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Motivated by the evidence in Pr2−xCexCuO4−y and Nd2−xCexCuO4−y of a magnetic quantum critical point at
which Néel order is destroyed, we study the evolution with doping of the T=0 quantum phases of the
electron-doped cuprates. At low doping, there is a metallic Néel state with small electron Fermi pockets, and
this yields a fully gapped dx2−y2 superconductor with coexisting Néel order at low temperatures. We analyze the
routes by which the spin-rotation symmetry can be restored in these metallic and superconducting states. In the
metal, the loss of Néel order leads to a topologically ordered “doublon metal” across a deconfined critical point
with global O�4� symmetry. In the superconductor, in addition to the conventional spin-density wave transition,
we find a variety of unconventional possibilities, including transitions to a nematic superconductor and to
valence-bond supersolids. Measurements of the spin-correlation length and of the anomalous dimension of the
Néel order by neutron scattering or NMR should discriminate these unconventional transitions from spin-
density wave theory.
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I. INTRODUCTION

Superconductivity in the cuprates emerges on doping an
antiferromagnetic �AFM� insulator with either holes or elec-
trons. The hole-doped cuprates generally have higher super-
conducting critical temperatures but at the same time display
a host of complicated phenomena, e.g., incommensurate
magnetism and charge order, especially in the La series of
compounds. The electron-doped cuprates, on the other hand,
provide an interesting contrast, where the phenomenology
appears to be relatively simple. The superconductivity also
has d-wave pairing,1 but there is no evidence yet for charge
order, and the magnetic correlation remains commensurate
even after long-range magnetic order is destroyed.2–7

The sharp contrast between electron and hole doping must
arise from particle-hole asymmetry in Cu-O planes. The
electron-hole asymmetry of the Cu-O plane is evidenced
most clearly by photoemission experiments8–11 that show a
sharp distinction between the Brillouin-zone �BZ� location of
the low-energy fermions in the very lightly hole-
�Kv= ��� /2,�� /2�� and electron- �Qv= �� ,0� , �0,���
doped cuprates �see Fig. 1�.

A further motivation for the study of the electron-doped
cuprates is provided by recent quantum oscillation evidence
for the presence of electron pockets in the hole-doped cu-
prates in a strong magnetic field.12 It seems most natural to
us that these electron pockets reside near the Qv. So it seems
appropriate to study the physics of the electron pockets
where they are already present in zero field: in the electron-
doped cuprates. Conversely, as we will see in this paper, the
hole pockets near the Kv also play a role in the physics of the
electron-doped cuprates. Indeed, in both the electron- and
hole-doped cuprates, a central problem is understanding how
the Kv hole pockets and the Qv electron pockets reconnect to
form a large Fermi-surface state after the loss of magnetic
order.

A recent neutron-scattering study of the Néel correlation
length6 in Nd2−xCexCuO4−y provides evidence for a quantum
critical point at x�0.13, after which the Néel correlation

length is finite. Remarkably, even at the optimal doping x
�0.15 �at which long-range Néel order is lost� a large Néel
correlation length is measured; additionally, there is no evi-
dence for incommensurate magnetic order over the entire
doping range. The relative stability of the commensurate
magnetism in the electron-doped cuprates should be con-
trasted to the La series of the hole-doped cuprates. In the
latter, long-range magnetic order transforms from the �� ,��
Néel vector to incommensurate ordering vectors before being
destroyed at dopings typically three times smaller than in the
electron-doped cuprates. These photoemission and neutron-
scattering measurements suggest the schematic phase dia-
gram shown in Fig. 2 as a function of temperature �T� and
electron doping �x�.

The focus of this paper is on the nature of the dynamic
spin correlations in the electron-doped cuprates as a function
of increasing doping. It is useful to frame our discussion by
first recalling the predictions of a conventional spin-density-
wave �SDW� theory of the evolution of the Fermi surface as
a function of electron density and the spontaneous Néel
moment.13–17 We sketch the results of a mean-field computa-
tion in Fig. 3.

At very low electron doping �x�, we have the electron
Fermi-pocket states shown in the leftmost panels �AFM
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FIG. 1. �Color online� Brillouin-zone map showing where the
low-energy fermions reside for hole-doped �Kv� and electron-doped
�Qv� cuprates, as deduced from photoemission data at low doping.
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metal�, with well established Néel order. When this state
goes superconducting at low temperature �T�, the Fermi sur-
face does not intersect the diagonals along which the dx2−y2

pairing amplitude vanishes, and so the resulting d-wave su-
perconductor �AFM+SC� is fully gapped. At large electron
doping, we have the large Fermi surfaces shown in the right-
most panels, with no Néel order. Now the Fermi surfaces do
intersect the diagonals at four points, and so the d-wave su-
perconductor has four nodal points. Examining the evolution

of the Fermi surfaces between these two limiting cases in
Fig. 3, we observe that there is generically an intermediate
Fermi-surface configuration, with Néel order, in which the
Fermi surfaces intersect the diagonals at the eight points
��� /2,� /2�� �� ,�� and ��� /2,−� /2�� �� ,−�� for some
small nonzero �. The appearance of superconductivity at low
T will then lead to a d-wave superconductor with eight nodal
points in the full Brillouin zone of the square lattice. Thus, in
both the metallic and superconducting cases, this intermedi-
ate state has eight zero-energy crossings of the fermion dis-
persion relation along the diagonals of the full square lattice
Brillouin zone.

A further motivation for our study is that the eight diag-
onal Fermi points of the intermediate state are not clearly
seen in photoemission experiments.8–11 Fermi-surface cross-
ings are seen on only a single point adjacent to the
4��� /2,�� /2� points. We therefore explore here uncon-
ventional routes by which the Néel order at low doping, in
the AFM metal and the fully gapped d-wave superconductor,
can be destroyed by increasing hole concentration.

Important aspects of our results on the metallic and super-
conducting quantum phases and phase transitions are sum-
marized in Figs. 4 and 5. The right panel of Fig. 4 indicates
results on a “toy” t−J model of S=1 /2 bosons which we will
describe in Sec. IV. We will see that there is a close analogy
between our results for the electronic t−J model and the toy
boson model, with the latter model having the advantage that
duality computations of the crossover into confinement can
be carried out in explicit detail.

For the metallic case, we find that the quantum transition
out of the Néel state with Fermi pockets �the AFM Metal� is
into an exotic “doublon metal” state without magnetic order
�see Fig. 4�; the nomenclature refers to the sites with double
occupancy when the Mott insulator is doped with electrons.
The doublon metal is the particle-hole conjugate of the “ho-
lon metal” state described in recent work,18,19 and both are
examples of “algebraic charge liquids.” These states have
topological order and no sharp electronlike quasiparticles.
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FIG. 2. �Color online� Schematic phase diagram for the
electron-doped phase cuprates �following Refs. 2–7�. The dashed
lines indicate finite-T phase transitions. The quantum critical point
where Néel �AFM� order is lost in the superconductor �SC� is
marked with a solid circle. The doublon metal is a phase proposed
in the present paper, which appears when Néel order is lost in the
AFM metal; an AFM metal/doublon metal quantum critical point
does not appear in the phase diagram above but would be revealed
when superconductivity is suppressed, e.g., by an applied magnetic
field. The finite T crossovers can exhibit features of both the
AFM+SC /SC and AFM metal/doublon metal quantum critical
points.
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FIG. 3. �Color online� Fermi-surface reconstruction at SDW
transition showing the presence of an intermediate state between the
large Fermi surface �rightmost panels� and small Fermi-pocket �left-
most panels� states. Following Ref. 15, we have used a band struc-
ture appropriate to the cuprates, t1=1, t2=0.32t1 and t3=0.5t2.
The rightmost plots show the Fermi surface before the introduction
of a mean-field SDW order parameter. The second from right show
the Fermi surface after folding with �SDW=0, followed by �SDW

