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The spin-polarized transport through a coherent strongly coupled double quantum dot �DQD� system is
analyzed theoretically in the sequential and cotunneling regimes. Using the real-time diagrammatic technique,
we analyze the current, differential conductance, shot noise, and tunnel magnetoresistance �TMR� as a function
of both the bias and gate voltages for double quantum dots coupled in series, in parallel, as well as for T-shaped
systems. For DQDs coupled in series, we find a strong dependence of the TMR on the number of electrons
occupying the double dot, and super-Poissonian shot noise in the Coulomb blockade regime. In addition, for
asymmetric DQDs, we analyze transport in the Pauli-spin blockade regime and explain the existence of the
leakage current in terms of cotunneling and spin-flip cotunneling-assisted sequential tunneling. For DQDs
coupled in parallel, we show that the transport characteristics in the weak-coupling regime are qualitatively
similar to those of DQDs coupled in series. On the other hand, in the case of T-shaped quantum dots we predict
a large super-Poissonian shot noise and TMR enhanced above the Julliere value due to increased occupation of
the decoupled quantum dot. We also discuss the possibility of determining the geometry of the double dot from
transport characteristics. Furthermore, where possible, we compare our results with existing experimental data
on nonmagnetic systems and find qualitative agreement.
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I. INTRODUCTION

Transport properties of double quantum dots �DQDs�
have recently attracted much interest.1–24 Since the behavior
of double quantum dots resembles the behavior of molecules,
DQDs are frequently called artificial molecules, and are thus
considered as ideal systems to study the fundamental many-
body interactions between single electrons and spins.25–29

Double quantum dots exhibit a variety of interesting effects,
such as for example current rectification due to the Pauli-spin
blockade,4,6,15–18 negative differential conductance,8 forma-
tion of molecular states,2,3,12 spin pumping,13,14 Kondo
effect,30–32 etc. Furthermore, double quantum dots are also
interesting for future applications in quantum
computing.33–36 In addition, when the leads are ferromag-
netic, transport properties of the system strongly depend on
the relative orientation of the magnetizations of electrodes,
leading to the tunnel magnetoresistance �TMR� effect, spin
accumulation, exchange field, etc.22,23,37–43

The problem of spin-polarized transport properties has
been so far mainly addressed in the case of single-quantum
dots.39–54 In particular, in the strong-coupling regime, it was
shown that the Kondo peak becomes split when the magnetic
configuration changes from the antiparallel to parallel one,
and that this splitting can be compensated upon applying
external magnetic field.51–53 In the weak-coupling regime, on
the other hand, the parity effect of the linear-response TMR
was predicted43 and the zero-bias anomaly was found in the
differential conductance when magnetic moments of the
leads form an antiparallel configuration.44 In this paper, we
extend the existing theoretical studies and consider transport
through coherent double quantum dots weakly coupled to
external ferromagnetic leads. We note that spin-dependent

transport properties of DQDs in the weak coupling regime
have been analyzed very recently in a few theoretical
papers.16,23,55 The considerations were however limited to
either first-order tunneling or the Coulomb blockade regime.
In particular, in Ref. 16, the formation of a pure triplet state
was predicted, Ref. 23 deals with transport in the deep Cou-
lomb blockade regime, while Ref. 55 presents a detailed
analysis of sequential transport in the case of noncollinearly
polarized leads.

The goal of this paper is thus to analyze the transport
properties of double quantum dots coupled to collinear fer-
romagnetic leads in the full weak-coupling regime, i.e., in-
cluding sequential, cotunneling, and cotunneling-assisted se-
quential processes. Furthermore, we also analyze the effect
of different geometries of the double dots on transport, in
particular, the cases of DQDs coupled in series, in parallel, as
well as T-shaped double quantum dots are considered. The
comparison of numerical results obtained for different geom-
etries may in principle help in determining the system’s ge-
ometry, which may be of importance in discussing and un-
derstanding experimental results, especially on self-
assembled quantum dots. The present analysis is based on
the real-time diagrammatic technique which consists in a
perturbation expansion of the density matrix of the system
under consideration, and the relevant operators, with respect
to the coupling to external leads. The advantage of using the
real-time diagrammatic technique is that it takes into account
the effects of the exchange field and the renormalization of
the dot levels in a fully systematic way. In particular, in the
case of asymmetric DQDs coupled in series, we consider
transport in the Pauli-spin blockade regime and show that the
leakage current in the blockade region results from cotunnel-
ing and cotunneling-assisted sequential tunneling processes.
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As far as the shot noise is concerned, we show that the noise
is super-Poissonian in the Coulomb blockade regime and
drops to sub-Poissonian value in the sequential tunneling re-
gime, where the Fano factor approaches one half. This be-
havior is observed for parallel and serial DQD’s geometries.
In turn, for T-shaped double quantum dots, we find a large
super-Poissonian shot noise due to increased occupation of
the decoupled dot. We also analyze the TMR effect and find
its strong dependence on the transport regime and number of
electrons in the DQD in the ground state. For DQDs coupled
in series and in parallel, the TMR takes the values ranging
from around a half of the Julliere TMR to its full value,37

whereas for T-shaped DQDs, the TMR may be enhanced
above the Julliere value.

The systems considered in this paper may be realized ex-
perimentally for example in lateral and vertical semiconduc-
tor quantum dots6,8,10,56,57 or single wall metallic carbon
nanotubes with top gate electrodes.12,58–60 The latter systems
are of particular interest because by tuning the gates, it is
possible to change the charge on each dot separately. Unfor-
tunately, the aforementioned experiments concerned only
DQDs coupled to nonmagnetic leads. There are several ex-
perimental realizations of single-quantum dots attached to
ferromagnetic leads,61–73 while experimental data on spin-
polarized transport through double quantum dots are lacking.
We thus believe that the results presented in this paper will
be of assistance in discussing future experiments.

The paper is organized as follows: The model of the con-
sidered system is presented in Sec. II, whereas the method
employed in calculations is described in Sec. III. In Sec. IV,
we present and discuss the numerical results for double
quantum dots coupled in series. In this section, we also focus
on the role of second-order processes in transport. In addi-
tion, we also analyze transport in the Pauli-spin blockade
regime. In Sec. V, we deal with DQDs coupled in parallel,
whereas in Sec. VI we consider transport through T-shaped
quantum dots. Finally, the conclusions are given in Sec. VII.

