with g1=g2=0 to them.

C. Local impurity wave functions

The general expression for the retarded Green’s function
is

G�j,��j��x,x�� = �
n

��j, �x�n���n���j�,x��
� + i� − En

, �87�

where the sum is over the eigenstates �n� �with eigenenergy
En� of the system. Comparing the coefficient of the poles in
this expression with those in Eq. �68� one can read of the
wave functions of the bound states directly. The result is that
the wave functions are Fourier transforms of the columns of
the bare Green’s evaluated with the frequency set to be equal
to the energy of the bound state.
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1. Impurity on an A1 site

When the impurity is on an A1 site the expression be-
comes �using Eq. �63��


GA1A1

GB1A1

GA2A1

GB2A1

� =
1

N
�
k

eik·x

D 
�� − V/2���� + V/2�2 − k2�

��� + V/2�2 − k2�ke'i�

t���2 − V2/4�
t��� − V/2�ke�i�

� .

�88�

Performing the angular average one ends up with Bessel
functions,


GA1A1

GB1A1

GA2A1

GB2A1

� = �
0

� kdk

�2D
�� − V/2���� + V/2�2 − k2�J0�kr�

i��� + V/2�2 − k2�kJ1�kr�e−i$

t���2 − V2/4�J0�kr�
it��� − V/2�kJ1�kr�ei$

� .

�89�

There are really two such terms, one for each K point, which
corresponds to the different signs of the phases in Eq. �88�.
Note that this state has angular momentum m=0 in the lan-
guage of Sec. XI A. The k integral can be performed analyti-
cally �taking �→� in the integration limit�. Using &� de-
fined in Eqs. �78a�–�78c� we obtain

GA1A1 =
V/2 − �

2 �
�=�

�1 − i�
V�

M2�K0�&�r� , �90a�

GB1A1 =
− i

2 �
�=�

�1 − i�
V�

M2��&�K1�&�r��e−i$, �90b�

GA2A1 =
− it��V2/4 − �2�

2M2 �
�=�

��K0�&�r�� , �90c�

GB2A1 =
t��V/2 − ��

2M2 �
�=�

��&�K1�&�r��ei$. �90d�

These propagators can also be easily expressed in terms of
the free-particle wave functions,

G�j,A1 = 
�K,0��,&+,r� −�K,0��,&−,r�
− i2M2�2 �

�j

. �91�

This property is not a coincidence since the particles are
essentially free, except for the potential that acts on the
single impurity site at the origin.

2. Impurity on a B1 site

When there is an impurity on a B1 site one can perform
the same calculation with the result that the wave function
becomes

G�j,B1 = 
&+�K,1��,&+,r� − &−�K,1��,&−,r�
2M2�2�V/2 − �� �

�j

. �92�

This state has angular momentum m=1 in the language of
Sec. XI A. A similar expression can be obtained when there

is an impurity on an A2 �B2� site, where in this case the
corresponding state has angular momentum m=0 �m=−1�.

D. Asymptotic behavior

The asymptotic behavior of the modified Bessel functions
is Kn�z��exp�−z� /�z as z→�. Therefore the bound states
are exponentially localized within a length scale given by
�see Eqs. �78a�–�78c��

l = �Re�&���−1

= ��4 ��2 + V2/4�2 + M4 sin�1

2
tan−1
 M2

�2 + V2/4��	
−1

�
2kg

Vt�

� 2

1 − 2���/Eg
, �93�

where the last line is applicable for weakly bound states
close to the band edge. This is in agreement with the general
results above in Eq. �80�. At short distances one may use that
Kn�z��1 /zn for n 0 and K0�z��−ln z to conclude that the
wave functions are not normalizable in the continuum. In
particular, for an impurity on the A1 �B1� site the wave func-
tion on the B1 �A1� site diverges as 1 /r. This divergence is
however rather weak �i.e., logarithmic� and not real since in
a proper treatment of the short-distance physics, the diver-
gence is cut off by the lattice spacing a �this is equivalent to
cutting of the k integral in Eq. �89� at k=� instead of taking
�→��.

XII. SIMPLE CRITERION

Using the asymptotic form of the wave functions one can
approximate the wave function as

%�
A

�2r
e−&r �94�

in each plane. Normalization then requires that A=�&� /�,
where &� is the real part of &�. Thus one impurity is inter-
acting with approximately

Nl = ��r2�� 3�3a2

4
�95�

atoms per plane. For an impurity density of ni, the number of
impurities interacting with a given impurity is given by

Ni =
��3

2
� t

&�
	2

ni. �96�

A simple estimate of the critical density nc above which the
interaction between different impurities is important is then
given by Ni�1. Writing �=Eg /2−Eb one then finds the fol-
lowing criterion for overlap of impurity wave functions �as-
suming weakly binding impurities�:

ni( nc =
1

2��3
�Vt�

kgt
	2Eb

Eg
� 2.5� 10−3Eb

Eg
, �97�

indicating that the critical density increases with the applied
gate voltage. The last step is valid for V� t�. Taking U
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#1 eV we found in Sec. XI that Eb#4�10−4Eg, leading to
nc�10−6. Hence, even tiny concentrations of impurities lead
to wave-function overlap. This result shows that even a small
amount of impurities can have strong effects in the electronic
properties of the BGB.

