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We present an efficient scheme for calculating phonon-induced potentials with high precision. The method
exploits the idea of Wannier functions applied to the change of the electron potentials, allowing for an accurate
evaluation of coupling constants for arbitrary wave vectors. In order to demonstrate the capability of the
method, we include three examples: bulk MgB2, bcc tungsten, and the hydrogen covered 1�1 W�110� surface.
For these cases we calculate the momentum resolved �k dependent� Eliashberg function for a selected set of k
points and the electron-phonon mass enhancement parameter �k.
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I. INTRODUCTION

Lattice vibrations represent low energy collective excita-
tions in solids that can dramatically affect the quasiparticle
states close to the Fermi surface. The most striking example
is the phonon-induced superconducting transition. Moreover,
phonon-scattering processes lead to a pronounced reduction
in the quasiparticle lifetimes as well as to a characteristic
modulation of the quasiparticle dispersion due to virtual
emission of phonon modes at low temperatures. These ef-
fects are measurable by various experimental probes, includ-
ing direct photoemission,1–6 cyclotron,7 or thermodynamic
measurements.8 Both the altered lifetime and the change in
the quasiparticle velocity have an impact on the low energy
dynamical properties of a material. This can be particularly
important in systems with reduced dimensionality where the
electron-phonon �ep� interaction is typically stronger than in
the three-dimensional �3D� environment. At the same time,
low-dimensional systems are most relevant in the emerging
field of nanotechnology and nanodevices. Thus a very good
understanding of the ep interaction is of great importance
especially for problems related to charge transport properties.

The ep mass enhancement parameter �k and the Eliash-
berg function �2Fi,k��� are among the most meaningful
quantities describing ep effects in metals. They reflect the
strength of the ep interaction and allow the determination of
many other related quantities, including the ep contribution
to the superconducting gap �through Eliashberg theory�, the
heat capacity, or some transport properties.8,9 Much of the
current effort from the theoretical point of view is concen-
trated on calculating the electron momentum resolved
�2Fi,k��� in bulk and/or surface systems.

The most demanding part in the calculation of vibrational
or electron-phonon related properties is the self-consistent
determination of the phonon-induced change of the electron
potential. State of the art first-principles methods include su-
percell approaches or the more efficient perturbative linear-
response technique. In any case, for systems including sev-
eral atoms, even linear-response calculations can hamper a
highly precise calculation of anisotropic �k dependent� ep
properties. In such cases, the high computational effort
makes it virtually impossible to determine the ep matrix el-

ements for q point samplings denser than �20�20�20. To
overcome this obstacle is one of the main objectives of this
work.

Savrasov and Savrasov10 partially solved the problem by
considering coarse phonon grids with a much denser division
for electron wave vectors �e.g., an 8�8�8 q grid and a
32�32�32 k mesh, respectively�. This procedure gives rea-
sonably accurate Eliashberg functions averaged over the
Fermi surface due to cancellation of errors. However, calcu-
lating the momentum resolved Eliashberg function for such a
sampling still leads to poor results for each particular func-
tion. In other words, if the objective is to accurately obtain
the anisotropy of the Eliashberg function, a dense momen-
tum sampling is needed not only for the electron wave func-
tions but also for the phonons.

Choi et al.11 developed a method to interpolate the varia-
tion of the electron potential by first performing a self-
consistent phonon calculation in high-symmetry points and
inferring the potential for arbitrary momentum by an �un-
specified� interpolation technique. They applied this method
to bulk MgB2 to obtain the electron-phonon mass enhance-
ment parameter at the Fermi surface.

Giustino and co-workers12,13 have very recently devel-
oped a promising scheme to calculate ep matrix elements in
very densely sampled Brillouin zones �BZs�. This method
takes advantage of the localization properties of both the
maximally localized electron Wannier functions14 and simi-
larly defined Wannier functions for phonons. The interpola-
tion technique is made efficient by considering the localiza-
tion of the Wannier functions and neglecting their overlaps at
some distance in real space. In essence, this method interpo-
lates electron wave functions, phonon modes, and phonon-
induced potentials on the same footing. It has also been ap-
plied to obtain the self-energy of graphene.15

In this work, we present an approach in which the local
part of the potential changes and dynamical matrices are
Fourier interpolated but all the electron wave functions are
calculated directly from the self-consistent potential. This
procedure allows us to efficiently determine the ep coupling
parameters for arbitrary phonon wave vectors q and conse-
quently, the k resolved Eliashberg functions. The method is
relatively simple and allows for a precision, which, in many
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systems, is not accessible by direct calculations due to com-
putational costs. Concerning the solution of the Kohn-Sham
equation, we focus here on norm-conserving pseudo-
potentials where our method is easy to introduce. From the
several successful implementations of the linear-response
method,10,16,17 we have used the PWSCF linear-response code
in our work. We present results for bulk bcc tungsten and
bulk MgB2 as well as for the complex 1�1 H covered
W�110� surface.