II. MODEL

The schematic of a double quantum dot coupled to ferro-
magnetic leads is shown in Fig. 1. It is assumed that the

magnetizations of the leads are oriented collinearly, so that
the system can be either in the parallel or antiparallel mag-
netic configuration. The Hamiltonian of the system is given
by

H = HL + HR + HDQD + HT. �1�

The first two terms describe noninteracting itinerant elec-
trons in the leads, Hr=�k��rk�crk�

† crk� for the left �r=L� and
right �r=R� lead, where �rk� is the energy of an electron with
the wave vector k and spin � in the lead r, and crk�

† �crk��
denotes the respective creation �annihilation� operator. The
double dot is described by the Hamiltonian

HDQD = �
j=1,2

�
�

� jnj� + U �
j=1,2

nj↑nj↓ + U��
���

n1�n2��

+ t�
�

�d1�
† d2� + d2�

† d1�� , �2�

with nj�=dj�
† dj�, where dj�

† �dj�� is the creation �annihilation�
operator of an electron with spin � in the first �j=1� or
second �j=2� quantum dot, and � j is the corresponding
single-particle energy. The Coulomb interaction on the first
and second dot is assumed to be equal and is described by U,
while U� corresponds to the inter-dot Coulomb correlation.

The last term of ĤDQD describes the hopping between the
two dots with t being the hopping parameter. We assume that
the hopping parameter is large, so that there is a considerable
overlap of the wave functions of the two dots, leading to the
formation of molecular many-body states, through which
transport takes place. In addition, we also note that an ex-
change interaction between spins in the two dots may lead to
the formation of singlet and triplet states.12 However, experi-
mentally, this exchange interaction was found to be rather
small as compared to the other energy scales,6 therefore, in
the following considerations, we will neglect it.

The tunneling processes between the DQD and electrodes
are described by the Hamiltonian

HT = �
r=L,R

�
j=1,2

�
k�

�trjcrk�
† dj� + t

rj
*dj�

† crk�� , �3�

where trj denotes the tunnel matrix elements between the rth
lead and the jth dot. The coupling of the jth dot to the rth
lead can be written as �rj

� =2��trj�2�r
�, where �r

� is the spin-
dependent density of states of lead r. By introducing the
definition of the spin polarization of lead r, pr= ��r

+

−�r
−� / ��r

++�r
−�, one can write, �rj

+�−�=�rj�1� pr�, with �rj
= ��rj

+ +�rj
− � /2, where �rj

+ and �rj
− describe the coupling of the

jth dot to the spin-majority and spin-minority electron bands
of the lead r, respectively.

Because the double dot Hamiltonian, Eq. �2�, is not diag-
onal in the local basis, we perform a unitary transformation

U†HDQDU= H̃DQD to a new basis in which H̃DQD is diagonal,

H̃DQD���=�����. The eigenvectors ��� are the many-body
states of the double quantum dot, while the eigenvalues ��

denote the corresponding energies.74

1LΓ Dot 1

Dot 2Left Right

1RΓ

2LΓ 2RΓ

t

FIG. 1. �Color online� Schematic of a double quantum dot
weakly coupled to external ferromagnetic electrodes. The magneti-
zations of the leads can form either parallel or antiparallel magnetic
configurations. The first �j=1� and second �j=2� dots are coupled to
each other via the hopping t, and to the left �r=L� and right �r
=R� leads with the coupling strength �rj. The double quantum dot is
assumed to be symmetrically biased. By adjusting the couplings,
the system can smoothly cross over from the serial to parallel
geometry.
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III. METHOD

In order to calculate the spin-dependent transport proper-
ties of a double quantum dot in the sequential and cotunnel-
ing regimes, we employ the real-time diagrammatic
technique.43,75,76 It consists in a systematic perturbation ex-
pansion of the reduced density matrix of the considered sys-
tem and the current operator with respect to the dot-lead
coupling strength �. The time evolution of the reduced den-
sity matrix can be visualized as a sequence of irreducible
self-energy blocks W��� on the Keldysh contour, where W���
describe transitions between the many-body DQD states ���
and ����. The elements W��� set up a self-energy matrix W.
Within the matrix notation introduced by Thielmann et al.,76

the stationary elements of the reduced density matrix can be
found from

�W˜pst�� = �	��0
, �4�

where pst is the vector containing probabilities and the ma-

trix W˜ is the modified matrix W so as to include the normal-
ization of probabilities. The current flowing through the sys-
tem can be then found from

I =
e

2

Tr�WIpst� . �5�

The matrix WI is the self-energy matrix with one internal
vertex resulting from the expansion of the tunneling Hamil-
tonian replaced by the current operator.

To calculate the transport properties order by order in tun-
neling processes, we expand the self-energy matrices W
=W�1�+W�2�+. . ., WI=WI�1�+WI�2�+. . ., and the dot occupa-
tions pst=pst�0�+pst�1�+. . ., respectively. Then, the first-order
�sequential� and the second-order �cotunneling� currents are
given by

I�1� =
e

2

Tr�WI�1�pst�0�� ,

I�2� =
e

2

Tr�WI�2�pst�0� + WI�1�pst�1�� . �6�

On the other hand, the zeroth and first-order occupation
probabilities can be found from the following equations:

�W˜�1�pst�0��� = �	��0
,

W˜�1�pst�1� + W˜�2�pst�0� = 0, �7�

where W˜�1� �W˜�2�	 is given by W�1� �W�2�	 with one arbitrary
row �0 replaced by �� , . . . ,�� ��0, . . . ,0�	 due to the nor-
malization of probabilities, ��p�

st�n�=	n,0.
As one can see from the above formulas, to determine the

transport properties, it is necessary to calculate the elements
of the corresponding self-energy matrices. This can be done
using the respective diagrammatic rules.43,75,76 Although the
first-order calculation is rather simple, the general analytical
formulas for the self energies in the second order are rather
complicated due to many virtual states through which the

cotunneling processes can take place. In the Appendix, as an
example, we present the contribution coming from
W��N�,���N�

�2� , where N is the charge state of the double dot.
In addition, in the present paper, we also analyze the zero-

frequency current noise of the double quantum dot system

S=2
−�
0 dt��Î�t�Î�0�+ Î�0�Î�t��−2�Î�2�. For low bias voltages,

the current noise is dominated by thermal noise, while for
�eV��kBT, the noise associated with the discrete nature of
charge �shot noise� dominates.80 Within the real-time dia-
grammatic technique, a general formula for the shot noise
has been derived in Ref. 76, taking into account the non-
Markovian effects. The shot noise in the first-order can be
found from the corresponding expression