XIII. VARIATIONAL CALCULATIONS

For general potentials it is not possible to solve for the
bound states in closed form. Nevertheless, for estimates and
to gain intuition about the problem it is fruitful to study the
problem with variational techniques. In this section we con-
sider two different variational approaches.

A. Variational calculation I

Using Eq. �77� one can show the existence of bound states
variationally. For simplicity we consider only the case m=0
�j=−1 /2� and a symmetric potential g1=g2=g�r�. We use the
simple trial-wave function %2=A exp�−kr /2�. The following
integrals are useful in the process:

�
0

�

�%2�2dr = 1, �98a�

�
a

� �%2�2

r
dr = kE1�ka� , �98b�

�
0

�

��R − r��%2�2dr = 1 − exp�− kR� . �98c�

Here a is a cutoff on the order of the lattice spacing needed
to regularize the integral. E1�x�=�x

�dr exp�−r� /r is an expo-
nential integral �see, e.g., Ref. 67�. The eigenvalue ��k� of the
kinetic term is given by the equation

0 = ��2 +
V2

4
−

k2

4
�E1�ka�2 − 1��2

+
V2t�

2

4
− �2�V2 + t�

2 � ,

�99�

which is the same as the equation for the bare bands �cf. Eq.
�64�� with the substitution k2→k2�E1�ka�2−1� /4. Provided
that ka#0.26 �k#1.2 eV� the “momentum” is real. For an
attractive potential we may then construct a wave packet
corresponding to the E+,− band leading to a positive contri-
bution from the kinetic term.

We consider two types of potentials: one of the Coulomb
type, gC=−� /r, characterized by the dimensionless strength
�, and a local potential, gL=−U��R−r�, characterized by the
strength U and the range R. The total variational energies for
the two types of potentials are

Evar,C = E+,−� k

2
�E1�ka�2 − 1	 − �kE1�ka� , �100a�

Evar,L = E+,−� k

2
�E1�ka�2 − 1	 − U�1 − e−kR� . �100b�

Some typical results obtained from these expressions are
shown in Figs. 38 and 39. For a sufficiently strong potential

it is favorable for the state to become very localized close to
the impurity, and the assumed “bound state” is located inside
of the continuum of the valence band. This is problematic as
it leads to a breakdown of the picture of a bound state com-
ing only from the states in the E+,− band. The state can no
longer be considered a true bound state since it is allowed to
hybridize with the states in the valence band and hence leak
away into infinity. This state can therefore only be regarded
as a resonance. Nevertheless, for weak Coulomb potentials
there are indeed bound states inside of the gap, and for short-
range potentials the variational treatment gives results that
are consistent with the more rigorous study coming up in
Sec. XIV.

B. Variational calculation II

Another simple variational approach is to construct a
wave packet with angular momentum m and a momentum
close to kg from the E+,− band using the free particle solu-
tions in Eq. �84� according to

�var��� = �
kg−�

kg+�

dp�J,m�E+,−�p�,p,r�� p

4��
, �101�

where we assume that ��kg. The factor �p /� is included to
generate a properly normalized variational state. Since this
state is built up of eigenstates of the kinetic term the contri-
bution from the kinetic energy to the variational energy be-
comes
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FIG. 38. �Color online� Variational energy for a Coulomb po-
tential as a function of the variational parameter k for V=50 meV.
From top to bottom: �=0.033, 0.1, 0.33, and 1. Left: large view;
right: zoom in for small k.
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FIG. 39. �Color online� Variational energy for a short-range po-
tential of range R as a function of the variational parameter k for
V=50 meV. From top to bottom: U=0.033, 0.1, 0.33, and 1 eV.
Left: R=10a; right: R=1a.
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Evar,kin �
1

�
�

kg−�

kg+�

dp
p2

2m� =
�2

3m�
�102�

using Eq. �61�. The leading contribution to the interaction
energy for small � becomes

Evar,int =� d2x�
kg−�

kg+�

dp�
kg−�

kg+�

dp�

�
�pp�

4��
�J,m

† �E+,−�p�,p,r�g�r��J,m�E+,−�p��,p�,r�

� 2�kg� drr�J,m
† �E,kg,r�g�r��J,m��E,kg,r��E=E+,−�kg�

� − 2�kg
U

R̃2
. �103�

Therefore, the variational calculation shows that for any m, a
weak attractive potential of strength �U leads to a weakly
bound state with binding energy Eb�U2. This can be under-
stood by noting that for each value of m, due to kg being
nonzero, the problem maps into a 1D system with an effec-
tive local potential. It is well known �see, e.g., Ref. 68� that
in one dimension a weak attractive potential ��U� always
leads to a bound state with binding energy Eb�U2. Thus the
result is a direct consequence of the peculiar topology of the
BGB band edge—see however Sec. XVI.