=0.05,0.4t1 moving left. The top row has chemical potential �
=0.94 and the bottom row �=0.34. The dashed lines indicate the
points where the d-wave pairing amplitude changes sign in the su-
perconducting state. The AFM+SC states in the leftmost panels
have fully gapped quasiparticles because the Fermi surfaces do not
intersect the dashed lines. Similarly, the large Fermi-surface SC in
the rightmost panels has gapless quasiparticle excitations at four
nodal points, while the intermediate states have eight nodal points.
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FIG. 4. �Color online� Analogy between the phases and phase
transitions of the physical t−J model of electrons and the toy t−J
model of S=1 /2 bosons. This figure lists only the metallic phases of
the electrons, considered in Sec. III A. All nonzero, gauge-invariant
condensates �bilinear in the g� and z�� of each phase are noted;
those not shown are zero in that phase. The boson analog of the
fermionic metallic states are obtained if we replace the g� Fermi
pockets by condensates of the g� bosons: then the “fermionic Higgs
mechanism” discussed in Sec. III A finds its analog in the ordinary
Higgs condensate of the g� bosons. Monopoles are suppressed in
all phases above.
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However, they are separated from conventional Fermi-liquid
states by sharp transitions only at T=0; at T�0 there are
only crossovers into the Fermi-liquid-like regime. As super-
conductivity always appears as T→0 �see Fig. 2�, it is these
T�0 crossovers of the metallic regime which are needed for
experimental comparisons. We shall show that the spin exci-
tations near the transition into the doublon metal are de-
scribed by a quantum-field theory with global O�4� symme-
try, as indicated in Fig. 4. Further, as we will discuss below
in Sec. I A, spin fluctuations of this O�4� theory have clear
experimental signatures. Section IV will show that these me-
tallic phases of the electronic t−J model also have strikingly
similar analogs in the t−J model of bosons, along with a
magnetic ordering transition in the O�4� class.

For the superconducting case, we find a number of dis-
tinct possibilities, which are illustrated in Fig. 5. From the
AFM superconductor we find three distinct classes of transi-
tions: �a� a transition to a d-wave superconductor with full
square lattice symmetry, which is in the O�3� universality
class. This transition is in the same universality class as con-
ventional SDW theory. It is quite remarkable that this SDW
transition reappears in our formalism based on fractionalized
degrees of freedom. �b� A transition to a d-wave supercon-
ductor with coexisting valence-bond solid �VBS� order, i.e.,
to a supersolid. Such a valence-bond supersolid was initially
discussed in Refs. 20 and 21. The pattern of the VBS order is
columnar or plaquette �see Figs. 5 and 7�, the same as that in
the insulator22,23 �for rational x /2= p /q, with q /2 odd, other
patterns of order are possible, as discussed in Sec. IV B 3�.
This transition is expected to be of the “deconfined” variety,
in the CP1 �complex projective space of 1 complex dimen-
sion� universality class, similar to the transition in insulating
antiferromagnets.22,24 �c� The third transition is described by
the CP1 theory, but with an additional “doubled monopole”
perturbation allowed, which will be explained in more detail
in Sec. IV B. The nonmagnetic superconductor does break
the square lattice space-group symmetry, and the two al-

lowed patterns of symmetry breaking are in Fig. 8. Note that
one of them only breaks the Z4 rotation symmetry of the
square lattice to a Z2 rectangular symmetry, leading to a nem-
atic superconductor shown in Fig. 5.

It is interesting to note that the above possibilities match
the patterns of transitions found23 for insulating antiferro-
magnets as a function of the spin S. In particular, case �a�
occurs for even integer S, case �b� for half-odd-integer S, and
case �c� for odd integer S. Here we are considering a S
=1 /2 antiferromagnet, but with a background of a compress-
ible superconductor. As we shall see, the background density
fluctuations in the superconductor are able to modify the spin
Berry phases so that the transitions match those for different
S in insulators.

In addition to cases �a�–�c�, we note briefly that it is also
possible that the AFM+SC state already has density modu-
lations. Then, the transition involving loss of AFM order will
lead to modifications in the ordering pattern, as will be dis-
cussed in some detail in Sec. IV B. An important point is
that, in all these cases, the set of allowed periods for the
density modulations in the supersolid without AFM order is
the same as those characteristic25 of paired supersolids of
density 1+x.

An interesting issue, which we shall largely leave open in
the present paper, is the nature of the spectrum of the fermi-
onic Bogoliubov quasiparticle excitations in the supersolid or
the nematic superconductor. One natural possibility26–28 is
that these excitations initially remain fully gapped as in the
AFM+SC state. On the other hand, knowing that the super-
solid or nematic superconductor has effective density 1+x,
the structure of the Fermi surfaces in Fig. 3 suggests that
such a d-wave superconductor should have four gapless
Dirac points. In the deconfined quantum critical theory, the
electron spectral function is fully gapped along the diagonals
of the Brillouin zone. If the gapless nodal points do appear in
the nonmagnetic phase, they would create “Fermi-liquid co-
herence peaks” at the nodal points, with the weight of the
coherence peak vanishing as we approach the quantum criti-
cal point. This phenomenon would then resemble that in dy-
namical mean-field theory,29,30 where the Fermi-liquid coher-
ence peaks of the metal vanish at the metal-insulator
transition, revealing a fully gapped single-particle spectrum
at the critical point. This issue will be discussed further in
Sec. III B.

A. Experimental tests

We note here that neutron-scattering or NMR measure-
ments of the spin excitation spectrum can serve as useful
experimental probes of whether the Néel order is lost as in a
conventional SDW framework or in a more exotic decon-
fined critical point. In particular, the temperature dependence
of various components of the dynamic structure factor in the
quantum critical region can measure two crucial exponents
characterizing the transition, the dynamic critical exponent,
z, and the anomalous dimensions of the Néel order param-
eter, 	N. In terms of these exponents, we have31 for SN

e , the
zero frequency dynamic structure factor at the Néel ordering
wave vector �proportional to the elastic neutron-scattering
cross section at �� ,���,

AFM superconductor

�g+g−� �= 0, �zα∗zβ� �= 0

Superconductor

�g+g−� �= 0
Doubled
monopole

CP1O(3)
(SDW)

Valence bond supersolid

�g+g−� �= 0

Nematic Superconductor

�g+g−� �= 0

FIG. 5. �Color online� As in Fig. 4 but for the superconducting
phases of the electrons discussed in Sec. III B. The explicit compu-
tations in Sec. IV are for the boson model, but for paired superfluids
�which includes all phases above� the results are expected to also
apply to electrons. The pattern of translation symmetry breaking in
the valence-bond supersolid is sketched �see also Fig. 7�, while that
in the nematic superconductor follows Fig. 8�a�. Additional forms
of translational symmetry breaking are also possible in the AFM
and nonmagnetic phases, and these are discussed in Sec. IV B.
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SN
e � T�−2+	N�/z, �1�

for SN, the equal-time structure factor at the Néel ordering
wave vector �proportional to the energy-integrated neutron-
scattering cross section at �� ,���,

SN � T�−2+z+	N�/z, �2�

and for 
, the Néel correlation length,


� T−1/z. �3�

The present neutron-scattering experiment6 only reports the
quantum critical behavior of the spin-correlation length,
which is consistent with z=1. Although data on SN exist, a
scaling analysis to extract the exponent of Eq. �2� has not
been carried out. An important test of quantum critical scal-
ing would be to check that the exponent that arises from this
analysis should agree with an extraction of the same index
by an analysis of the Cu NMR relaxation rate,

1

T1
� T	N/z. �4�

The values of the exponents in the conventional SDW
theory depend upon whether the quantum critical region is
controlled by a metallic or a superconducting fixed point. For
the metallic fixed point, we have the Hertz-Millis-Moriya
theory,32 z=2 and 	N=0, while for the superconducting case
we have the usual three-dimensional �3D� O�3� transition, z
=1 and 	N�0.038.

Our main experimentally relevant results in this paper are
the values of these exponents for the deconfined transition at
which Néel order is lost. The exponents depend upon
whether we are using a superconducting or metallic fixed
point, and our results are summarized in Table I. There are
no existing numerical results for the doubled monopole tran-
sition, and so these are not shown: it may well be that this
case has a first-order transition. Note the large values of 	N
for the deconfined cases, making them clearly distinguish-
able from the SDW cases. In particular, with 	N�1 for the
metallic case, the equal-time structure factor SN has a singu-
lar contribution which decreases with decreasing T.

We also note that for the superconducting case, the prop-
erties of the CP1 field theory are not fully settled in the
literature36–38 with a debate on whether the quantum transi-
tion is second or first order. Nevertheless, there is significant
evidence22,39 of a crossover into a regime which is described
by the CP1 field theory. Furthermore, even if the transition is
first order, it appears to be only very so weakly, and the
simulations of Ref. 36 show a substantial T�0 critical scal-
ing regime.