S�1� =
e2



Tr��WII�1� + WI�1�P�−1�WI�1��pst�0�	 , �8�

while the cotunneling current noise is given by

S�2� =
e2



Tr��WII�2� + WI�2�P�−1�WI�1�

+ WI�1�P�−1�WI�2� + WI�1�P�0�WI�1�

+ WI�1�Q�0� � WI�1�	pst�0�

+ �WII�1� + WI�1�P�−1�WI�1�	pst�1�� , �9�

where Q�n�=pst�n� � eT, with eT= �1, . . . ,1�. The objects

P�−1� and P�0� are given by W˜�1�P�−1�=Q�1�−1 and W˜�1�P�0�

+W˜�2�P�−1�=1˜�Q�1�−�W�1�Q�0��, respectively, with 1˜ being
the unit vector with row �0 set to zero. On the other hand, the
matrices WII�1� and WII�2� are the first and second-order self-
energy matrices with two internal vertices replaced by the
current operator, while �W�1� and �WI�1� are partial deriva-
tives of W�1� and WI�1� with respect to the convergence fac-
tor of the Laplace transform.76

By taking into account all the first-order and second-order
contributions to the self energies, we are able to resolve the
transport properties in the full range of the bias and gate
voltages. The first order of expansion with respect to the
coupling corresponds to sequential tunneling, while the sec-
ond order is associated with cotunneling. Sequential tunnel-
ing is allowed if the applied bias is larger than the threshold
voltage, i.e., when the energy provided by the transport volt-
age is comparable with the charging energy. Otherwise, the
system is in the Coulomb blockade regime where sequential
tunneling is exponentially suppressed and the current flows
due to cotunneling, which involves correlated tunneling
through virtual states of the system.77–79

Among different cotunneling processes, one can generally
distinguish two types of processes: nonspin-flip ones, which
do not affect the DQD state and the spin-flip ones. Further-
more, one can also have double-barrier cotunneling, which
contributes directly to the current, and single-barrier cotun-
neling, which affects the double dot occupations and, thus,
indirectly, the current.

IV. DOUBLE QUANTUM DOTS COUPLED IN SERIES

In this section, we present and discuss numerical results
on double quantum dots coupled in series. In order to realize
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this geometry, we set �L2=�R1=0 and assume �L1=�R2
�� /2, see Fig. 1. Furthermore, in the following we will also
distinguish between symmetric and asymmetric DQDs. In
the former case, the level position of each dot is the same,
�1=�2, while in the latter case, the levels are detuned, �1
��2. In addition, in this section, we will emphasize the role
of second-order processes in transport. In order to ascribe
observed features to respective tunneling processes, we will
therefore also present results obtained within the sequential
tunneling approximation, i.e., when considering only the
first-order tunneling processes.

A. Symmetric double quantum dots

The differential conductance as a function of the bias volt-
age and the position of the dot levels for the parallel and
antiparallel configurations in shown in Figs. 2�a� and 2�b�.
Because experimentally, the position of the dots’ levels can
be changed upon applying a gate voltage, Fig. 2 effectively
shows the bias and gate voltage dependences of the conduc-
tance. First of all, it can be seen that the differential conduc-
tance displays a characteristic Coulomb diamond structure.
The diamonds in the low bias voltage regime correspond to
the Coulomb blockade regime where the sequential current is
exponentially suppressed and the current flows due to cotun-
neling. With increasing the bias voltage, the excited states
start participating in transport, which leads to additional lines
in the differential conductance. The features described above
are rather associated with the energy spectrum and charge
states of the DQD than with the ferromagnetism of the leads,
therefore they are present in both magnetic configurations.
The spin dependence stemming from ferromagnetic elec-
trodes gives rise to a difference of the conductance in the
parallel and antiparallel configurations, see Figs. 2�a� and
2�b�. The conductance in the parallel configuration is gener-
ally larger than that in the antiparallel configuration. This is
due to the spin asymmetry in the couplings when the leads’
magnetizations are antiparallel. As in the parallel configura-
tion, the majority �minority� electrons of, let us say, left lead
tunnel to the majority �minority� electron band of the right
lead; in the antiparallel configuration the situation is
reversed—the majority �minority� electrons of the left lead
tunnel to the minority �majority� electron band of the right
lead. This leads to the difference of the conductance in both
magnetic configurations, see Fig. 2, and to the corresponding
tunnel magnetoresistance effect. In addition, in Fig. 2�c�, we
also present the bias and gate voltage dependences of the
differential conductance for the parallel configuration calcu-
lated within the sequential tunneling approximation, GP

�1�. By
comparing Figs. 2�a� and 2�c�, one can see that cotunneling
leads to broadening of the resonance peaks, lowering the
magnitude of the differential conductance, and gives rise to
finite conductance in the Coulomb blockade regimes.

The bias and gate voltage dependences of the TMR is
shown in Fig. 3�a�, while Fig. 3�b� presents the first-order
TMR, TMR�1�. Intuitively, the TMR is a measure of the sys-
tem’s transport properties change when the magnetic con-
figuration switches from the parallel to the antiparallel one. It
is defined as37,38,43

TMR =
IP − IAP

IAP
, �10�

where IP �IAP� is the current flowing through the system in
the parallel �antiparallel� configuration. By comparison with
Fig. 2, one can easily identify the different transport regimes.
Furthermore, by comparing the total and sequential TMR,
one can immediately see that cotunneling modifies the TMR

a

b

c

FIG. 2. �Color online� The differential conductance in the �a�
parallel GP and �b� antiparallel GAP magnetic configurations as a
function of the bias voltage V and the position of the dot levels �
��1=�2 for double quantum dots coupled in series. The parameters
are kBT=0.15 meV, U=2 meV, U�=1 meV, t=0.25 meV, �L2

=�R1=0, �L1=�R2�� /2, with �=0.1 meV, and p=0.5. Because
the double quantum dot is symmetric, �1=�2, there is no asymmetry
associated with the bias reversal. For comparison in part �c�, we
also show the density plot of the differential conductance in the
parallel configuration calculated using only the first-order tunneling
processes, GP

�1�.
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mainly in the low bias voltage regime, i.e., in the Coulomb
blockade regime and in the regime where sequential tunnel-
ing is suppressed due to the absence of levels in the energy
window provided by transport voltage. In order to discuss
and see more clearly the behavior of the TMR on applied
voltages, in Fig. 4 we show the linear-response conductance
and resulting TMR, while in Fig. 5 we display the transport
properties in the nonlinear-response regime.