XIV. POTENTIAL WELL

For the case of the simple local “potential well” defined
by the potentials gLj =−Uj��R−r��−� j��R−r� /R, it is pos-
sible to make analytic progress with the continuum problem.
In Sec. XI B we gave the explicit form of the eigenstates for
a constant potential in the angular-momentum basis. Bound
states are possible when the two solutions for r"R and the
two solutions for r!R are not linearly independent at r=R.
This can be tested by evaluating the 4�4 determinant of the
matrix built up by the four eigenstate spinors. Given U1, U2,
and R the resulting determinant is a function of the energy �.
Zeros of the determinant inside of the band gap correspond
to the bound states that we are searching for. Inside the po-
tential region the effective frequency and bias are given by

�̃ = � + �U1 + U2�/2, �104a�

Ṽ = V + �U2 − U1� . �104b�

The determinant is given by one of the following expres-
sions:

D0��� = det��K,m��,&+,R�,�K,m��,&−,R�,

�I,m��̃,&̃+,R�,�I,m��̃,&̃−,R�� ,

D1��� = det��K,m��,&+,R�,�K,m��,&−,R�,

�J,m��̃,p+,R�,�I,m��̃, p̃−,R�� ,

D2��� = det��K,m��,&+,R�,�K,m��,&−,R�,

�J,m��̃,p+,R�,�J,m��̃,p−,R�� ,

depending on whether there are zero, one, or two propagat-
ing modes at the chosen energy inside of the potential region.
Here,

&� = �− ��2 + V2/4�� iM2, �105�

p� = ���̃2 + Ṽ2/4�� �− M̃4, �106�

p̃− = ��− M̃4 − ��̃2 + Ṽ2/4� , �107�

where M̃ is given by Eq. �65� with the substitutions V→ Ṽ
and �→ �̃.

By monitoring the zeros of Dn as a function of the radius
R and the strengths � j, we have studied the binding energies
and find that the deepest bound states are in one of the
angular-momentum channels m=0,�1 for a substantial pa-
rameter range. Since these types of states are also present for
the Dirac delta potential we argue that the physics of short-
range potentials can be approximated �except for the short-
distance physics� by Dirac delta potentials with a strength
tuned to give the correct binding energy. A typical result for
the binding energies is shown in Fig. 37.

A feature of potentials with a finite range is that upon
increasing the potential strength, the binding energies can be
made to increase until the state merges with the continuum of
the lower band and becomes a resonance. This is illustrated
in Fig. 40 where we have plotted D2��� for different values
of the strength of the potential and it can be seen how the
zeros of D2 move across the gap and ultimately disappear
into the valence band. Note that this is consistent with the
interpretation of the variational calculation of Sec. XIII A.
We expect a similar behavior to occur for a strong Coulomb
potential, but this interesting case is beyond the scope of this
study. Another related example of this phenomenon �without
a hard gap� is the problem of a strong Coulomb impurity in
monolayer graphene that has acquired much interest
recently.69–72

The important case of a screened Coulomb potential gen-
erally requires a different approach. Nevertheless, we do not
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FIG. 40. �Color online� Plot of Im�D2���� as a function of the
frequency � inside of the band gap for m=0, r=10a, V=50 meV,
and �1=�2=�. Left: from top to bottom �=1.9,2.0,2.1,2.2; right:
zoom in near the lower band edge from top to bottom �
=2.1,2.3,2.5,2.7.
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anticipate any qualitative discrepancies between a potential
well and a screened Coulomb potential. We expect the
screening wave vector to be roughly proportional to the den-
sity of states at the Fermi energy and once the range and the
strength of the potential have been estimated a potential well
can be used to approximate the binding energies. We also
note that the asymptotic behavior in Eq. �77� is quite general
for a decaying potential.

Polarization function

Since we were just discussing the issue of screening it fits
well to briefly discuss the issue of the dielectric function in
the biased bilayer �see also Ref. 73�. With the introduction of
the symmetric �+� and antisymmetric �−� densities �see, e.g.,
Ref. 49�,

���q� = �
k
%†�k + q�

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1
�%�k� . �108�

The usual manipulations then give the retarded response in
the symmetric channel as74

)++�− q,�� = 2�
l,l�
� dk

�2��2 �vl
†�k�vl��k + q��2

�
nF�El�k�� − nF�El��k + q��

El�k� − El��k + q� + � + i�
. �109�

Here vl�k� is the spinor wave function of band l at momen-
tum k. At half filling this expression only has contributions
from l� l� and since the wave-function overlap at q=0 be-
tween different bands for a fixed value of k is zero we con-
clude that )+,+�q ,0��q2 in the limit of q→0. The expression
is expected to be dominated by the transitions between the
E−,− and E+,− bands leading to )+,+�q ,0��−2q2 /V. The
random-phase-approximation �RPA� dielectric function is
then given by ��q��1− �2�e2 /q�)+,+�q ,0� which imply that
��q��1 as q→0. From this we can conclude that the BGB is
unable to contribute to the screening of the long-range part
of the Coulomb interaction. Note that the dimensionality of
the system is crucial for this argument. In three dimensions,
where the Coulomb interaction goes as 1 /q2, the same argu-
ment as in the above usually gives a large contribution to �
for a semiconductor.75 For the unbiased bilayer at �=0 in the
low-energy approximation of Eq. �9�, one finds �using RPA�
a screening wave vector that is proportional to t�.49 This is in
agreement with what one expects for an electron gas in two
dimensions where the screening wave vector is proportional
to the effective mass. For a more detailed discussion of the
unbiased graphene bilayer dielectric function including the
trigonal warping see Ref. 76.