Because the electron-doped cuprates are always supercon-
ducting in the proximity of the quantum critical point at low
T, the superconducting critical theory described above is the
correct description at very low-T scales. The normal-state
theory does however apply at temperature scales above the
superconducting temperature and hence could be the relevant
one for experiments over a large temperature scale. An inter-
esting prediction that arises from this crossover is that the
equal-time structure factor, SN, could have a nonmonotonic T
dependence. It should first decrease with cooling, when the
system is controlled by the metallic fixed point with 	N�1,
and then crossover to increase with further cooling, when the
system is controlled by the superconducting fixed point with
	N�1.

The outline of the remainder of this paper is as follows: In
Sec. II we derive an effective-field theory for the electron-
doped cuprates in a language well suited to discuss both the
magnetic phases and the nonmagnetic ones that appear on
the destruction of Néel order. In Sec. III we discuss the vari-
ous possibilities for transitions involving loss of Néel order.
The t−J model of bosons will be introduced in Sec. IV, along
with a complete duality analysis of its phase diagram and its
crossover to confining phases. Finally in Sec. V, we conclude
with a summary of our results.

II. FIELD THEORY AT LOW DOPING

We begin with a symmetry-based derivation of a long-
wavelength effective action for the electron-doped cuprates.
We will use the low-energy excitations of the low doping
state to build a theory which is valid also at larger doping
when spin-rotation invariance is restored.

The motion of a small number of charge carriers in a
quantum antiferromagnet is usually described by the t−J
model,

Ht−J = − �
i,j,�

tij�ci
�†cj� + H.c.� + �

i,j
JijS� i · S� j + ¯ , �5�

where ci� destroys an electron with spin � on the sites i of a

square lattice and S� i=1 /2���ci
�†� �

�ci�, with � as the Pauli
matrices. We shall study the case in which the electrons hop
on a square lattice. Once extra electrons are doped into the
half-filled magnet a constraint must also be included. The
constraint

�
�

ci
�†ci� � 1 �6�

is enforced on each site, modeling the large local repulsion
between the electrons. It is important to note that our results

TABLE I. Predictions for the exponents 	N and z by different
theories for the quantum critical point observed in the electron-
doped cuprates such as Nd2−xCexCuO4−y. Both exponents can be
measured in experiment by a straightforward analysis of the tem-
perature dependence of the equal-time structure factor, as described
in the text. The numerical estimates for the anomalous dimensions
are based on results from previous studies of the three-dimensional
O�3� �Ref. 33�, three-dimensional O�4� �Ref. 34 and 35�, and the
three-dimensional CP1 model inferred from quantum simulations of
the Néel-VBS transition �Ref. 36�.

SDW metal SDW SC O�4� CP1

z 2 1 1 1

	N 0 0.038 1.37 0.35
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are more general than a particular t−J model and follow
almost completely from symmetry considerations. The el-
lipses in Eq. �5� indicate additional short-range couplings
which preserve square lattice symmetry and spin-rotation in-
variance.

Following Ref. 40, but now for the case of electron dop-
ing, we rewrite the electron operators in a t−J-type lattice
model in terms of spinons and “doublons” �for doubly occu-
pied sites�. Note that here the site occupation is constrained
to be ��c�

†c��1. We use the following representation for the
electron operators:

c� = ���b
�†g+ �on A� ,

c� = − b̄�
†g− �on B� , �7�

where the constraint is b�†b�+g+
†g+=1. �We first used c�

=���b
�†g on both sublattices, then rotated the Schwinger

bosons on the B sublattice b�→���b̄�, like in the Arovas-
Auerbach analysis.41� Note that ������=−��

�.
Now we are in a position to write down the transforma-

tion of the lattice fields that we have written down under the
various square-lattice symmetries and time reversal. We re-
quire that the composite fields c� transform into each other in
the usual way under the square lattice symmetries. The
implementation of time-reversal symmetry is detailed in Ap-
pendix A. We thus arrive at Table II.

We now proceed to take the continuum limit of the lattice
model that we have defined. In order to do so,23 we define

fields a and ��=b�− b̄�
† and integrate out the massive ��

field. We then arrive at the Lagrangian for the z�,

Lz = D�
+z��D�

−z� + s�z��2 + u��z��2�2 + ¯ , �8�

where �=x ,y ,� is a space-time index, D�
�=��� iA�, A� is

an emergent U�1� gauge field linked to the local constraint in
Eq. �7�, and s and u are couplings which can be tuned to
explore the phase diagram. The Néel order parameter is sim-
ply n� =z��� �

�z�.
We also need to take the continuum limit for the charge

carrying fermions of this model. As discussed in detail in

Ref. 40, fermions that live on opposite sublattices carry op-
posite charges under the gauge field, A�, and hence must be
represented by two distinct continuum fields g� �both fields
are centered at the lattice momentum, Q1�. The lowest de-
rivative term consistent with the symmetry of the g� is

Lg = �
q=�

gq
†	D�

q̄ − � −
Dj

q̄2

2m

gq. �9�

where m is the curvature of the fermion bands and q̄=−q.
Finally, by requiring consistency with the lattice transforma-
tion properties of the continuum fields, presented in Table III,
the lowest allowed derivative term that couples the opposite
fermions g� can be deduced,

Lz−g = �����g+
†�Dx

+g−�z��Dx
−z�� − g+

†�Dy
+g−�z��Dy

−z���

+ ����g−
†�Dy

−g+�z���Dy
+z���

− g−
†�Dx

−g+�z���Dx
+z���� + c.c. �10�

This is the analog for electron-doped cuprates of the well-
known Shraiman-Siggia term42 in the hole-doped case. Re-
markably, this term has two spatial derivatives; there is no
term allowed with a single spatial derivative �as is found
from a similar analysis in the hole-doped case;40 see also
Ref. 43�. The extra derivative makes the effect of this term
weaker. The weakness of this coupling, which arises because
of the BZ location of the low-energy fermions �which in turn
is ultimately tied to the p−h asymmetry in the Cu-O layers�,
is the fundamental reason for the robustness of the commen-
surate Néel correlations in the electron-doped cuprates as
compared to the hole-doped case. These correlations extend
at least up to optimal doping6,7 and possibly beyond giving
us confidence in the present approach.

The complete effective action for the electron-doped an-
tiferromagnet is then S=�d2rd��Lz+Lg+Lz−g�+SB. The fi-
nal term SB contains the Berry phases of the monopoles and
has the form

SB = i
�

2 �
j

mj� j �11�

for monopoles with integer charges mj on the sites j on the
dual lattice; � j is fixed at � j =0,1 ,2 ,3 on the four dual
sublattices.23

A. Néel order and superconductivity

We now discuss the phase diagram of the field theory
presented in Sec. I. Some of the analysis parallels that pre-

TABLE II. Transformations of the lattice fields under square
lattice symmetry operations and time reversal. Tx: translation by
one lattice spacing along the x direction; R�/2

dual: 90° rotation about a
dual lattice site on the plaquette center �x→y ,y→−x�; Ix

dual: reflec-
tion about the dual lattice y axis �x→−x ,y→y�; and T: time rever-
sal, defined as a symmetry of the imaginary time path integral. The
transformations of the Hermitian conjugates are the conjugates of
the above, except for time reversal of fermions. For the latter, g�
and g�

† are treated as independent Grassman numbers and T :g�
†

→g�.

Tx R�/2
dual Ix

dual T

b� ���b̄
� ���b̄

� ���b̄
� ���b

�†

b̄� ���b� ���b� ���b� ���b̄�
†

g+ g− g− g− −g+
†

g− −g+ −g+ −g+ −g−
†

TABLE III. Transformation properties under square lattice sym-
metries and time reversal of continuum fields entering the effective
action. Conjugate fields transform into the conjugate of the trans-
formed fields except for T :g�

† →g�.