The linear conductance in both magnetic configurations is
shown in Fig. 4�a�. When lowering the position of the DQD
levels, the conductance displays four resonance peaks asso-
ciated with subsequent occupation of the corresponding
charge states. The dotted curves in Fig. 4 present results
obtained in the first-order approximation. It can be seen that
off resonance, the current is mainly dominated by cotunnel-
ing. On the other hand, on resonance the sequential processes
dominate current, while cotunneling only slightly affects the
conductance, leading to renormalization of the DQD levels
and, thus, slightly shifting the position of the conductance
peaks, see Fig. 4�a�. Interestingly, the second-order processes
have a rather large impact on the linear TMR shown in Fig.
4�b�. First of all, the linear-response TMR exhibits a strong
dependence on the gate voltage, i.e., on the number of elec-
trons in the double quantum dot. When the DQD is either
empty or fully occupied, the TMR is given by the Julliere
value TMR=2p2 / �1− p2�.37 This is due to the fact that in
those transport regimes, the current is driven by elastic co-

tunneling processes which do not affect the DQD state in any
way. Thus, as far as the TMR is concerned, the system be-
haves as a single ferromagnetic tunnel junction.37 However,
in the Coulomb blockade regions, the TMR becomes gener-
ally suppressed due to the presence of inelastic cotunneling
which introduces spin-flip processes in the system. The dot-
ted line in Fig. 4�b� shows the TMR calculated within the
sequential tunneling approximation—it is given by TMR
= p2 / �1− p2�.43,55 At this point, we would like to note that the
results for the linear conductance calculated by including
only the first-order processes are rather reliable in the whole
range of �. On the other hand, the results for the linear-
response TMR are comparable to those obtained within the
sequential tunneling approximation only on resonance,
where sequential processes dominate, while off resonance,
they are completely unreliable, see Fig. 4. Therefore, in order
to properly analyze the dependence of the TMR in the full
range of parameters, one has to take into account cotunneling
processes.

The bias voltage dependence of the current, differential
conductance, tunnel magnetoresistance, and the Fano factor
is shown in Fig. 5 for �=−2 meV and �=2 meV. The first
situation, �=−2 meV, corresponds to the case when the
ground state of the double quantum dot is doubly occupied,
while the second one, �=2 meV, corresponds to the case of
empty double dot. In all cases, due to the spin asymmetry of
tunneling processes, the current in the parallel configuration
is larger than the current in the antiparallel configuration. In

b

a

FIG. 3. �Color online� The �a� total �first and second orders�
TMR and �b� the first-order TMR as a function of the bias voltage
V and the level position � for parameters are the same as in Fig. 2.
The two figures are plotted in the same scale.

-6 -4 -2 0 2

0.3

0.4

0.5

0.6

b

ε (meV)
T

M
R

0.00

0.05

0.10

0.15

0.20 a

G
(e

2 /h
)

FIG. 4. �Color online� The �a� linear conductance in the parallel
�solid line� and antiparallel �dashed line� magnetic configurations
and the �b� linear TMR as a function of the level position � for
parameters the same as in Fig. 2. For comparison, the dotted curves
show the linear conductance and the TMR calculated taking into
account only the first-order processes.
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addition, the i-v curves display characteristic Coulomb steps.
With increasing the bias voltage more and more charge states
start to participate in transport which gives rise to the corre-
sponding steps in the current-voltage characteristics, and
peaks in the differential conductance. Furthermore, the
single-electron charging effects also lead to the oscillatory-
like behavior of the TMR effect, see Figs. 5�c� and 5�g�. In
the Coulomb blockade regime, �=−2 meV, the TMR is
much suppressed as compared to the case of �=2 meV. This
is due to the presence of spin-flip cotunneling processes in
the case of the doubly occupied DQD, as already discussed
in association with Fig. 4. However, when increasing the bias
voltage, the TMR increases and, at the threshold for sequen-
tial tunneling, reaches a local maximum, see Fig. 5�c�. This
effect is due to the nonequilibrium spin accumulation which
is induced in the DQD system with increasing the transport
voltage. �Similar effect can be observed when the double dot
is singly occupied, i.e., when �=−0.5 meV.� On the other
hand, when the DQD is empty, the TMR at low bias voltage
acquires the Julliere value,37 and then, with increasing V,
becomes generally suppressed, see Fig. 5�g�.

In addition, in Fig. 5, we also show the Fano factor, F
=S / �2e�I��, calculated in both magnetic configurations and
for two values of �, as indicated in the figure. First of all, one
can see that the Fano factor becomes divergent at low bias
voltages. This is due to the thermal noise which dominates
the current noise as V→0, while I→0, leading to F→�.80

Furthermore, it can be seen that the Fano factor in the Cou-
lomb blockade regime is slightly larger in the parallel con-

figuration than in the antiparallel one. This is associated with
an additional positive cross correlations, which contribute to
the current noise, due to the ferromagnetism of the elec-
trodes. In the Coulomb blockade regime, there is a larger
asymmetry between the cotunneling processes through the
majority and minority-spin channels in the parallel configu-
ration than in the antiparallel one. This effectively increases
the current fluctuations in the parallel configuration and leads
to the corresponding difference in the Fano factors, see Fig.
5�d�. On the other hand, in the sequential tunneling regime,
the information about the spin asymmetry of tunneling pro-
cesses between the DQD and the corresponding lead is rather
contained in the nonequilibrium spin accumulation induced
in the double dot. This spin accumulation is larger in the
antiparallel configuration, yielding generally an enhanced
Fano factor in the antiparallel configuration as compared to
the parallel one. Moreover, we also note that in the Coulomb
blockade regime �=−2 meV, the shot noise becomes super-
Poissonian �F�1� and drops to the sub-Poissonian value
�F1� at the threshold for sequential tunneling, see Fig.
5�d�. This super-Poissonian shot noise is associated with
bunching of inelastic cotunneling processes through the
system.54,81 On the other hand, in the case of empty DQD,
�=2 meV, in the cotunneling regime, the current flows due
to elastic second-order processes which obey the Poissonian
statistics. In this case, the shot noise is given by S=2e�I� and
the Fano factor is simply equal to unity, see Fig. 5�h�, irre-
spective of magnetic configuration of the system. As con-
cerns the sequential tunneling regime, the shot noise is then
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FIG. 5. �Color online� The cur-
rent in units of ��a� and �e�	 I0