XV. COHERENT-POTENTIAL APPROXIMATION

As discussed above in Sec. XII, for a finite density ni of
impurities, the bound states can interact with each other lead-

ing to the possibility of band-gap renormalization and the
formation of impurity bands. A simple, but crude, theory of
these effects is the CPA.77,78 In this approximation, the dis-
order is treated as a self-consistent medium with recovered
translational invariance. The medium is described by a set of
four local self-energies which are allowed to take on differ-
ent values on all of the inequivalent lattice sites in the prob-
lem. In fact, this section is a straightforward extension to the
biased case of the methods applied in Sec. V for the unbiased
case. The self-energies are chosen so that there is no scatter-
ing on average in the effective medium. It has been argued
that the CPA is the best single-site approximation to the full
solution of the problem.78

In the following we often suppress the frequency depen-
dence of the self-energies for brevity. The expression for the
diagonal elements of the Green’s function G is given in Ap-
pendix D. We follow the standard approach to derive the
CPA �see, for example, Refs. 51 and 78�, and we obtain the
self-consistent equations,

��j =
niU

1 − �U − ��j�Ḡ�j

. �110�

The limit of site dilution �or vacancies� used in Sec. V is
obtained in the limit U→� leading to the self-consistent
equations,

��j = −
ni

Ḡ�j

. �111�

An explicit expression for the local propagators Ḡ�j is given
in Appendix D. Using the expressions obtained there the
self-consistent equations for U→� become

ni

�A1
= − ḠA1 = �1��1 − �2�2�0� , �112a�

ni

�B1
= − ḠB1 = �1��1 − �2�2�0� + t�

2 �2�0. �112b�

From these equations it is straightforward to obtain the den-
sity of states �DOS� on the different sublattices �j from

��j���=−Im Ḡ�j��+ i�� /�. In the clean case, one finds

�A1
0 = �� − V/2

2�2 
) −
�V�2 − )�

��V2 + t�
2 ��2 − V2t�

2 /4�� ,

�113a�

�B1
0 = ��A1

0 +
t�
2 �� + V/2��2 − )�

2�2��V2 + t�
2 ��2 − V2t�

2 /4
� , �113b�

for ��� Eg /2. Here )= �0,1 ,2� for ���*V /2, V /2* ���
*�t�

2 +V2 /4, and �t�
2 +V2 /4* ���. The corresponding quan-

tities in plane 2 are obtained by the substitution V→−V. In
the limit of V→0 we recover the known unbiased result of
Eq. �28�. Note that the square-root singularity starts to appear
already above V /2 on the B1 sublattice. There is also a di-
vergence on the A1 sublattice but the coefficient in front is
usually much smaller. The DOS on the A1 sublattice van-
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ishes at �=V /2, while the DOS on the B1 sublattice is finite
there.

The numerically calculated density of states for U→� is
shown in Fig. 41. The impurity band evolves from the single-
impurity B2 bound state which for the parameters involved is
located at ��0.3Eg. Further evidence for this interpretation
is that the total integrated DOS inside the split-off bands for
the two lowest impurity concentrations is equal to ni. It is
worth mentioning that the width of the impurity band in the
CPA is likely to be overestimated. The reason for this is that
the use of effective atoms, all of which have some impurity
character, increases the interaction between the impurities.78

For smaller values of the impurity strength the single-
impurity bound states are all weakly bound �cf. Fig. 37� and
the “impurity bands” merge with the bulk bands, as shown in
Figs. 41 and 42. The bands have been shifted rigidly by the
amount niU for a more transparent comparison between the
different cases. The smoothening of the singularity and the
band-gap renormalization is apparent. Observe also that the
band edge moves further into the gap at the side where the
bound states are located. It is likely that the CPA gives a
better approximation for these states since in Eq. �79� they
are weakly damped almost propagating modes. Notice that
the gap and the whole structure of the DOS in the region of
the gap are changing with V, and in particular the possibility
that the actual gap closes before V=0 because of impurity-
induced states inside of the gap. Finally we note that this
observation is consistent with the results of numerically ex-
act calculations using the recursive Green’s function method
for strong disorder.79

XVI. EFFECTS OF TRIGONAL DISTORTIONS

Before we conclude in this paper we would like to briefly
comment on the effect of the �3 term on our findings in Secs.
XI–XV. The effects of �3 on the spectrum of the BGB were
discussed in Sec. III, where it was shown that this term
breaks the cylindrical symmetry and leads to the trigonal
distortion of the bands. In the BGB the result is three copies
of a more conventional elliptic dispersion at the lowest en-
ergies near the band edge. Using the same method as in Sec.
XI we find that, also for an elliptical band edge, a Dirac delta
potential always generates a bound state in two dimensions.

The divergence of Ḡ0 is generally only logarithmic as the
band edge is approached however, whereas the divergence is
an inverse square root without �3. More confined bound
states with larger binding energies sample a larger area of the
BZ. Therefore we do not expect the small details at the band
edge to significantly modify the results that we obtain with
the minimal band model for these states.