Tx R�/2
dual Ix

dual T

z� ���z
�� ���z

�� ���z
�� ���z

��

g+ −g− −g− −g− −g+
†

g− g+ −g+ g+ −g−
†
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sented in Refs. 18 and 40 for the hole-doped case.
The phases are most easily characterized by using a rep-

resentation for the physical electron annihilation operator
���r�� in terms of the fields we have introduced above. We
first express the electron operator in terms of its components
at momenta at Q1 and Q2,

���r�� = eiQ� 1·r��1��r�� + eiQ� 2·r��2��r�� . �12�

Then, as in Ref. 40, we use the symmetry transformation
properties to deduce the unique bilinear combination of the
fermion and CP1 fields that transform in the way that the
physical electrons �1,2 should,

�1,2� = ���z
��g+� z�g−. �13�

The phases in Fig. 2 can now be characterized in terms of
the z� and g� degrees of freedom:

(i) AFM metal. This is the Higgs phase of the gauge
theory, in which there is Higgs condensate of z� with �z�
�0. As discussed in Ref. 40, the “Meissner” effect associ-
ated with this Higgs condensate ties the A� gauge charge to
the spin quantum number. So for Néel order oriented along
the z axis, the g� fermions carry spin Sz=�1 /2 and reside in
Fermi pockets. The resulting phase is then identical to the
AFM metal phase obtained in SDW theory and shown in the
left panel of Fig. 3.

(ii) Doublon metal. This is the particle-hole conjugate of
the holon metal and is a non-Fermi-liquid algebraic charge
liquid. We have �z�=0, and the phase is described by the
gapped z� quanta and the g� Fermi pockets interacting via
exchange of the A� gauge force. We observe from Eq. �13�
that the physical electron involves a convolution of the
propagators of the z� and g� and so will not have Fermi-
liquid form. We note that the holons and the holon-spinon
bound states, discussed in previous work18,40 on the holon
metal, are also legitimate excitations of the doublon metal.
Here they are likely to be gapped, but at T�0 will contribute
photoemission spectral weight8 near the Kv points in Fig. 1.

(iii) SC phases. As discussed in Ref. 18, the nearest-
neighbor hopping term and the gauge forces will induce a
pairing of the g� fermions. Let us assume a pairing of the
form

�g+1�k�g−1�− k� = ��k� . �14�

Then the pairing signature of the electrons can be computed
from Eqs. �13� and �14�: the various possibilities are dis-
cussed below. If we also have �z��0, then we obtain the
AFM+SC phase of Fig. 2. This is a stable phase because the
z� Higgs condensate quenches the gauge fluctuations and
also the monopoles; its physical properties are identical to
the AFM+SC phase obtained in the SDW theory noted in
Fig. 3. A superconducting phase with �z�=0 is the doublon
superconductor, and this is not stable; proliferation of mono-
poles will lead to confinement, as we shall discuss in Sec.
III B.

The remainder of this section will characterize the sym-
metry properties of the possible superconducting phases.
We also allow long-range Néel order by a condensation of
the CP1 fields with �z��z�=���m�; the Néel order is then

polarized in the z direction with spontaneous moment m↑
−m↓. Using these averages �Eq. �14�� and the expressions for
the physical electron operators �Eq. �13��, we can calculate
the required anomalous averages,

��1��k��1��− k� = − ����m���k� + m���− k�� ,

��1��k��2��− k� = ����m���k� − m���− k�� ,

��2��k��2��− k� = ����m���k� + m���− k�� . �15�

At the critical point from the AFM+SC state to the SC state
the Néel order parameter vanishes, i.e., m↑=m↓ and the
�1�2 correlator should disappear �this follows from the res-
toration of full translational invariance�, indicating that
��k�=��−k�. Since the superconducting instability arises out
of a short-range attractive interaction, it is most natural to
expect s-wave pairing. Remarkably, this naturally leads to
dx2−y2 pairing for the physical electrons �as can be verified
from Eq. �15� by substituting ��k�=�0�. However since the
underlying g� particles are in an s-wave state, the quasipar-
ticles in this dx2−y2 superconductor are fully gapped. We pro-
pose that this is the quantum state that describes the phase
AFM+SC in Fig. 2 and that is observed in the region of
coexistence in Nd2−xCexCuO4−y.

6 We note that with increas-
ing x, the Néel order is suppressed making the gauge field
mediated attraction �that causes superconductivity� stronger,
which in turn is expected to result in an increase in Tc, con-
sistent with experimental observations. For the sake of com-
pleteness, we present the other symmetry allowed options for
pairings �see Fig. 6, row�: ��k�=kx

2−ky
2 corresponds to the s

case, ��k�=kxky�kx
2−ky

2� corresponds to the dxy case, and
��k�=kxky corresponds to the g case; all these states have
nodal excitations. Finally, the condition ��k+KN�=−��k�
that is satisfied by all the order parameters deduced from Eq.
�15� �and that are illustrated in the second row of Fig. 6�
follows quite simply from the fact that the phase factor eiKN·r

is +1�−1� on the A�B� sublattices and that pairing occurs
only between electrons on opposite sublattices.
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FIG. 6. �Color online� Various order parameters that are even
under inversion ��k�=��−k�. Shaded areas are positive and white
areas negative; Thick red lines denote zeros of the order parameter.
The first �second� row has order parameters that are even �odd�
under translation by a Néel vector ��k+KN�=−��k�. The columns
are order parameters that transform similarly under square lattice
operations, ��k�→���k�, under rotation by � /2 and reflection
across x ,y axis. Only the second row can appear in the coexistense
phase discussed in the text, in which pairing is between electrons on
opposite sublattices.
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III. QUANTUM CRITICALITY

We now turn to our main results on the quantum phase
transitions involving loss of Néel order as described by the
low-energy theory introduced in Sec. II; the results were
summarized in Figs. 4 and 5.

A. Metallic states

First, let us consider the transition without superconduc-
tivity, destroying magnetic order in the AFM metal, leading
to the doublon metal. This transition is described directly by
the field theory in Sec. II and is associated with the conden-
sation of the z� spinons in the presence of the g� Fermi
surfaces.

At T=0, such a transition between metallic states could be
induced by destroying superconductivity by an applied mag-
netic field. Moreover, even at zero magnetic field, the quan-
tum critical region at temperatures above the superconduct-
ing Tc could be controlled by the crossovers of an underlying
AFM metal/doublon metal quantum critical point. Mono-
poles can be ignored in the following analysis because they
are suppressed by the gapless excitations at the g� Fermi
surfaces44 �see Appendix B�. The resulting state without an-
tiferromagnetism therefore carries gapless gauge excitations
and, as we noted earlier, realizes an algebraic charge liquid
which we call a doublon metal.

The theory for this transition follows the analysis of a
formally similar transition of bosons and fermions coupled to
a U�1� gauge field in Ref. 45. In this previous case, the
bosons were spinless and fermions carried spin, whereas here
the fermions are spinless while the bosons carry spin. How-
ever, for the quantum criticality, the more significant differ-
ence is that the quadratic action for the z� bosons has a
relativistic structure, unlike the z=2 dispersion in Ref. 45.

The renormalized A� gauge-field propagator is a key in-
gredient in our analysis. This depends upon the polarizabil-
ities of the g fermions and the z� bosons at the quantum
critical point. We evaluate these from the bare actions Lg and
Lz and will confirm later that the same results hold in the
fully renormalized critical theory. As usual, the fermion po-
larizability screens the longitudinal A� fluctuations, and the
only potential singularity arises from the transverse A�
propagator, D. In the Coulomb gauge, this has the low mo-
mentum and imaginary frequency form,46

Dij�k,i�� � 	�ij −
kikj

k2 
 1

k + ����/k
. �16�

Here the ��� /k term in the denominator is the contribution of
the g fermions and is present for ����vFk, where vF is the
Ferm velocity. The k term emerges from the critical z� cor-
relator �its coefficient is proportional to the critical conduc-
tivity of the z�’s�.

Let us now compute the consequence of the overdamped
gauge fluctuations in Eq. �16� on the z spectral function. At
leading order the z� self-energy at criticality is

�
z

�p,i�� � � d�� d2k
�p2 − �pk�2/k2�

k + ����/k
1

�� + ��2 + �k + p�2 .

�17�

It is now easy to confirm that this expression for �z is non-
singular at low p and � and does not modify the leading
behavior of the z propagator. In particular, the on-shell self-
energy has the imaginary part,

Im�
z

�p,� = p� � p3 �18�

which is clearly unimportant to the critical theory. Thus the
overdamping of the gauge fluctuations by the g� fermions
strongly suppresses their influence on the z� excitations. In-
deed, in the z=1 scaling, the k term in the denominator of
Eq. �16� can be neglected, and the renormalized action for
the transverse component of the gauge field is �AT

2���� /k�;
this scales as an anisotropic “mass” term for the gauge bo-
son. Thus we can view this feature as a fermionic version of
the Higgs mechanism, in which the low-energy excitations of
a Fermi surface quench the gauge-field fluctuations. We will
comment further on this analogy with the Higgs mechanism
in Sec. IV.