=e� /
, ��b� and �f�	 differential
conductance, and ��d� and �h�	 the
Fano factor in the parallel �solid
line� and antiparallel configuration
�dashed line�, as well as the ��c�
and �g�	 TMR as a function of the
bias voltage for different values of
the level position � as indicated in
the figure. �a�–�d� �=−2 meV
corresponds to the case when the
ground state of the DQD is doubly
occupied, while for �e�-�h� �
=2 meV, the double dot is empty.
The parameters are the same as in
Fig. 2. The dotted curves show the
results obtained in the sequential
tunneling approximation.
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generally sub-Poissonian, irrespective of the position of the
DQD level �. This indicates the role of correlations in elec-
tronic transport, in particular, the Coulomb correlations and
charge conservation.80 Our results are in qualitative agree-
ment with experimental data on tunneling through vertically
coupled self-assembled InAs quantum dots where also super-
Poissonian shot noise has been found.19

Finally, to make the present analysis self contained, we
also show the bias and gate voltage dependence of the total
Fano factor for the parallel and antiparallel magnetic con-
figurations, see Figs. 6�a� and 6�b�, respectively. In addition,
for comparison, the Fano factor calculated by taking into
account only first-order tunneling processes is depicted in
Fig. 6�c�. The black lines around the zero bias, �eV��kBT,
mark the transport regime where the Fano factor is divergent
due to finite thermal noise. The different behavior of the shot
noise is now clearly visible. In the Coulomb blockade re-
gime, the noise is super-Poissonian; in the cotunneling re-

gime when the DQD is either empty of fully occupied �cur-
rent is mediated by elastic cotunneling�, the shot noise is
Poissonian; and in the sequential tunneling regime, the noise
drops to sub-Poissonian value.

B. Asymmetric double quantum dots: Pauli-spin blockade

By applying a gate voltage to each quantum dot, it is
possible to tune the dot levels separately. So far, we have
considered the case of symmetric DQD, i.e., when �1=�2. In
this situation, the transport characteristics were symmetric
with respect to the bias reversal. This is however not the case
for �1��2, where the current becomes asymmetric with re-
spect to the bias reversal, leading to the Pauli-spin blockade
and negative differential conductance, as observed
experimentally.6,8 In the following, assuming realistic param-
eters of the double quantum dot system, we analyze transport
properties in the regime where the Pauli-spin blockade ef-
fects are visible.

The mechanism leading to the spin blockade was theoreti-
cally discussed by Fransson and Rasander15 and Muralidha-
ran and Datta.18 These considerations were however re-
stricted only to the first-order tunneling processes, which
dominate the current out of the blockade regime. As shown
experimentally by Ono et al.,6 in the spin blockade regime
there is a finite leakage current, which cannot be explained
within the sequential tunneling approximation. To explain
the existence of this leakage, it was proposed that nonzero
current in the Pauli blockade is associated with spin-flip pro-
cesses induced by hyperfine interaction.17 In the following,
we show that the leakage current results just from the inter-
play between different intrinsic tunneling processes driving
the current. The hyperfine interaction, or coupling to a pho-
non bath, may, of course, increase the leakage, but is not
necessary for the observation of a finite current in the Pauli-
spin blockade regime.

When the DQDs levels are detuned, �2�1, and once the
first and second dots become singly occupied, the current
may be suppressed in some range of the bias voltage. This is
associated with the full occupation of two-electron triplet
states of the DQD.15 The Pauli-spin blockade may be lifted
when the applied bias voltage admits another �exited� charge
states to participate in transport. On the other hand, when the
voltage is reversed, it is energetically allowed that the elec-
tron from the first dot tunnels to the left lead and then an-
other electron from the right lead enters the DQD, lifting the
Pauli-spin blockade.

This can be seen in Fig. 7 where we present the bias
voltage dependence of the current, Fano factor, and the TMR
effect. In order to make the calculations more realistic and to
allow for excited states of the system, we have now taken
into account four different orbital levels, two in each dot.
Such system is described by straightforward extension of the
Hamiltonian, Eq. �2�, where the level spacing in the dots is
described by the parameter �. First of all, one can see that
the transport characteristics are asymmetric with respect to
the bias reversal. This is associated with the fact that by
detuning the DQDs levels, the symmetry of transition rates
between the left and right leads has been broken. Further-

a

b

c

FIG. 6. �Color online� The �a� total Fano factor in the parallel
and �b� antiparallel magnetic configurations as a function of the bias
voltage V and the position of the dot’s levels � for parameters the
same as in Fig. 2. Part �c� presents the Fano factor in the parallel
configuration calculated in the first-order approximation. Because
the Fano factor is divergent for �eV��kBT, this transport regime is
denoted with a thick black line.
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more, for positive bias voltage the current is suppressed in a
broad range of the bias voltage �0eVU� due to the full
occupation of the triplet states, while for negative bias, the
Pauli-spin blockade is lifted. In addition, the blockade can
also be lifted when the positive bias voltage is increased
further, eV�U, so that tunneling through the second level of
the second dot is allowed, see Fig. 7�a�.

In the inset of Fig. 7�a�, we show the current in the par-
allel configuration just in the spin blockade regime. For com-
parison, we also display the current calculated within the
sequential tunneling approximation. One can see that the se-
quential current is suppressed as compared to the total cur-
rent �calculated taking into account cotunneling processes�.
The suppression of the sequential current is generally gov-
erned by the ratio 2t / ��2−�1�.15 When 2t / ��2−�1��1, the

occupation of the two-electron triplet states approaches unity
and the first-order current becomes fully blocked. However,
the second-order processes are still allowed, leading to a fi-
nite leakage current in the spin blockade regime. One can
distinguish different contributions coming from cotunneling:
�i� the double-barrier elastic second-order processes which
contribute directly to the current; �ii� the double-barrier spin-
flip cotunneling which contributes to the current and reduces
the occupation of the triplet state, this way opening the DQD
for the sequential tunneling; and �iii� the single-barrier spin-
flip cotunneling which does not contribute directly to the
current but flips the spin in the DQD and allows the sequen-
tial processes to occur.