Another observation is that when there is a finite density
of impurities in the BGB, the self-energies can become quite
large as we have seen in Sec. XV. Consider the case V
=50 meV, for which �V−Eg� /Eg�0.01. Therefore, by look-
ing at Fig. 5, we see that �3 smooth out the square-root
singularity on this scale. Comparing with Fig. 41 we see that
for an impurity of strength U=−1 eV, the trigonal distortion
would correspond to a density of impurities of around ni
�0.001. In the case that the gap is filled up with impurity-
induced states �see Fig. 42�, the disorder-induced energy
scale is much larger than that generated by �3. Therefore we
argue that the possibility that the gap closes before V=0 is
robust to the presence of a �3, even if it is as large as the
values quoted in the graphite literature.

XVII. CONCLUSION AND OUTLOOK

Graphene research is one of the fastest growing fields in
condensed matter research since the isolation by Novoselov
et al.1 of the first graphene flake in 2004. Three years after
that, and after hundreds of theoretical papers on the subject,3

the physics of single layer graphene is relatively well under-
stood and very few controversies remain. Meanwhile, the
study of multilayer graphene, and particularly bilayer
graphene, continues to be, experimentally and theoretically,
an open field of research. Partially, this can be assigned to
the natural attraction of researchers to the “one atom thin”
material and its unusual electronic spectra. Nevertheless,
graphene bilayer is equally thin �two atom thick, indeed� and
has also 2D Dirac spectrum �albeit massive� with unusual
properties. Graphene bilayer is also more prone to show
strong electron-electron correlation effects, such as
magnetism49 and charge-density wave80 phases, because of
its finite density of states at the Dirac point, unlike its single
layer counterpart where interactions are at most marginal in
renormalization-group sense.81 Interestingly enough, the
study of the effect of electron-electron interactions in
graphene is a field in its infancy.48,82

Furthermore, graphene bilayer is equally easy �or hard� to
find or produce epitaxially. Besides its intriguing electronic
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�in units of Eg� close to the conduction band edge for different
impurity concentrations �see inset�, U=−1 eV. Right: details of the
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properties, the graphene bilayer is a promising candidate to
bulk electronic devices with properties that are insensitive to
surface �edge� defects such as graphene nanoribbons and
quantum dots. Perhaps even more interesting is the fact that
graphene bilayer is the only known material that has an elec-
tronic gap between conduction and valence bands that can be
fully controlled by the application of a transverse electric
field �a tunable gap semiconductor�, as has been demon-
strated experimentally.12,13 This property opens up an enor-
mous number of possible ways to use bilayer graphene from
transistors to lasers working in the terahertz regime.

Nevertheless, in order to be able to use graphene bilayer
�and multilayers� in device applications, one has to under-
stand how material issues, such as disorder, affect its elec-
tronic properties. This was the main aim of this work,
namely, to understand how disorder affects the electronic
properties of bilayer �and multilayer� graphene in its most
basic model. We have shown that the electronic self-energies
can be calculated analytically within the t-matrix and CPA
presenting some unusual features that can be measured either
by transport or spectroscopy �ARPES and STM�. We have
calculated a series of important physical properties such as
spectral functions and frequency dependent conductivities.
We have also studied the problem of bound states in the
biased bilayer graphene and their effect in the electronic
structure and have shown that the properties of these bound
states can be equally well controlled by applied transverse
fields. We also point out that we have left open issues asso-
ciated with trigonal distortions. At this point in time, it is not
clear that such effects, associated with �3, are going to be the
same as observed in three-dimensional �3D� graphite and
more experimental studies are needed in order to investigate
the issue. We hope that our results will stimulate more ex-
perimental studies of these amazing materials.
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APPENDIX A: MINIMAL CONDUCTIVITY OF THE
GRAPHENE BILAYER INCLUDING TRIGONAL WARPING

In this appendix we provide an alternative derivation of
the value of the minimal conductivity of the graphene bilayer
in the presence of trigonal warping. The conductance of a
wide strip of graphene at the Dirac point is mediated by
evanescent modes that connect the leads. We define the
Hamiltonian as

H � � 0 vF�kx + iky�
vF�kx − iky� 0

	 , �A1�

and use the Landauer formalism described in Refs. 83 and
84. We take the width W of the sample to be much larger

than its length L. If we assume that the leads on the right and
on the left are heavily doped clean graphene, the incoming,
reflected, and outgoing waves can be approximated as

�in �
1
�2

�1

1
	eikyy , �A2a�

�ref �
r�ky�
�2

� 1

− 1
	eikyy , �A2b�

�trans �
t�ky�
�2

�1

1
	eikyy , �A2c�

where t�ky� �r�ky�� is the transmission �reflection� amplitude
of the mode with perpendicular momentum ky. The wave
function in the central region, 0*x*L, at zero energy, can
be written as