II. METHOD

A. Theory background

Within the quasielastic approximation, the electron mo-
mentum �k� resolved Eliashberg function is defined as

�2Fi,k��� = �
q,�

j

�gk,k−q
j,� �2��� − �q����k − �k−q� , �1�

where i is the electron band index, and � and q denote the
phonon mode and its wave vector, respectively. The summa-
tion runs over the final electron states j with wave vectors
k−q. The ep matrix element g�,k,k−q

i,j is given by

g�,k,k−q
i,j = �

s,�

�s,�
q,�

�2Ms�q
�
�	 j,k−q��q

s,�V�	i,k� , �2�

where s=1, . . . ,N labels the atomic sites inside a particular
unit cell, �=1,2 ,3 refers to the three Cartesian coordinates,
and �s,�

q,� represents the polarization vector of the phonon
mode �. �q

s,�V is the self-consistent variation of the effective
potential due to a frozen-in displacement of atom s in direc-
tion �. The relation between �i,k and the Eliashberg function
is given by

�i,k = 2	 �2Fi,k���/�d� . �3�

�k directly determines the low-temperature quasiparticle
mass enhancement close to the Fermi level ��F� where the
velocity is reduced according to vk
vk

0 / �1+�k�. The elec-
tron lifetime broadening at high temperatures, 
k�2�T�k,
is also proportional to �k.

The most serious difficulty when calculating the Fermi-
surface integrals involved in Eq. �1� is the accurate evalua-
tion of the large amount of ep matrix elements g�,k,k−q

i,j

needed to sample the Fermi surface. The first step in such a
calculation is an accurate determination of the phonon band
structure, which is briefly outlined in the following.

The linear-response scheme is based on the solution of the
Sternheimer equation

�H�r� − �k,i�q
s,�	k�r� = ��q

s,�V�r� − �q
s,��k,i	k�r� , �4�

where the first-order change in the potential consists of con-
tributions from the Hartree part, VH, the exchange-
correlation potential, Vxc, and the bare pseudopotential, Vb,
respectively:

�q
s,�V�r,r�� � �q

s,�VH�r� + �q
s,�Vxc�r� + �q

s,�Vb�r,r�� . �5�

The solution of Eq. �4� is very well documented in
literature.10,16–18 The relevant input is the variation of the
bare pseudopotential �q

s,�Vb�r ,r�� while the output comprises
the first-order changes in the potential, the wave functions,
and the density. In the first step of the self-consistency pro-
cess, the variation of the electron wave functions �q

s,�	k�r� is
calculated, allowing the evaluation of the total change in the
electron charge density. In the next step, the variation of the
Hartree and xc potentials, �q

s,�VH�r� and �q
s,�Vxc�r�, are

updated,10,16 and the process is repeated until a self-
consistent �q

s,�V is obtained.
These calculations are usually performed for a discrete set

of frozen-in perturbations with wave vector q sampling the
irreducible wedge of the BZ. For a given q, one should in
general take into account 3N different displacements �q

s,�.
However, symmetry considerations allow the reduction in
the amount of patterns to be calculated for some particular
�higher symmetry� q points.

B. Wannier-function based interpolation technique

An atomic displacement implies a perturbation where the
induced potential �q

s,�Vind�r�, consisting of Hartree and xc
contribution

�q
s,�Vind�r� � �q

s,�VH�r� + �q
s,�Vxc�r� , �6�

together with the bare perturbation �q
s,�Vb�r ,r��, represents

the total change of the potential. While the bare part of the
potential has a local and a nonlocal component,16

�q
s,�Vb�r,r�� � �q

s,�Vb,l�r���r − r�� + �q
s,�Vb,nl�r,r�� , �7�

the induced part is purely local. The local part of the total
change of the electron potential is given by

�q
s,�Vl�r� � �q

s,�Vb,l�r� + �q
s,�Vind�r� . �8�

This quantity is computationally demanding and hence needs
to be interpolated while the calculation of �q

s,�Vb�r ,r��
hardly requires any computing time since it is simply ob-
tained from the gradient of the pseudopotential. Our tech-
nique is based on the observation that this local part of the
phonon-induced potential �Eq. �8� has a quite smooth de-
pendence on q.