As a consequence, in the Pauli-spin blockade regime, the
current flows due to cotunneling and spin-flip cotunneling-
assisted sequential tunneling. The key role is played by the
spin-flip processes which decrease the occupation of the two-
electron triplet states and lead to a finite occupation of sin-
glet states. The importance of the spin-flip processes in ex-
planation of the finite leakage current has been invoked in
Ref. 17. The leakage was then associated with spin-flip pro-
cesses induced by hyperfine interaction through the Over-
hauser effect. Here, we show that the leakage results just
from the interplay between different tunneling processes, i.e.,
just from the pure nature of tunneling processes. We also
note that the effects of cotunneling are rather independent of
the material from which the dots are built, unlike the Over-
hauser field.82 Thus, for example, in GaAs DQDs, the leak-
age current in the Pauli-spin blockade would be associated
with both cotunneling and hyperfine contributions, while in
carbon nanotube DQDs it would be mainly due to cotunnel-
ing. Furthermore, as shown in experiments by Ono and
Tarucha83 who studied the dependence of the leakage current
on the applied magnetic field, the hyperfine interaction starts
to play a role at certain finite in-plane magnetic fields, at
which the nuclei become polarized, leading to a sudden jump
of the leakage current as a function of magnetic field. This
suggests that the main contribution to the current in the spin
blockade regime in the absence of magnetic field may come
from cotunneling. In the weak-coupling regime, typical val-
ues of the dot-lead coupling strength � are of the order of
�eV,84 which gives the leakage current of the order of
10−3I01 pA �see Fig. 8�, in agreement with experimental
results.83 Finally, we notice that to explain the jump in the
leakage current when sweeping magnetic field, besides co-
tunneling, one also has to include the hyperfine interaction.
Nevertheless, this goes beyond the scope of the present pa-
per.

In Fig. 8, we present the logarithmic dependence of the
sequential and total currents in the parallel configuration on
the hopping parameter t. It is clearly visible that for 2t / ��2
−�1��1, the sequential current is smaller by two orders of
magnitude than the total current. On the other hand, when
2t / ��2−�1�1, the sequential current becomes of the same
order as the total current, but still, noticeably, the total cur-
rent is larger than that calculated using only the first-order
tunneling processes. The saturation of the two currents for
2t / ��2−�1��1, see Fig. 8, is associated with a finite tempera-
ture. However, because sequential tunneling depends expo-
nentially on temperature while cotunneling only algebra-
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FIG. 7. �Color online� The �a� current and �c� Fano factor in the
parallel �solid� and antiparallel �dashed� magnetic configurations
as well as the �b� TMR as a function of the bias voltage for
DQD coupled in series. The parameters are kBT=0.05 meV,
�1=−1 meV, �2=−2 meV, �=3 meV, U=2 meV, U�=1 meV,
and t=0.05 meV, where � is the level spacing in each dot. The
other parameters are the same as in Fig. 2. The inset in part �a�
displays the current in the parallel magnetic configuration in the
Pauli-spin blockade regime. The dotted lines correspond to the first-
order calculation.
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ically, at lower T, the difference between the two currents
would be even more pronounced. The dependence of the
current in the antiparallel configuration is qualitatively simi-
lar to the one shown in Fig. 8. We also note that generally,
the above mentioned mechanism responsible for the leakage
current does not depend on whether the leads are made of
ferromagnetic or nonmagnetic material.

The TMR as a function of the bias voltage is displayed in
Fig. 7�b�. One can see that the TMR calculated using the
first-order processes and that calculated taking into account
cotunneling are generally similar, except for the Pauli-spin
blockade regime. In this transport regime, the sequential
TMR is much overestimated. To understand this behavior,
we note again that the blockade results from the full occupa-
tion of DQD’s triplet states. The probability is equally dis-
tributed between the three components of the triplet in the
parallel configuration. However, in the antiparallel configu-
ration, it turns out that the charge is mainly accumulated in
the Sz=1 component of the triplet. As a consequence, in the
parallel configuration, all the three components of the triplet
participate in transport, while in the antiparallel configura-
tion, only one. Because the sequential current in the blockade
regime is mainly associated with thermal fluctuations, the
difference in the number of states relevant for transport leads
to large sequential TMR in blockade regime. This difference
also gives rise to the corresponding difference between Fano
factors calculated in the sequential tunneling approximation,
see the dotted curves in Fig. 7�c�. The shot noise is then
super-Poissonian and larger in the parallel configuration.
However, as pointed above, the leakage current in the Pauli-
spin blockade regime is due to cotunneling and cotunneling-
assisted sequential tunneling processes. The total current
flows not only due to thermal fluctuations but due to corre-
lated tunneling through virtual states of the DQD. This fact
generally decreases the current fluctuations and the differ-
ence between the two magnetic configurations. As a result,
the total TMR and Fano factor become suppressed as com-
pared to the sequential tunneling results, see Figs. 7�b� and

7�c�, respectively. In addition, we also notice that, irrespec-
tive of the magnetic configuration of the system, the shot
noise is super-Poissonian in the spin blockade regime and
drops to sub-Poissonian value out of the blockade regime,
see Fig. 7�c�. The super-Poissonian shot noise is generally
due to bunching of spin-flip cotunneling and cotunneling-
assisted sequential tunneling processes.

V. DOUBLE QUANTUM DOTS COUPLED IN PARALLEL

In this section, we analyze the spin-polarized transport
through double quantum dots coupled in parallel. This geom-
etry can be realized by setting �rj �� /2, for r=L ,R and j
=1,2, see Fig. 1. We note that in the case of negligible hop-
ping between the two quantum dots, t→0, the behavior of
the DQD system resembles that of a single multilevel quan-
tum dot. The problem of spin-dependent transport through
multilevel quantum dots has been addressed very recently in
Ref. 54 and will not be considered here.