�� A�e−kyx

0
	eikyy + B� 0

ekyx 	eikyy . �A3�

The matching conditions at the edges at x=0 and x=L are

1 + r�ky� = �2A , �A4a�

1 − r�ky� = �2B , �A4b�

t�ky� = �2Ae−kyL, �A4c�

t�ky� = �2BekyL, �A4d�

resulting in the transmission probability

T�ky� � �t�ky��2 =
1

cosh2�kyL�
. �A5�

The conductance per channel is thus given by

G =
e2

h

W

2�
�

−�

�

dkyT�ky� = � e2

�h
	W

L
. �A6�

We will now extend this result to the anisotropic Dirac
equation. The Hamiltonian is

H � � 0 vxkx + ivyky

vxkk − ivyky 0
	 , �A7�

where the Fermi velocities �vx and vy� are allowed to be
different in the x and y directions. We use the incoming and
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outgoing wave functions in Eqs. �A2a�–�A2c� and generalize
the wave functions in the graphene junction �Eq. �A3�� to

�� A�e−&x

0
	eikyy + B� 0

e&x 	eikyy , �A8�

where the Dirac equation implies that &=vyky /vx. Matching
the wave functions at the contacts with the leads, we find that
the generalization of Eq. �A5� is

T�ky� =
1

cosh2� vykyL

vx
�

, �A9�

so that

G = � e2

�h
	�vx

vy
	W

L
. �A10�

If the junction is rotated by an angle + with respect to the
main axes of the anisotropic Dirac equation, the Hamiltonian
becomes

H � � 0 va�kx cos�+� − ky sin�+�� + ivb�kx sin�+� + ky cos�+��
va�kx cos�+� − ky sin�+�� − ivb�kx sin�+� + ky cos�+�� 0

	 ,

�A11�

where va and vb are the Fermi velocities along the two prin-
cipal axes. The wave function in the central region is now

�� A�e−&xeik�x

0
	eikyy + B� 0

e&xeik�x	eikyy , �A12�

where

& =
vavb

va
2 cos2�+� + vb

2 sin2�+�
ky , �A13a�

k� =
sin�+�cos�+��va

2 − vb
2�

va
2 cos2�+� + vb

2 sin2�+�
ky . �A13b�

Using this we also obtain

T�ky� =
1

cosh2� vavbkyL

va cos2�+�+vb
2 sin2�+� �

, �A14�

leading to

G = � e2

�h
	�va

2 cos2�+� + vb
2 sin2�+�

vavb
	W

L
. �A15�

In a graphene bilayer, including trigonal warping but ig-
noring terms that couple sites in the same sublattice, we have
four Dirac points. One of them is isotropic, with va=vb, and
the three others are anisotropic, with vb=3va. The principal
axes at these three Dirac points form angles with respect to a
barrier which can be parametrized as +0 ,+0+2� /3 and +0
+4� /3, where +0 depends on the orientation of the barrier.
The conductance is therefore given by

G = � e2

�h
	W

L

1 +

3

2
�va

vb
+

vb

va
	� . �A16�

This expression is independent of the angle +0. For vb /va
=3, we find G=6� �e2 / ��h���W /L� per channel, in agree-
ment with Refs. 52 and 60.

APPENDIX B: DENSITY OF STATES IN MULTILAYER
GRAPHENE

In this appendix we derive explicit expressions for the
DOS in graphene multilayers. The expressions are used in
Sec. VI. To calculate the DOS in graphite we must perform
two integrals to get G. One integral we need is

I1 = �
0

�2

d�p2��
−�/2

�/2 dk�

�

 1

2D−
+

1

2D+
� . �B1�

First we perform the perpendicular integral using complex
variables to rewrite the integral as a contour integral around
the unit circle and then picking up the pole inside,

�
−�/2

�/2

dk�
 1

D−
+

1

D+
� =

1

� − �B
� dz

i

1

t��z2 + 1� − Az

= −
2�

� − �B

sgn�Re�A��
�A2 − 4t�

2
,

where A� p2 / ��−�B�− ��−�A�. Note that the function
sgn�Re�A�� changes sign just where the branch of the square
root does. Moreover the square root is purely imaginary
there. Therefore the function is actually continuous across
the point where Re�A�=0. From now on in this appendix, as
well as in Appendix C 2, we choose the branch of the square
root such that the sign of the real part is included; with this

convention A and �A2−4t�
2 always lie in the same quadrant

of the complex plane. Because of the form of A we can use
the integral formula

��1��p2� =� d�p2�
1

�A2 − 4t�
2

= �� − �B�log�A + �A2 − 4t�
2 � ,

�B2�

directly, since the argument of the logarithm does not cross
any branch cut. Thus the result of the integral is
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I1 = − log
A��2� + �A2��2� − 4t�
2

A�0� + �A2�0� − 4t�
2 � . �B3�

Finally to leading order in � we get

I1 = − log
 2�2

− �� − �B��� − �A + ��� − �A�2 − 4t�
2 �

.�
�B4�

Similarly the integral

I2 = �
0

�2

d�p2��
−�/2

�/2 dk

�

− 2t� cos�k�

2D−
+

2t� cos�k�
2D+

�
�B5�

can be written as

I2 =
1

� − �B

�2 − �

0

�2

d�p2�
A

�A2 − 4t�
2 � . �B6�

Now we may use the integral formula

� d�p2�
A

�A2 − 4t�
2

= �� − �B��A2 − 4t�
2 , �B7�

and one can once again convince oneself that there is no
contribution from the possible crossing of the branch at
Re�A�=0. With the help of this the resulting expression be-
comes

I2 =
1

� − �B
��2 − �� − �B���A2��2� − 4t�

2 + �A2�0� − 4t�
2 �� .