Let us suppose that �q
s,�Vl�r� has been calculated self-

consistently for a regular but relatively coarse q grid of the
entire Brillouin zone. In practice, this is done by applying the
appropriate symmetry operations to the potentials calculated
for the irreducible q set. Since �q

s,�V�r� is periodic in mo-
mentum space, �q+G,�V�r�=�q,�V�r�. One can then perform
the Fourier transform of �q,�V�r�, obtaining the potential
counterpart of the electron Wannier function,

Wl
s,��r − R� � �

q
�q

s,�Vl�r�eiRq. �9�

Wl
s,��r−R� is a localized function and represents the varia-

tion of the induced part of the potential due to the displace-
ment of a single atom s in the Cartesian direction �. This
function can be used to obtain the change of the potential for
an arbitrary wave vector q̃ by considering the inverse Fourier
transformation of Wl

s,��r−R�:
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�q̃
s,�Vl�r� 
 �

R
Wl

s,��r − R�e−iRq̃. �10�

The more localized the potential change Wannier function is,
the more accurate is the potential approximated by this
scheme.

All this is very similar to what is found for electron Wan-
nier functions.14 However, note that contrary to the electronic
case, the phases of �q

s,�Vl�r� are fixed since this is the case
for the bare part of the potential. Thus Eq. �9� already repre-
sents a maximally localized Wannier potential for a single
band. Still, in allowing for band mixing, one would obtain
even more localized potential Wannier functions in the same
way as for the electronic case14 with the only drawback of
slightly complicating the computational procedure. Of
course, the accuracy of the above interpolation technique
also depends on the density of the original q mesh. The
experience gained by applying this procedure to several sys-
tems, however, has revealed that even starting with relatively
coarse q grids �of the order of �8�8�8� gives accurate
results for the anisotropic ep properties.

Our method is summarized as follows: As a first step, one
performs a self-consistent linear-response calculation for a
relatively coarse phonon q sampling to get the dynamical
matrices Dq�s ,� ;s� ,��� and the change of the potentials
��q̃

s,�V�r� in the irreducible wedge of the Brillouin zone. In a
next step, these quantities are calculated for the entire Bril-
louin zone by considering the appropriate symmetry opera-
tions. With these ingredients, one can solve Eqs. �9� and �10�
to obtain the change of the potentials for a dense q mesh, i.e.,
the same as the one considered for the electron wave func-
tions �Nk1

,Nk2
,Nk3

�. We now can calculate any electron-
phonon matrix element,

g�,k,k−q̃
i,j = �

s,�

�s,�
q̃,�

�2Ms�q̃
�
�	 j,k−q̃��q̃

s,�V�	i,k� , �11�

for k and q̃� �Nk1
,Nk2

,Nk3
�.

The phonon energies �q̃
� and the polarization vectors �s,�

q,�

are calculated by the following well-known procedure: The
force-constant matrices �R are obtained by Fourier interpo-
lation of the dynamical matrices Dq derived from the self-
consistent linear-response calculations,

�R�s,�;s�,��� � �
q

Dq�s,�;s�,���eiq�rs−rs�+R�. �12�

Thereby rs denote different atomic positions in the same unit
cell. To obtain the approximate dynamical matrices, an in-
verse Fourier transform is performed:

Dq̃�s,�;s�,��� 
 �
R

�R�s,�;s�,���e−iq̃�rs−rs�+R�. �13�

As mentioned before, Giustino and co-workers12,13 have
applied a Fourier interpolation technique involving maxi-
mally localized electron and phonon wave functions. Our
method is different in many respects but the most important
distinction being that, in our case, the only interpolated quan-
tity is the local part of the phonon-induced part of the elec-
tron potential. In the presented procedure here, the electron

wave functions and the nonlocal part of the potential are
always considered “exactly.” This scheme also allows the
calculation of the change of the electron potential in real
space and hence to solve the Dyson equation for the ep prob-
lem in real space.19