In Fig. 9, we present the density plots of the differential
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FIG. 8. The total �sequential plus cotunneling� current �solid
line� and the sequential current �dotted line� in the parallel configu-
ration as a function of the hopping between the two dots calculated
in the middle of the Pauli-spin blockade regime, V=1 mV. The
parameters are the same as in Fig. 7. The dependence of the current
on 2t / ��2−�1� in the antiparallel configuration is qualitatively
similar.
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FIG. 9. �Color online� The �a� differential conductance and �c�
Fano factor in the parallel magnetic configuration, and the �b� TMR
as a function of the bias voltage V and the position of the dot’s
levels ���1=�2 for double quantum dots coupled in parallel. The
parameters are the same as in Fig. 2 with �rj �� /2 for r=L ,R, j
=1,2, and �=0.1 meV. The transport regime where the Fano factor
is divergent is marked with a thick black line.
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conductance and Fano factor in the parallel configuration as
well as of the TMR effect as a function of the bias and gate
voltages. The behavior of the conductance and the shot noise
in the antiparallel configuration is qualitatively similar as in
the parallel configuration, therefore, it is not shown here. The
information about the difference in transport in the two mag-
netic alignments is contained in the TMR, whose magnitude
reflects the asymmetry in tunneling processes when the leads
are parallel or antiparallel to each other.

The differential conductance, shown in Fig. 9�a�, displays
characteristic Coulomb diamonds. Because the internal en-
ergy structure of the DQD is generally the same as in the
case of DQD coupled in series, the differential conductances
are qualitatively similar, see Figs. 2�a� and 9�a�. The main
difference is that in the case of parallel DQDs, the level of
each dot is coupled both to the left and right leads, which
generally results in an enhanced conductance for parallel
DQDs as compared to DQDs coupled in series. Similarly, the
TMR shown in Fig. 9�b�, its bias and gate voltage depen-
dences is only slightly modified as compared to Fig. 3�a�.
Again, the linear TMR exhibits a strong dependence on the
occupation number of the DQD, with TMR given by the
Julliere formula for empty and fully occupied double quan-
tum dots, and is much suppressed in other transport regimes
due to spin-flip cotunneling. In the Coulomb blockade re-
gime, the transport properties are mainly conditioned by the
spin-flip cotunneling, which gives a dominant contribution to
the current. Furthermore, the bunching of spin-flip cotunnel-
ing in the Coulomb blockade regime leads to super-
Poissonian shot noise, see Fig. 9�c�. The super-Poissonian
shot noise is however more pronounced in Coulomb block-
ade regimes with an odd number of electrons in the double
dot. On the other hand, for voltages above the threshold for
sequential tunneling, the shot noise becomes sub-Poissonian,
with the Fano factor approaching 1/2.

Summing up, we notice that generally in the weak-
coupling regime, the effect of different geometries of the
double dot system leads only to qualitative difference in
transport properties. The main difference is in the magnitude
of conductance—for parallel DQDs, it is roughly two times
larger than for serial DQDs. This is contrary to the strong-
coupling regime where, for example, in the parallel geom-
etry, the orbital Kondo phenomenon arises due to the inter-
ference effects, while for DQDs coupled in series, the orbital
Kondo effect is destroyed.85 Finally, we also note that in the
case of detuned levels, ��2−�1��0, transport properties of
double quantum dots coupled in parallel are qualitatively
similar to those of single multilevel quantum dots.54

VI. T-SHAPED DOUBLE QUANTUM DOTS

An interesting situation occurs when only one of the two
quantum dots is coupled to external leads, while the other
one is decoupled. In such T-shaped systems, transport takes
place through the molecular states of the double dot, al-
though only the first dot is directly coupled to the leads. This
may lead to new transport behavior, especially to a large
super-Poissonian shot noise and an enhanced TMR, as we
show in the sequel.

In Fig. 10, we present the current, differential conduc-
tance, the TMR, and the Fano factor as a function of the bias
voltage for the case when the first dot is coupled to the leads
while the second dot is decoupled. Spin-dependent transport
through single-quantum dots have already been extensively
studied. However, the hopping t between the two dots may
modify the transport properties significantly, giving rise to
novel behavior. First of all, we note that due to the finite t,
transport takes place through molecular states of the double
dot. This in turn leads to additional steps in the i-v curves
and peaks in the differential conductance, see Fig. 10�a�, as
compared to tunneling through one single-level quantum
dots, where for spin-degenerate level the current exhibits
only two steps. The difference between the currents in the
parallel and antiparallel configurations gives rise to the TMR
which is shown in Fig. 10�b�. The TMR displays an oscilla-
torylike behavior with increasing bias voltage. In addition, at
the threshold for sequential tunneling, the TMR becomes in-
creased above the Julliere TMR.37 This result is rather coun-
terintuitive, as the Julliere TMR is characteristic of a single
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FIG. 10. �Color online� �a� The bias dependence of the current
and differential conductances, �b� the TMR, and �c� the Fano factor
in the parallel �solid line� and antiparallel �dashed line� configu-
rations for T-shaped double quantum dots. The parameters are
�r1�� /2 and �r2=0 for r=L ,R, with �=0.1 meV and �1

=1 meV, �2=0 meV, kBT=0.18 meV, U=2 meV, U�=1 meV,
t=0.2 meV, and p=0.5. The dotted curves present the �b� TMR
and �c� the Fano factor in the parallel configuration calculated for
�r2=�r1.
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ferromagnetic tunnel junction and one would expect that an
additional object �quantum dot� between the leads should
decrease the TMR. This was shown for single-quantum dots
with spin degenerate levels and symmetric couplings to the
leads where the TMR was found to take at most the Julliere
value.43 In principle, the TMR can be enhanced above the
Julliere value when only one spin component of the dot takes
part in transport. Such spin selection may be achieved upon
applying an external magnetic field or due to finite exchange
interaction between spins in the dot.46,86 In the case of
T-shaped DQDs, we find that the enhancement of the TMR is
associated with increased occupation of the second dot in the
antiparallel configuration, as compared to the parallel. Be-
cause the second dot is decoupled from the leads, this in-
creases the difference between the currents in the two con-
figurations, yielding a TMR larger than the Julliere value. In
addition, finite occupation of the decoupled dot also leads to
large current fluctuations, as the rate for tunneling between
the second dot and the leads is much slower than that for
tunneling between the first dot and the leads. This in turn
gives rise to super-Poissonian shot noise, as displayed in Fig.
10�c�. The super-Poissonian shot noise is present in both
magnetic configurations. It is also slightly larger in the par-
allel configuration than in the antiparallel one, which is due
to an additional contribution to the noise coming from spin-
dependent tunneling between the dots and the leads.54 We
note that the super-Poissonian shot noise in T-shaped dots
has also been reported in the case of nonmagnetic leads.87

The two dots were however rather weakly coupled to each
other so that no molecular states were formed, contrary to the
case considered here.