�B8�

Finally, keeping only the leading term in the expansion in �
we get

I2 = �� − �A� − ��� − �A�2 − 4t�
2 . �B9�

APPENDIX C: CONDUCTIVITY KERNELS

In this appendix we derive formulas for the conductivity
kernels that we use in Secs. VIII and IX. First we rewrite the
kernels with the identity

Im�G1����Im�G2�� + ���

=
1

2
Re�G1

A���G2
R�� + �� − G1

R���G2
R�� + ���

=
1

2
Re� �

�=�
�G1�E1 − i�
1�G2�E2 + i
2�� , �C1�

and introduce the notations

EA = � − �A��� , �C2a�

EB = � − �B��� , �C2b�

ẼA = � + � − �A�� + �� , �C2c�

ẼB = � + � − �B�� + �� . �C2d�

1. Bilayer graphene

The integrals we need for the bilayer are easy to obtain
since there are never any problems with branches of the loga-
rithms. The kernels can be expressed in terms of the follow-
ing integrals:

�
0

�2

d�p2�gAA
D ���gBB

D �� + �� =
1

4�
�,�

EB�ẼA + �t��

EB�EA + �t�� − ẼB�ẼA + �t��
log
− ẼB�ẼA + �t��

− EB�EA + �t��
� , �C3�

�
0

�2

d�p2�gBB
D ���gAA

D �� + �� =
1

4�
�,�

ẼB�EA + �t��

ẼB�ẼA + �t�� − EB�EA + �t��
log
− EB�EA + �t��

− ẼB�ẼA + �t��
� , �C4�

�
0

�2

d�p2�gAB
ND���gAB

ND�� + �� =
1

4�
�,�

��

EB�EA + �t�� − ẼB�ẼA + �t��
�EB�EA + �t��log
 �2

− EB�EA + �t���
− ẼB�ẼA + �t��log
 �2

− ẼB�ẼA + �t��
�� , �C5�
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and

�
0

�2

d�p2��gAA
D ���gAA

D �� + �� − gAA
ND���gAA

ND�� + ���

=
1

2�
�

EBẼB

EB�EA + �t�� − ẼB�ẼA − �t��
log
− ẼB�ẼA − �t��

− EB�EA + �t��
� .

�C6�

In fact, although the cutoff � enters the expression in Eq.
�C5�, the final result is actually independent of �. For the dc
conductivity it is convenient to work out that for two re-
tarded propagators we have the relation

�
0

�2

d�p2��gAA
D ���gBB

D ��� + gAB
ND���gAB

ND���� = − 1. �C7�

2. Multilayer graphene

For multilayer graphene we have to perform two inte-
grals, they are

J1 = �
0

�2

d�p2��
−�/2

�/2 dk

�
�gAA

D gBB
D̃ + gBB

D gAA
D̃ + 2gAB

NDgAB
ND̃�

�C8�

and

J2 = �
0

�2

d�p2��
−�/2

�/2 dk

�
�gAA

D gAA
D̃ + gAA

NDgAA
ND̃�sin2�k� .

�C9�

Exactly like in the case above we find J1=−2 when �=0 and
both the propagators are retarded. First we perform the per-
pendicular integral using a contour integral as we did when
we computed the DOS in Appendix B. In the following the
branch of the square root includes the sign of the real part
�A2−4t�

2 �sgn�Re�A���A2−4t�
2 . This implies that A and

�A2−4t�
2 always lie in the same quadrant. The results we

need are

�
−�/2

�/2 dk

�
gAA

D ���gBB
D �� + �� = −

1

2ẼB
� 2

�A2 − 4t�
2

+
p2

ẼB

 1

A − Ã
−

1

A + Ã
� 1

�A2 − 4t�
2

+
p2

ẼB

 1

Ã − A
−

1

A + Ã
� 1

�Ã2 − 4t�
2 � ,

�C10�

�
−�/2

�/2 dk

�
gAB

ND���gAB
ND�� + �� = −

p2

2EBẼB
�
 1

A − Ã
+

1

A + Ã
� 1

�A2 − 4t�
2

+ 
 1

Ã − A
+

1

A + Ã
� 1

�Ã2 − 4t�
2 � , �C11�

and

�
−�/2

�/2 dk

�
�gAA

D ���gAA
D �� + �� + gAA

ND���gAA
ND�� + ���sin2�k� =

1

4t�
2 �− 1 +

1

A − Ã
��A2 − 4t�

2 − �Ã2 − 4t�
2 �� , �C12�

where

A = p2/EB − EA, �C13�

Ã = p2/ẼB − ẼA. �C14�

Adding up all the contributions for the J1 we get after some rearrangements

J1 = �
0

�2

d�p2��− 
 1

ẼB

1

�A2 − 4t�
2

+
1

EB

1

�Ã2 − 4t�
2 � +

d−
2

2d+

1 +

c+

p2 − c+
�
 1

�A2 − 4t�
2

+
1

�Ã2 − 4t�
2 �

−
d+

2

2d−

1 +

c−

p2 − c−
�
 1

�A2 − 4t�
2

−
1

�Ã2 − 4t�
2 �� , �C15�
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where