In a recent work46 in a different context, Senthil47 com-
puted the consequences of the singular interactions associ-
ated with Eqs. �16� and �17� on the spectral function of the
fermions and the associated formation of critical Fermi sur-
faces. All those results apply here too to our theory of the
transition from the AF metal to the doublon metal.

At this point, we are now prepared to integrate out the A�
gauge boson and the g� fermions and obtain an effective
theory for the z� spinons. Keeping only the terms potentially
relevant near the critical point, the resulting effective action
has the structure

Sz
eff =� d2rd�����z��2 + s�z��2 + u��z��2�2�

+ �� d2kd���z��2��− k,− ��
���
k

��z��2��k,�� . �19�

The last � term is a consequence of the compressible fluc-
tuations of the g� Fermi surfaces, which couple to �z��2 via a
contact term.40 At �=0 it is now evident that Sz

eff describes a
transition for the loss of Néel order by a conformal field
theory in the O�4� universality class. We can therefore ask
for the scaling dimension of � at this conformal critical
point. This follows from a simple scaling argument,48

dim��� = − 3 +
2

�
. �20�

The O�4� model has49 �=0.733 and so � is an irrelevant
perturbation. Further, when we account for the long-range
Coulomb interactions between the g� fermions, there is an
additional factor of k in the � term, and � is then more
strongly irrelevant.

We have now established that the transition from the
Néel-ordered Fermi-pocket metal to the doublon metal is in
the O�4� universality class. The Néel order-parameter itself is
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a quadratic composite of the z�. It transforms under the sym-
metric, traceless, second-rank tensor representation of O�4�,
and the scaling dimension of this composite operator has
been computed earlier.34,35 From the field-theoretic analysis
of Calabrese et al.34 we find 	N=5−2y2,2=1.374�12�, while
from the Monte Carlo simulations of Isakov et al.35 we ob-
tain 	N=1.373�3�.

B. Superconducting states

Now we discuss the transition out of the superconducting
AFM+SC state with increasing doping. Because the g� fer-
mions are fully gapped in the superconductor, they can ini-
tially be ignored in the analysis of the critical theory. The
remaining z� excitations are described by the CP1 model. So
a natural initial guess is that the critical theory for the loss of
Néel order is the same as that in the insulator.24 The presence
of superconductivity here does induce additional gapless
density fluctuations, but these are irrelevant50 as long as �
�2 /3 for neutral systems and generically unimportant with
long-range Coulomb interactions. Further, the paramagnetic
state so obtained is not a BCS superconductor because the
fermionic Bogoliubov quasiparticles carry no spin. Rather, as
discussed in Ref. 18, it is a “doublon superconductor.” How-
ever, once we have moved away from the critical point, there
are no gapless excitations which can serve to suppress mono-
poles in the U�1� gauge field. We expect that the condensa-
tion of the monopoles at a large secondary length scale will
induce confinement, leading to a generic instability of the
doublon superconductor.

We are interested in the nature of the confined state. For
the corresponding transition in the insulator,24 the confining
state was the valence-bond solid �VBS� which was induced
by the Berry phases on the monopoles. However, here there
is the possibility that the density fluctuations of the supercon-
ductor can modify the influence of the Berry phases. Because
the g� fermions are paired in the AFM+SC state and at the
critical point, it is plausible that a t−J model in which the g�
are bosons �and the z� remain bosons� should have essen-
tially the same properties in its charge and density correla-
tions in their respective paired states; we are merely replac-
ing the internal constituents of the Cooper pairs, but this
should not modify the nature of the phase and vortex fluc-
tuations of the superfluid. We will examine such a t−J model
of bosons in Sec. IV; we are able to carry out an analysis of
the influence of monopole condensation in some detail and
find three distinct possibilities which were listed earlier in
Sec. I and Fig. 5. �a� A conventional O�3� transition, as in
SDW, theory to a d-wave superconductor with full square
lattice symmetry. The monopole Berry phases are precisely
cancelled by density fluctuations in the superfluid, and so the
monopoles confine the z� spinons into the vector SDW order
parameter. �b� A deconfined CP1 transition to a valence-bond
supersolid,20,21 where the pattern of the VBS order is the
same as that in the insulator22,23 �see Fig. 7�. Here the mono-
pole Berry phases remain as in Eq. �11�. For rational x /2
= p /q, with q /2 odd, other patterns of order are possible, as
discussed in Sec. IV B 3. �c� A direct transition to a d-wave
superconductor with square lattice symmetry broken as in

the states in Fig. 8, one of which is a nematic supercon-
ductor. In this case, the monopole Berry phases are only
partially compensated by the superfluid modes, so that
monopoles with even magnetic charge are allowed at the

(b)

(a)

FIG. 7. Orderings in the nonmagnetic state in the presence of
the ��00 condensate �all q� or the ���� condensate �q /2 even�.

(b)

(a)

FIG. 8. Ordering in the nonmagnetic state in the presence of
���0, ��0� condensates.
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transition. Little is known about the critical properties of
such a doubled monopole theory, and it is possible the tran-
sition is first order.

The above list exhausts the possible transition out of the
AFM+SC state, for the case in which the AFM+SC state
does not have density modulations of its own. In Sec. IV, we
consider the further possibility that the AFM+SC state al-
ready carries density modulations �so that it is also a super-
solid�. We classify transition out of such states: monopole
condensation modifies the nature of the density modulations
in the nonmagnetic supersolid, and these will be described in
Sec. IV B. An interesting feature of the resulting supersolids
is that the set of allowed wave vectors for density modula-
tions is the same as those of a model of paired particles25,51

of density 1+x. Thus, once Néel order is lost, the primary
role of the monopoles is to account for the “background”
density of one particle per site in the Mott insulator and to
combine this density with the doped particles to yield states
which are sensitive to the total density.

This sensitivity to the total density in the supersolid bears
some similarity to the constraints placed by Luttinger’s theo-
rem on the volume enclosed by the Fermi surface in Fermi-
liquid states.45 Let us explain the connection more explicitly.
We can view the monopole Berry phases as arising from a
filled band of antiholons in the insulator, and these are ex-
tracted into the confining electronic states.19 To see this, let
us recall the origin of the monopole Berry phase in Eq. �11�.
This can be traced to the constraint b�

†b�+g+
†g+=1 applied on

every site of sublattice A �there are parallel considerations on
sublattice B, which we will not write down explicitly� and
implemented by a Lagrange multiplier � in the effective ac-
tion with the term

i� d���b�
†b� + g+

†g+ − 1� . �21�

The fluctuations of � are A� on sublattice A �−A� on sublat-
tice B�, and the −1 in the brackets above evaluates52 to Eq.
�11� for a monopole configuration of A�. Let us now also
allow for the gapped holon states19,40 by the holon operators
f�, in which case the term in Eq. �21� generalizes to

i� d���b�
†b� + g+

†g+ + f+
† f+ − 1� . �22�

Finally, we perform a particle-hole transformation to antiho-
lons h+= f+

† �which are distinct from the doublons� to obtain

i� d���b�
†b� + g+

†g+ − h+
†h+� . �23�

In this form, there is no −1 in the bracket, but we have a
filled band of h+ antiholons—thus we have an alternative
book keeping in which there is no monopole Berry phase,
but we do have to account for the unit density of antiholons
in the Mott insulator. After confinement with spinons, it is
this density which contributes to the expansion to the large
Fermi surface in the Fermi liquid and the sensitivity of the
supersolid to density 1+x.