III. RESULTS

A. MgB2

As a first example, we have applied our method to bulk
MgB2 using the experimental structure parameters a
=5.8317 and c /a=1.1419.20,21 We utilized norm conserving
pseudopotentials with an energy cutoff of 60 Ry. The
ground-state calculations were performed considering a 40
�40�40 grid for the electron wave vector k, labeled G40 in
the following. The Sternheimer equation was solved for a set
of 84 irreducible phonon wave vectors q representing a 10
�10�10 division of the BZ and considering a G20 electron
momentum grid for each q point in the Sternheimer equa-
tion. Figure 1 shows the phonon dispersion calculated by
means of force-constant matrices obtained from the self-
consistently evaluated initial G10 q mesh. It is in very good
agreement with previous calculations22,23 performed for
somewhat coarser �6�6�6� q grids. As a next step, we
determined the Eliashberg function considering the three dif-
ferent grids, i.e., G10, G20, and G40, for the electronic wave
functions. For the denser k and q grids, �G20 and G40�, we
computed �q

s,�V�r� for irreducible q points and calculated the
potential changes for the full BZ by applying the correspond-
ing symmetry operations. That way we obtained the k re-
solved Eliashberg function �Eq. �1� as well as the Fermi-
surface averaged Eliashberg function,

�2Fav��� = �
k,i

�2Fi,k������i,k − �F�/N�0� . �14�

The Fermi-surface integrals in Eqs. �1� and �14� where per-
formed using the linear tetrahedron method. The Eliashberg
function for some selected directions on the different Fermi
sheets, i.e., 1, 2, �1, and �2, are displayed in Fig. 2. These
k directions correspond to the intersections of the Fermi sur-
face with the respective high-symmetry lines indicated in the
different panels of the figure. Also, the Eliashberg function
averaged over the Fermi surface �Eq. �14� is shown in Fig. 3
for the different BZ samplings.
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FIG. 1. Phonon band structure of MgB2 along high-symmetry
lines as indicated in Fig. 4.
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Figure 4 shows the Fermi surface of bulk MgB2 where the
calculated values of the ep parameter �k are highlighted by
the color code. The two central cylindrical sheets are labeled
by 1 and 2, and the outer ones as �1 and �2, indicating the
corresponding band character. Note that �k is rather isotropic
for the � bands, contrary to the  type sheets where not only
is the magnitude twice as large but also the anisotropy is
more pronounced, in particular for 2. The two cylindrical 
sheets are repeated in the right part of Fig. 4 to emphasize
this anisotropy more clearly.

Note that these calculations are performed with many
more q and k points than in any previous work where the
different results for the averaged � parameter range between
0.7–0.9.22,24,25 Our converged result for the averaged mass
enhancement parameter is �=0.776, where we have used a
40�40�40 grid for both the electrons and the phonons.

In order to estimate the error in our procedure, we solved
the Sternheimer equation self-consistently for some q points
belonging to G20 but not to G10, and then compared the dif-
ference between our interpolated potentials �out of an initial
G10 grid� and the self-consistently obtained ones. This was
done starting from the 
 point and going along the three
reciprocal-lattice vectors. This is the most stringent test of
our method since, close to the 
 point, the response function
diverges �as well as the bare potential� and hence the area
close to 
 is most sensitive.

The maximum estimated error

� 

	 d3r��q

s,�Vloc
ip �r� − �q

s,�Vloc
exact�r��

	 d3r��q
s,�Vloc

exact�r��
, �15�

with ip indicating the interpolated potential, was always less
than 0.1% for the Mg displacements and �1% for the B
displacement modes. For q points inside the Brillouin zone,
the results of the interpolation are even much more accurate.
Note that the error estimation given above is rather pessimis-
tic since, in accumulating all errors point per point �by sum-
ming over the module of the difference�, Eq. �15� does not
allow for any error cancellation and hence represents the
worst case scenario.