c� =
EA� ẼA

d�
= EBẼB

EA� ẼA

ẼB� EB

, �C16�

d� =
1

EB
�

1

ẼB

=
ẼB� EB

EBẼB

. �C17�

It is convenient to define the integral

��
�2��p2� =� d�p2�

1

p2 − c�

1

�A2 − 4t�
2

=
1

�B�
2 − 4t�

2
�log�p2 − c�� − log�AB� + �A2 − 4t�

2 �B�
2 − 4t�

2 − 4t�
2 �� , �C18�

in which we have introduced

B� = c�/EB − EA, �C19�

and the square roots are again chosen such that B� and
�B�

2 −4t�
2 are in the same quadrant in the complex plane.

Using this we may write

� d�p2�
1

p2 − c�
�A2 − 4t�

2

= �A2 − 4t�
2 + B� log�A + �A2 − 4t�

2 �

+ �B�
2 − 4t�

2 ���
�2��p2� . �C20�

If we use this formula blindly and just plug in the end points
the resulting expressions are

J1 = �
 d−
2

2d+
−

d+
2

2d−
−

1

ẼB
���1��z� + 
 d−

2

2d+
+

d+
2

2d−
−

1

EB
��̃�1��z�

+
d−

2c+

2d+
��+

�2��z� + �̃+
�2��z�� −

d+
2c−

2d−
��−

�2��z� − �̃−
�2��z���

0

�2

�C21�

and

J2 =
1

4t�
2 �− z +

1

d−

�A2 − 4t�

2 − �Ã2 − 4t�
2 +

B−

EB
��1��z�

−
B̃−

ẼB

�̃�1��z� + �B−
2 − 4t�

2 ��−
�2��z� − �B̃−

2 − 4t�
2 ��̃−

�2��z���
z=0

�2

.

�C22�

One must be careful with the imaginary part of ��2� however.

First we note that B̃+=−B+ and B̃−=B−, which imply that the
log�p2−c�� term in ��2� does not contribute. Second, we
write A=2t� cosh��� and B=2t� cosh��� and use hyperbolic
trigonometric identities to write

log�AB + �A2 − 4t�
2 �B2 − 4t�

2 − 4t�
2 �

= log�4t�
2 �cosh�� + �� − 1��

= log�8t�
2 � + 2 log
sinh�� + �

2
	� . �C23�

By convention Re���!0 and −�* Im���"� �and the same
goes for ��. Therefore −�" Im��+�� /2"� and the argu-
ment of the log never crosses the branch cut along the nega-
tive real axis. Therefore the representation of A and B in
terms of hyperbolic functions automatically takes care of the
phase information of the argument. Finally, the case when B
is purely real and negative �this is relevant for the calculation
of the dc conductivity� requires that one should choose
Im���"0 so that sgn�Re�B���B2−4t�

2 =2t� sinh���.

APPENDIX D: LOCAL PROPAGATOR IN THE BIASED
GRAPHENE BILAYER

In this appendix we provide some details on the calcula-
tion of the local propagator in the BGB that we use in Sec.
XV. Introducing the notations

�1 = � − V/2 − �A1, �D1a�

�1 = � − V/2 − �B1, �D1b�

�2 = � + V/2 − �A2, �D1c�

�2 = � + V/2 − �B2, �D1d�

one can write

GA1A1 =
�1��2�2 − k2�

D
, �D2a�

GB1B1 =
�1��2�2 − k2� − t�

2 �2

D
. �D2b�

The equations for the corresponding quantities in layer 2 are
obtained by exchanging the indices 1↔2 everywhere. The
denominator can be written as

D = ��1�1 − k2���2�2 − k2� − t�
2 �1�2 � �k2 − z−��k2 − z+� ,

�D3�

where we have defined

z� =
�1�1 + �2�2

2
�

1

2
���1�1 − �2�2�2 + 4t�

2 �1�2.

�D4�

Introducing the integrals
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�2�0 = �
0

�2

d�k2�
1

D
=

1

z+ − z−

ln��2 − z+

− z+
	 − ln��2 − z−

− z−
	�

�
1

z+ − z−

ln� �2

− z+
	 − ln� �2

− z−
	� , �D5�

and

�2�1 = �
0

�2

d�k2�
k2

D

=
1

z+ − z−

z+ ln��2 − z+

− z+
	 − z− ln��2 − z−

− z−
	�

�
1

z+ − z−

z+ ln� �2

− z+
	 − z− ln� �2

− z−
	� , �D6�

we can easily compute Ḡ. Using the explicit form of the
propagators in Eqs. �D2a� and �D2b� and the same con-
tinuum approximation as in Eq. �25� we obtain

− ḠA1 = �1��1 − �2�2�0� , �D7a�

− ḠB1 = �1��1 − �2�2�0� + t�
2 �2�0. �D7b�

Again the corresponding quantities in plane 2 are obtained
by exchanging the indices 1↔2 everywhere.
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