Next, we consider the structure of the physical electron
spectral function in the supersolid. We focus on momenta

along the diagonals of the square lattice Brillouin zone.
Right at the critical point, the g� and f� fermionic excita-
tions are fully gapped, and so the electron spectral function
�which is a convolution of these fermion Green’s functions
with those of the z�� is also fully gapped. Moving on the
confining side of the critical point, a natural possibility is that
electron spectrum remains fully gapped.26–28 However, given
the fact that the confining supersolid consists of a density
1+x �as in a “large” Fermi surface�, from Fig. 3 it would
seem natural that this state has four gapless nodal quasipar-
ticles; if so, the total spectral weight in these low-energy
fermions would vanish as we approach the critical point, in a
manner we expect is related to the scaling dimension of the
monopole operators. It is interesting to note that this vanish-
ing of low-energy fermionic spectral weight resembles the
phenomenon of spectral weight transfer in dynamical mean-
field theory.29,30 We also note that the emergence of gapless
composite fermions from gapful constituents �here the “com-
posite” electrons consist of gapped spinons and holons� has
counterparts in a number of particle theory models.53,54

It is useful to discuss this theory in the context of recent
ideas by Senthil47 on “critical Fermi surfaces.” In the latter
framework for a transition to a d-wave superconductor with
four nodal points, the nodal fermions would be part of the
critical theory, and then the deconfined critical theory would
not be the CP1 model. Such a scenario would be realized
here if the f� holon Fermi surfaces formed in the AFM
state �this is compatible with current photoemission
experiments8�, and the magnetic disordering transition led to
a holon superconductor with gapless Dirac excitations.18 A
confinement transition on the holon superconductor would
then realize this scenario, but only at “critical Fermi points”
and not on a critical Fermi surface.

IV. t−J MODEL OF BOSONS

The Higgs-type suppression of the A� fluctuations in Sec.
III A suggested to us that we examine a toy model of bosons
obeying the same t−J model described here. In other words,
we will consider the same theory presented in Sec. II but
now the g� and the � fields are all bosons. We can make
quite reliable statements about the phases of this model, in-
cluding the role of monopoles and Berry phases. A further
motivation to examining this model was noted in Sec. III B:
this is an efficient way to analyze the paired superconducting
states, where we expect pairs of bosons or fermions to have
similar properties.

The analogy between the phases of the electronic model
and the toy boson model were summarized in Figs. 4 and 5.
The parallel of the Higgs-type effects in the metallic phases
of Sec. III A appears when we replace the g� Fermi pockets
by Bose condensates of the g�—the corresponding transi-
tions in the boson model are then in the same universality
class as in the metallic electronic model. As indicated in Fig.
5, the boson model also parallels to the transitions of the
superconducting sector of the electronic model which were
discussed in Sec. III B. This will be described in more detail
below.

First, let us list the phases of the boson t−J model of
interest to us.
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(i) AFM boson superfluid. Here both the z� and the g�
condense with

�z� � 0, �g� � 0. �24�

The presence of these condensates implies that both A� and
monopole fluctuations are suppressed, as in the AFM metal.
Also, by Eq. �13�, the physical boson operator � also has a
nonzero condensate. So this state has AFM order and a flux
quantum of h /e.

(ii) Paired boson superfluid. Now spin-rotation invariance
is restored, with

�z� = 0, �g� � 0. �25�

However, the g� condensate is sufficient to continue to sup-
press both the A� and the monopole fluctuations, making this
state the analog of the doublon metal. Two other character-
istics of this state reinforce the analogy with the doublon
metal: �i� the z� quanta represent stable, neutral, S=1 /2,
gapped excitations, which are also found in the doublon
metal and �ii� the action of an isolated monopole diverges
linearly with system size because of the Higgs condensate,
and a similar linear divergence appears55 in a random-phase
approximation �RPA�-like estimation56 of the monopole ac-
tion in the doublon metal �see Appendix B�. With the con-
densates as in Eq. �25�, as discussed in Ref. 51, the only
gauge-invariant condensate carries charge 2e, and so the flux
quantum is h / �2e�. A comparison of Eqs. �24� and �25�
shows that the transition between the AFM boson superfluid
and the paired boson superfluid involves criticality of z�
alone. The A� mode can be ignored and so it is evident that
the critical theory is the O�4� model in Eq. �19� but with the
last density-fluctuation term replaced by the analogous term
for a superfluid.50 The latter term is also irrelevant by an
argument similar to that made for the electronic case.

(iii) AFM paired boson superfluid. Now we condense the
z�, but only allow for a paired condensate of the g� bosons
with

�z� � 0, �g� = 0, �g+g− � 0. �26�

There is antiferromagnetic order, and the flux quantum is
h / �2e�. The z� condensate is sufficient to suppress both the
A� and the monopole fluctuations, making this state the ana-
log of the AFM superconductor in the electronic model. In
some cases �to be discussed below in Sec. IV B� this state
will also break translational symmetry, i.e., it will become a
supersolid.

(iv) Paired boson supersolid. The only condensate is that
associated with the paired bosons,

�z� = 0, �g� = 0, �g+g− � 0. �27�

This is the most interesting state here: the A� and monopole
fluctuations are not suppressed, and we expect a crossover to
a confining state. The same phenomenon also appeared in the
electronic case with the doublon superconductor, which we
argued was unstable to confinement to a d-wave supercon-
ductor. The key advantage of the toy boson model is that we
can describe the crossover to confinement in some detail, as

will be presented in Secs. IV A 1 and IV A 3. Our main re-
sult will be that there are generally periodic bond/density
modulations in this phase, i.e., it is a supersolid; we include
here the case of the nematic superconductor, in which only
the Z4 rotational symmetry of the square lattice is broken.
Finally, we will demonstrate that these modulations are
characteristic25,51 of the total density of bosons, 1+x.

A. Duality and symmetry analysis

We will apply the analog of the duality methods presented
in Refs. 24, 25, and 51 to this model. These dualities are only
operative for Abelian symmetry, and so we shall replace the
SU�2� spin symmetry by a U�1� symmetry of spin rotations
about the z axis.

We write the spinons, z�, and represent them by two an-
gular degrees of freedom z↑=ei�↑ and z↓=ei�↓. Similarly we
take the g� �which are now bosons� and write them as g�
=ei��. These fields are coupled to a compact U�1� gauge
field A�, with the same charges as in the body of the paper.
Finally, the monopoles in A� are endowed with the Haldane-
Berry phases24,52 in Eq. �11� to properly include the physics
of the insulating antiferromagnet.

The simplest model consistent with such a framework is
written below. Here we have discretized space-time onto the
sites of direct cubic lattice with sites j and �� is a discrete
lattice derivative,

Z = �
j
� d�↑jd�↓jd�+jd�−jdAj� exp	 1

K
�
j�

cos����↑j

− Aj�� +
1

K
�
j�

cos����↓j − Aj�� +
1

L
�
j�

cos����+j

− Aj� − Bj�� +
1

L
�
j�

cos����−j + Aj� − Bj��

+
1

e2�
�

cos�������Aj�� − SB
 . �28�

Apart from the coupling constants, K, L, and e2, the action
contains two fixed external fields. The uniform static external
electromagnetic field B�= i�̄���, where �̄ is the chemical
potential; the value of �̄ is adjusted so that density of each
g� boson species is x /2. The last term accounts for the Berry
phases linked to the monopoles in A� by Eq. �11�.

To be complete, we should also add to Eq. �28� a stag-
gered chemical potential which preferentially locates the g�
on opposite sublattices, as has been done in previous
work.51,57 However, this term is not essential for our conclu-
sions here, and so we omit it in the interests of simplicity.

The duality analysis of Eq. �28� is most transparent when
the action is written in a Villain �periodic Gaussian� form.
We do this by introducing the integer-valued fields p↑j�, p↓j�,
n+j�, and n−j� which reside on the links of the direct lattice
and the integer-valued qj� which resides on the links of the
dual lattice. The dual lattice sites are labeled by j,
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Z = �
�p↑j��

�
�p↓j��

�
�n+j��

�
�n−j��

�
�qj��

�
j
� d�↑jd�↓jd�+jd�−jdAj� exp	−

1

2K
�
j�

����↑j − Aj� − 2�p↑j��2

−
1

2K
�
j�

����↓j − Aj� − 2�p↓j��2 −
1

2L
�
j�

����+j − Aj� − Bj� − 2�n+j��2 −
1

2L
�
j�

����−j + Aj� − Bj� − 2�n−j��2

−
1

2e2�
�

�������Aj� − 2�qj��2 −
i�

2 �
j

� j��qj�
 . �29�

An advantage of this periodic Gaussian form is that we are
able to write an explicit expression for the monopole Berry
phase;52 the fixed field � j =0,1 ,2 ,3 is the same as that ap-
pearing in Eq. �11�.