The enhancement of the TMR above the Julliere value
and the large super-Poissonian shot noise are present ap-
proximately at the threshold for sequential tunneling. In this
transport regime, the current is mainly mediated through the
charge states of the decoupled dot. The aforementioned ef-
fects should therefore become washed out if there were a
finite coupling between the second dot and the leads. This is
shown in Figs. 10�b� and 10�c� where we depict the TMR
and Fano factor in the parallel configuration calculated for
�r2=�r1 �see the dotted curves in Fig. 10�. The TMR larger
than the Julliere TMR accompanied by super-Poissonian shot
noise is thus an indication that transport takes place through
quantum dot coupled to another dot, which is not connected
to the leads directly.

Figure 11 displays the bias dependence of the current,
TMR, and the Fano factor calculated in the case when at
equilibrium, the second dot is fully occupied while the first
dot is empty. At low bias voltage, the system is in the Cou-
lomb blockade and the double dot is occupied with two elec-
trons in the second dot with unit probability. The current
flows then only due to elastic cotunneling processes. This
gives rise to the Julliere TMR and Poissonian shot noise, see
Figs. 11�b� and 11�c�. With increasing bias voltage, close to
the threshold for sequential tunneling, the occupation of the
second dot is slightly lowered at the cost of a finite occupa-
tion of another states. This opens the system for the
cotunneling-assisted sequential and sequential tunneling pro-
cesses. Nevertheless, because the double dot is still mainly
occupied by two electrons on the decoupled dot, this gives

rise to extremely large current fluctuations and Fano factors,
see Fig. 11�c�. This super-Poissonian shot noise can be con-
siderably reduced once the second dot becomes coupled to
the leads, see the dotted curve in Fig. 11�c�.

Finally, in Fig. 12, we present the differential conductance
in the parallel configuration and the TMR as a function of the
bias voltage and the position of the second dot level. The
Coulomb blockade regimes are clearly visible in Fig. 12�a�,
whereas the different behavior of the TMR depending on the
transport regime is presented in Fig. 12�b�.

VII. CONCLUSIONS

We have analyzed the spin-dependent transport through
systems built of two strongly coupled quantum dots which
are weakly connected to external ferromagnetic leads. The
considerations were based on the real-time diagrammatic
technique which allowed us to determine transport properties
in the sequential and cotunneling regimes in a fully system-
atic way. In particular, we have analyzed the current, differ-
ential conductance, shot noise, and the TMR for different
geometries of the double dot system, including the serial and
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FIG. 11. �Color online� The bias dependence of the current, �a�
differential conductance, �b� TMR, and �c� the Fano factor in the
parallel �solid line� and antiparallel �dashed line� configurations.
The parameters are the same as in Fig. 10 with �2=−4 meV. The
dotted curves present �b� the TMR and �c� the Fano factor in the
parallel configuration calculated for �r2=�r1.
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parallel couplings, as well as the T-shaped systems. We have
also discussed the main differences in transport characteris-
tics corresponding to different DQD geometries, which may
be helpful in determining the geometry of coupled quantum
dots in experiments.

In the case of double quantum dots coupled in series, we
have found an interesting dependence of the TMR on the
occupation number of the DQD. Furthermore, the super-
Poissonian shot noise in the Coulomb blockade regimes has
been observed. On the other hand, when the levels of the
DQD were detuned, transport characteristics revealed the
Pauli-spin blockade effects. We have shown that the leakage
current, observed experimentally in the blockade regime,6

results from the interplay of cotunneling processes which flip
the spin in the DQD and make the sequential tunneling pos-
sible. Thus, the current in the spin blockade flows due to

cotunneling and spin-flip cotunneling-assisted sequential tun-
neling processes. This mechanism is associated with pure
nature of tunneling processes and is thus relevant for both
nonmagnetic and ferromagnetic leads. In addition, we have
also shown that the shot noise in the Pauli-spin blockade
regime becomes super-Poissonian, while outside the block-
ade, it is sub-Poissonian.

For double quantum dots coupled in parallel, transport
characteristics were found to be qualitatively similar to those
in the case of DQDs coupled in series. The main difference is
in the magnitude of conductance—for parallel DQDs, it is
roughly two times larger than for serial DQDs.

In addition, we have also analyzed the case when the first
quantum dot is coupled to the leads while the second one is
completely decoupled. In such T-shaped systems, we have
found a large super-Poissonian shot noise at the threshold for
sequential tunneling and the TMR enhanced above the Jul-
liere value. These effects are associated with an increased
occupation of the decoupled quantum dot and become
washed out once there is a finite coupling between the sec-
ond dot and the leads. Thus, the enhanced TMR together
with large super-Poissonian shot noise may be an indication
that transport takes place through quantum dot which is side
coupled to another dot disconnected from the leads.
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APPENDIX: DETAILS OF NUMERICAL CALCULATIONS

In order to calculate the transport properties in the se-
quential and cotunneling regimes, it is necessary to find the
elements of the respective first-order and second-order self-
energy matrices. This can be done using the respective dia-
grammatic rules.43,75,76 Here, as an example, we present the
contribution coming from W��N�,���N�

�2� , where N is the charge
state of the double dot. It is given by

W��N�,���N�
�2� = − 2��

r,r�
�
j,j�

�
�,��

�
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��+ ���� − ����
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2
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�−��+��� − ���,�� − ����	� , �A1�

b

a

FIG. 12. �Color online� The �a� differential conductance in the
parallel magnetic configuration, and �b� the TMR as a function of
the bias voltage V and the position of the second dot level ���2 for
T-shaped double quantum dots. The parameters are the same as in
Fig. 10.
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where �rj
�����=�rj

� f���−�r� / �2��, with f+ being the Fermi
distribution function, f−=1− f+, �r denoting the electro-
chemical potential of the lead r, and

B2rj
����� =� d�

�rj
�����

�� − ��2 ,

B�rjr�j�
�������,��� =� d��rj

������r�j�
����� − ���

1

�� − ��� .

We note that having found all the first-order and second-
order self-energy matrices, we are, in principle, able to cal-

culate transport through arbitrary number of different orbital

levels coupled to each other and to external leads in an arbi-

trary way. As far as numerical details are concerned, for

systems consisting of larger number of orbital levels, in cal-

culations we make use of the block structure of the initial

Hamiltonian in the charge space, and perform unitary trans-

formation of the Hamiltonian and the relevant local operators
for each block separately. In addition, we also store the
respective matrix elements in blocks labeled by charge

quantum numbers.
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