B. Bulk tungsten

As a second example, we considered bcc tungsten �lattice
parameter a=5.90 a.u.�. A cut-off energy of 40 Ry was used
for the ground state as well as for the self-consistent linear-
response calculations. The latter was performed for a G8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

α2
F

(ω
)

0.0

0.5

1.0

1.5

2.0

2.5

α2
F

(ω
)

ΓΚ ΓΜ

AH AL

σ1 σ1

σ1σ1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

α2
F

(ω
)

0.0

0.5

1.0

1.5

2.0

2.5

α2
F

(ω
)

ΓΚ ΓΜ

AH AL

σ2 σ2

σ2 σ2

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

α2
F

(ω
)

0 20 40 60 80

ω [meV]

0.0

0.5

1.0

1.5

2.0

2.5

α2
F

(ω
)

0 20 40 60 80

ω [meV]

ΓK ΓM

AH AL

π1 π1

π2 π2

(b)

(c)

FIG. 2. Eliashberg function on the different Fermi sheets for
selected directions as indicated in Fig. 4.
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FIG. 3. �Color online� Fermi-surface averaged Eliashberg
function considering a 10�10�10 �G10�, 20�20�20 �G20�, and
40�40�40 �G40� grid for both electron and phonon wave vectors,
k and q.
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mesh of q points, giving rise to 29 points in the irreducible
BZ. The electron wave functions were calculated on a
denser, i.e., G16, k point grid in the self-consistent solution of
the Sternheimer equation. For the ep calculation we em-
ployed even a G40 grid for both the electron and phonon
wave vectors by using the exact solution of the Kohn-Sham
equation for the former, and the interpolation scheme for
the latter. Our phonon dispersion is in good agreement
with neutron-scattering measurements26 and previous
calculations.27

As Fig. 5 shows, the Fermi surface, consisting of several
sheets, is quite complex. Like in the previous example, we
indicate the ep parameter � by the color code. The aniso-
tropy of the electron-phonon interaction is not very pro-
nounced in any of the sheets but the strength varies substan-
tially between them. This fact is expressed by the sensitivity
of the Eliashberg function to the electron wave vector k, as
depicted in Fig. 6. While it exhibits very similar features
along the 
H direction on two different sheets �points a and
c� with a double peak between 15 and 25 meV, and a single
peak around 27 meV, the behavior is quite different at points
b and d. Here the features below 25 meV are less resolved
with a magnitude more than twice in d compared to b. Fig-
ure 7 finally shows the Eliashberg function averaged over the
Fermi surface. The so-obtained overall ep parameter of �
=0.27 is consistent with existing data from tunneling experi-
ments �see Ref. 8 and references therein�.

C. Hydrogen terminated 1Ã1 W(110) surface

This surface has been extensively studied by means of
photoemission measurements aimed to reveal the electronic
structure and the effect of electron-phonon interaction on
quasiparticle states.5,28,29 Spin-resolved photoemission29

showed that the surface state around the high-symmetry
point S experiences spin-orbit splitting together with an in-
triguing quasiparticle band splitting that could clearly be at-
tributed to electron-phonon coupling. Here we present results
for the paramagnetic surface, i.e., we neglect the effect of the
spin-orbit interaction on the surface states. This is justified
by the fact that the degenerate paramagnetic Fermi-surface
state resembles approximately the spin-split state S1.5

We applied the repeated-slab approach to this system,
considering a centrosymmetric supercell, which consists of
seven W layers together with two hydrogen surface layers
�one on each W surface�, and a vacuum thickness equivalent
to four ideal W�110� layers. Norm-conserving pseudopoten-
tials with a cut-off energy of 40 Ry were employed. Ex-
change and correlation effects were treated within the local-
density approximation �LDA�, utilizing the parametrization
by Perdew and Zunger. The surface was considered to be
relaxed when the forces acting on each atom were smaller
than 10−5 Ry /a.u. Our ground-state results are in good
agreement with previous all-electron full-potential calcula-
tions in terms of the crystal structure as well as the Fermi
surface.30 These calculations revealed a reduced symmetry

FIG. 4. �Color� Electron-
phonon mass enhancement param-
eter � at the Fermi surface of
MgB2. The wave vectors are in
units of 2� /a. The two inner cy-
lindrical sheets ��1,2� are given on
the right side for clarity.

FIG. 5. �Color� Fermi surface
of bcc tungsten with the electron-
phonon parameter � highlighted
by the color code. The red dots la-
beled a–d represent selected
points for which the Eliashberg
function is shown in Fig. 6.
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for the relaxed structure with respect to the clean W�110�
surface. Figure 8 shows the calculated Fermi surface of the
slab system, consisting of electron bands of bulk as well as
surface character, where the gray area represents the bulk
projected bands.