Now we proceed with a standard duality transformation of
this action. Initially, this maps the theory onto the integer-
valued spin currents J↑j� and J↓j�, the integer-valued charge
currents H+j� and H−j�, and the integer-valued fluxes Qj�
with the partition function,

Zd = �
�J↑j��

�
�J↓j��

�
�H−j��

�
�H−j��

�
�Qj��

�constraints exp	−
K

2 �
j�

�J↑j�
2

+ J↓j�
2 � −

L

2 �
j�

�H+j�
2 + H−j�

2 � −
e2

2 �
j�
	Qj� −

1

4
��� j�
2

− i�
j�

Bj��H+j� + H−j��
 . �30�

The summations in Zd are restricted to integer-valued fields
which obey the local constraints,

��J↑j� = 0, ��J↓j� = 0, ��H+� = 0, ��H−j� = 0,

������Qj� = J↑j� + J↓j� + H+j� − H−j�. �31�

We solve these constraints by introducing the dual gauge
fields a↑j� and a↓j� whose fluxes are the spin currents, the
dual gauge fields b+j� and b−j� whose fluxes are the charge
currents, and a height field hj whose gradients are the A�
fluxes. Finally, we promote these dual discrete fields to con-
tinuous fields by introducing the dual matter fields e−i�↑j and
e−i�↓j which annihilate vortices in the z↑,↓ spinons, the dual
matter fields e−i�+j and e−i�−j which annihilate vortices in the
g� charged bosons, and the corresponding vortex and mono-
pole fugacities. This leads to the dual theory in its uncon-
strained form,

Zd2 = �
j
� da↑j�da↓j�db+j�db−j�dhjd�↑jd�↓jd�+jd�−j exp�−

K

2 �
�

��������a↑j��2 + �������a↓j��2�

−
L

2 �
�
�	������b+j� −

�̄

L
���
2

+ 	������b−j� −
�̄

L
���
2� −

e2

2 �
j�

���hj + a↑j� + a↓j� + b+j� − b−j��2

+ yvs�
j�

�cos����↑j − 2�a↑j�� + cos����↓j − 2�a↓j��� + yvc�
j�

�cos����+j − 2�b+j�� + cos����−j − 2�b−j���

+ ym�
j

cos	2�hj + �↑j + �↓j + �+j − �−j +
�

2
� j
� . �32�

The average flux of b� is �̄ /L and this should equal to half
the electron density, x /2.

The action in Eq. �32� appears to be of daunting com-
plexity, but its physical interpretation is transparently related
to the direct theory. There are four vortex matter fields:
ei�↑, ei�↓, ei�+, and ei�−. These annihilate vortices in z↑, z↓, g+,
and g−, respectively. These four matter fields carry unit
charges under four U�1� gauge fields, a↑, a↓, b+, and b−,
respectively. Of these four gauge fields, one combination is

always Higgsed out by the scalar field h �by “Higgsed” we
mean that the gauge boson acquires a mass via the Higgs
mechanism�. The latter is related to the monopole annihila-
tion operator e2�ih, and the monopoles carry Berry phases
ei��j/2.

Let us now make a further simplification of the dual ac-
tion in Eq. �32�. As the gauge-field combination a↑+a↓+b+

−b− is always Higgsed by the h field, it is convenient to
integrate these two fields out, obtaining the dual action,
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Sd = K�
�

�������a��2 + L�
�
	������b� −

�̄

L
���
2

+ �K + L��
�

�������c��2 − yvs�
j�

�cos����↑j − 2�aj� − 2�cj��

+ cos����↓j + 2�aj� − 2�cj��� − yvc�
j�

�cos����+j − 2�bj� + 2�cj�� + cos����−j − 2�bj� − 2�cj���

− ym�
j

cos	�↑j + �↓j + �+j − �−j −
�

2
� j
 . �33�

The resulting action has three gauge fields: a, b, and c. The
flux of a is related to the magnetization density, Sz

=������a�, the flux of b to the electron pair density, and
n /2=������b�. Finally the field c introduces interactions be-
tween spinon and doublon vortices. When c is Higgsed out
�as happens in the paired boson superfluids�, the ei�� are the
physical vortices in the superconducting order parameter51

which carry flux h / �2e�; otherwise they carry flux h /e. As
usual, gauge-invariant local operators in the direct picture
correspond to monopole operators of the dual gauge fields
�see Table IV�. For notational convenience below, we define
the spinon vortices �↑,↓ by

�↑ = ei�↑, �↓ = ei�↓. �34�

1. Symmetries

A crucial part of our analysis will be an understanding of
the symmetries of the action in Eq. �33�. First let us consider
the action of the space-group symmetry of the square lattice.
Following the analyses of Refs. 25 and 51 we will consider
the operations Tx,y �translation by one lattice site in the x ,y
directions�, R�/2

dual �rotation by a 90° about a dual lattice site�,
Ix

dual �reflection x→−x, with the origin on a dual lattice site�,
and T �time reversal�. The action in Eq. �33� is invariant
under these operations with the transformations,

Tx: �↑ → i�↓
†, �↓ → i�↑

†, ei�+ → ei�−, ei�− → ei�+,

Ty: �↑ → �↓
†, �↓ → �↑

†, ei�+ → ei�−, ei�− → ei�+,

R�/2
dual: �↑ → ei�/4�↓

†, �↓ → ei�/4�↑
†,

ei�+ → ei�−, ei�− → ei�+,

Ix
dual: �↑ → �↓, �↓ → �↑, ei�+ → e−i�−, ei�− → e−i�+,

T: �↑ → i�↓
†, �↓ → i�↑

†, ei�+ → ei�+, ei�− → ei�−,

�35�

The nontrivial transformations of the spinon vortices above
are consequences of the monopole Berry phases, � j in Eq.
�33�.

We will be interested below in taking the continuum limit
of the effective action for these fields. Here we have to be
careful about the fate of the Cooper pair/doublon vortex
fields ei��. Indeed, our vortex fields ei�� are propagating in
the background of an average flux for the b field that is dual
to a finite electron density x /2. We will work at a rational
density,

x

2
=

p

q
, �36�

where p and q are relatively prime integers, and then �as
discussed at length in Ref. 25� there are q degenerate minima
in the Hofstadter dispersion. We label the vortex excitations
at these minima by the complex fields ��l, with l
=0,1 ,2 , . . . ,q−1. Thus, in the continuum limit, the vortex
fields ei�� are replaced by the 2q fields ��l. Moreover, once
the fields ei�� split into ��l multiplets, the transformations
become even more nontrivial due to the presence of a back-
ground flux of the b field,

Tx: �al → �ā,l+1,

Ty: �al → �−l�āl,

R�/2
dual: �al →

1
�q

�
m=0

q−1

�ām�
lm,

Ix
dual: �al → �ā,−l

† ,

T: �al → �al, �37�

where all indices are implicitly determined modulo q, the
“bar” operation exchanges +↔−, and

�� e2�ip/q. �38�

Note that for the transformations in Eq. �37� we have

TABLE IV. Correspondence between local operators in direct
theory and monopole operators in dual theory. qa, qb, and qc are
monopole fluxes associated with gauge fields a, b, and c, respec-
tively. The subscript s labels spin �s=1 for ↑ and s=−1 for ↓�.

qa qb qc

z↑
†z↓ 1 0 0

g+
†g−

† 0 1 0

zs
†g−

† 1 / 2s 1 / 2 1 / 2

zsg+
† −1 / 2s 1 / 2 −1 / 2
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TyTx = �TxTy , �39�

and this algebra is crucial25 in ensuring the q-fold degen-
eracy of the vortex states. The factor � is understood as a
transformation in the Tx symmetry group �see below�.

In addition to the space-group operations, we should also
consider the symmetries associated with global parts of the
three U�1� gauge groups. More explicitly, we define the
transformations in the global parts of the gauge groups as

�ei��a: �↑ → ei��↑, �↓ → e−i��↓, �40�

�ei��b: �+l → ei��+l, �−l → ei��−l, �41�

�ei��c: �↑ → ei��↑, �↓ → ei��↓,

�+l → e−i��+l, �−l → ei��−l. �42�

Then, combining the transformations of spinon vortices �Eq.
�35�� and Cooper pair/doublon vortices �Eq. �37��,

TyTx = �− 1�c�− ��bTxTy , �43�

with all the other relations in the lattice group as in the non-
projective case.