The best experimentally studied surface electron state is
the one around the S high-symmetry point �denoted by S
surface state in the following�, which is indicated by an ar-
row in Fig. 8. � denotes the angle between a k point at the
Fermi surface and the high-symmetry line HS. The whole
surface electron band appears almost completely degenerate.
There is only a small area where the surface state intersects
the bulk projected band area �gray� where the surface state
exhibits a tiny splitting due to the finite size of the slab.
Hence the size of the slab can be considered sufficiently
large to simulate the real surface. The same conclusion can
be drawn from checking the degeneracy of the phonon
modes in Fig. 9.

A self-consistent linear-response calculation was per-
formed for a uniform 8�8�1 q grid containing 21 irreduc-
ible q points where for each q point, we sampled the electron
wave vectors by a 16�16�1 k mesh. Figure 9 shows the
so-obtained phonon band structure. The three vibrational
modes highest in energy are related to the hydrogen atom
displacements while the lower ones are stemming from the

underlying W�110� substrate. The mode highest in energy
represents ionic motions perpendicular to the surface while
the next two lower ones correspond mainly to shear and lon-
gitudinal vibrations, respectively. The energies of the hydro-
gen modes are in very good agreement with low electron
energy-loss spectroscopy �EELS� measurements.31

With the above results as an input, we resolved the k
dependency of the Eliashberg function like in the previous
sections. We generated the variation of the electron potentials
by our interpolation scheme for a uniform 32�32�1 q
mesh while the electron wave functions where obtained for
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FIG. 6. Eliashberg function for selected points of the Fermi
surface, which are indicated by red dots in Fig. 8.

0 10 20 30 40
ω [meV]

0.0

0.1

0.2

0.3

0.4

G40 λ = 0.27

FIG. 7. Eliashberg function averaged over the Fermi surface
leading to an overall ep parameter � of 0.27.

FIG. 8. Fermi surface of the relaxed hydrogen covered W�110�
surface system. The gray area indicates the bulk projected bands.
The surface electron state S is indicated by the arrow where the
angle � is measured from the HS line.
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FIG. 9. Phonon dispersion of the hydrogen covered W�110� sur-
face along high-symmetry lines.
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the same grid from the self-consistent potential. The results
are shown in Figs. 10 and 11, where the angular dependence
of �k and the Eliashberg function are depicted, respectively.

Figure 11 shows the calculated Eliashberg function of the
S surface state for several k points in the Fermi surface. The
electron wave vector is expressed by the angle �. The dashed
green line indicates the first moment of the Eliashberg func-
tion, �0

�2�2F��� /�d�, emphasizing the relative importance
of specific phonon modes to the total � parameter. From this
figure we deduce that only �20% of the total mass enhance-
ment is induced by hydrogen related phonons. The relatively
weak contribution of the hydrogen surface phonon modes to
the total � parameter is mainly due to the high energies of
these phonon states, as they are weighted by the inverse of
the frequency. We conclude also that the lowest-energy hy-
drogen modes, which exhibit the strongest interaction with
the surface state, are those with appreciable longitudinal
components. In contrast, the high-energy hydrogen vibra-
tions, mostly polarized in the direction perpendicular to the
surface, only weakly interact with the surface states.

IV. CONCLUSIONS

In conclusion, we have presented a scheme to accurately
describe phonon-induced electron potentials for arbitrary
phonon wave vectors. The method is based on the evaluation
of the Wannier-function counterpart of the electron potential
change and offers the possibility to determine anisotropic
properties of the electron-phonon interaction with a compu-
tational cost several orders of magnitude less demanding
than a fully self-consistent linear-response calculation. To
demonstrate the applicability to various examples, we have
considered several nontrivial systems, which are bulk MgB2
and tungsten, and the 1�1 H covered W�110� surface. In all
systems, the details of the ep interaction at the Fermi surface
are revealed by the anisotropic ep coupling parameter �k, as
well as by the Eliashberg function. Our results for bulk
MgB2 could also contribute in clarifying the present contro-
versy about the actual value of the Fermi-surface averaged
ep parameter � since the present calculation is based on very

dense electron and phonon wave vector samplings. Gener-
ally, the evaluation of properties related to ep interaction is
especially expensive for slab systems. Note that for the par-
ticular surface system chosen here, the amount of q points
considered in the evaluation of the anisotropic Eliashberg
function would make a self-consistent calculation of all the
phonon-induced changes of the electron potential impracti-
cable.
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