We have now enumerated all the symmetries which will
determine the structure of the effective action and the phases.
However, these symmetries are still somewhat cumbersome,
and it is useful now to define certain bilinears whose trans-
formation properties are somewhat simpler.

First, we define bilinears of the Cooper pair/doublon vor-
tices. We introduce a set of pair vortex operators,25

�mn = �mn/2�
l=0

q−1

�−l
† �+,l+n�

lm, �44�

with the transformation properties,

Tx: �mn → �−m�−m,−n
† ,

Ty: �mn → �−n�−m,−n
† ,

R�/2
dual: �mn → �−n,m

† ,

Ix
dual: �mn → �−m,n,

T: �mn → �mn,

�ei��a: �mn → �mn,

�ei��b: �mn → �mn,

�ei��c:�mn → e−2i��mn. �45�

Note that the space-group transformations of the �mn are just
those of the physical particle density operator at the wave
vector �2�p /q��m ,n�. However, a crucial point is that �mn is
not equivalent to the particle density operator: this is a con-
sequence of the nontrivial transformation of �mn under U�1�c
above. Only combinations which are neutral under U�1�c are
physically observable.

Next, we consider the following bilinear of the spinon
vortices:

� = �↑�↓, �46�

which has the transformations,

Tx: �→ − �†,

Ty: �→ �†,

R�/2
dual: �→ i�†,

Ix
dual: �→ � ,

T: �→ � ,

R�/2
dir : �→ i� ,

�ei��a: �→ � ,

�ei��b: �→ � ,

�ei��c: �→ e2i�� . �47�

We have also listed above the transformation for direct lat-
tice rotations, which follows from the other results. Note
again that the transformation properties of � under the space
group are identical to the VBS observable. However, because
of the nonzero charge of � under U�1�c, we cannot generi-
cally identify � with the VBS order.

Finally, we note that the product of �mn and �,

�mn = �mn� , �48�

is indeed invariant under all the global U�1�’s and so is the
simplest composite operator which can serve as a density
operator. From the space-group transformations in Eqs. �45�
and �47�, we observed that �mn transforms as a linear com-
bination of the components of the density at wave vectors
�2�p /q��m ,n�+ �� ,0� and �2�p /q��m ,n�+ �0,��.

The relationship in Eq. �48� is central to all our results:
only the product of the monopole operator �, and the vortex-
antivortex composites represented by the �mn, is a physical
observable. The requirement that we must consider the prod-
uct of these dual operators can be traced to the constraint in
Eq. �21� in the direct theory. There we noted that the mono-
pole Berry phase was tied to the constraint on the sum of the
spinon and doublon densities. In the dual theory �=�↑�↓
accounts from the spinon contribution, while �mn accounts
for the density fluctuations in the paired doublon superfluid.

2. Continuum theory

We are now faced with the relatively straightforward task
of writing down the most general action for the Cooper pair/
doublon vortices �a� and the spinon vortices �↑,↓, consistent
with all the symmetries enumerated in Sec. IV A 1. The qua-
dratic kinetic terms are a direct transcription of the terms in
Eq. �33� and lead to the Lagrangian
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L0 = ���� − 2�ia� − 2�ic���↑�2 + ���� + 2�ia� − 2�ic���↓�2

+ ���� − 2�ib� + 2�ic���+��2

+ ���� − 2�ib� − 2�ic���−��2 + ¯ . �49�

Most crucial for our purposes will be the terms which
directly couple the spinon vortices with the �a� vortices.
These are most directly deduced from Eqs. �45� and �47�.
Clearly, we need a combination of the �mn which transforms
like the VBS operator under the space-group operations so
that the product with � will be invariant under U�1�c and
also under the space group. Such terms can only be con-
structed for even q and were considered in Ref. 51; in our
present notation the simplest term is

L1 = �1�����0 − i�0�� + H.c.� . �50�

Here we have labeled �mn by a subscript which identifies the
associated wave vector �2�p /q��m ,n� and will frequently
use this notation below. A higher-order term which will be
important later is

L2 = �2��2���0
2 − �0�

2 � + H.c.� . �51�

3. Phases

We are now ready to use the vortex degrees of freedom to
identify and characterize the phases introduced at the begin-
ning of Sec. VI.

(i) AFM boson superfluid. Both the z� and the g� are
condensed, and so all the vortex fields are gapped,

��↑ = 0, ��↓ = 0, ��+� = 0, ��−� = 0. �52�

We will also need to consider independent condensates of
bilinears of the vortices in the charges g� below, and so let
us also note that in this phase,

��−m
† �+� = 0, ��−m�+� = 0. �53�

The low-energy excitations of this phase consist of the three
U�1� photons: a, b, and c. These three photons correspond to
the three spin-wave modes that are easily deduced to be
present in this phase of the direct theory.

(ii) Paired boson superfluid. The restoration of the spin-
rotation invariance implies that the vortices in the spinons z�
have condensate,

��↑ � 0, ��↓ � 0, ��+� = 0, ��−� = 0. �54�

The condensation of �↑↓ implies that we also have ���0.
However, this does not imply the appearance of VBS order
or broken translational symmetry because of the nonzero
U�1�c charge carried by �. Note also that because of the
coupling in Eq. �50�, which a particular bilinear of the ���

vortices has a nonzero condensate,

����0 − i�0�� � 0. �55�

Again, this condensate does not break translational symme-
try because it has to be combined with � to obtain an ob-
servable neutral under U�1�c, and the combination is transla-
tionally invariant; indeed this translational invariance was
used to derive the term in Eq. �50�. All other linear combi-

nations of bilinears of the ��� vortices of the form in Eq.
�53� have a vanishing expectation value.

We can also use this vortex formulation to analyze the
transition between the AFM boson superfluid and the paired
boson superfluid. Because the vortices ��� are gapped in
both phases, we can set ���=0 in all terms in the action. The
critical theory then consists of two complex scalars �↑,↓
coupled to two U�1� gauge fields, a↑=a+c and a↓=−a+c.
The b gauge field is not Higgsed in either phase and so
remains gapless across the transition; this is just the Gold-
stone mode of the superfluid order, which is not connected
with the critical theory. We can “undualize” each complex
scalar + U�1� gauge-field combination: by the Dasgupta-
Halperin duality58 this yields a critical theory of two com-
plex scalars �and no gauge fields� with O�2� O�2� symme-
try. This critical theory is simply the easy-plane limit of the
O�4� theory discussed in the direct formulation above and in
Fig. 4; it is obtained from the models there by adding the
easy-plane anisotropy term �z↑�2�z↓�2.

(iii) AFM paired boson superfluid. Like the AFM boson
superfluid above, all vortices have a vanishing condensate,

��↑ = 0, ��↓ = 0, ��+� = 0, ��−� = 0. �56�

However, unlike the AFM boson superfluid, we should only
allow for a condensate of the product g+g− and not for the
individual boson factors. In the dual variables, this means
that at least some linear combinations of the vortex bilinears
�−m

† �+� should have a nonzero condensate while all the bi-
linears �−m�+� have a vanishing expectation value. The sim-
plest choice is to allow

��00 � 0. �57�

This does not break translational symmetry and serves the
important purpose of Higgsing out the c gauge field and
ensuring that there is no single boson condensate. However it
is also possible to choose other �mn to have nonzero expec-
tation values. This option will be discussed further in Sec.
IV B, where we will show that in general such choices do
break translational symmetry, and so lead to supersolid order
�along with the AFM order already present here�. However,
there will be a number of other choices, distinct from Eq.
�57�, which do not break translational symmetry. All these
choices lead to AFM boson superfluids which are identical in
the sense of symmetry but do have distinct “topological or-
der” associated with the alignment of the gauge-dependent
condensates of �−m

† �+�. We will provide a complete listing of
all such inequivalent AFM paired boson superfluids in Sec.
IV B; they are distinguished, in particular, by distinct univer-
sality classes of transitions involving the loss of AFM order.
One particular choice that does not break any translational
symmetry follows from our construction of the low-energy
theory in Sec. IV A 2: choose the condensate as in Eq. �55�
and then all gauge-invariant condensates that can be con-
structed out of it are translationally invariant. In this case, we
observe from Eq. �50� that there is a term linear in the mono-
pole operator � in the action and a consequent mixing of �↑
and �↓

†.
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(iv) Paired boson supersolid. Now we restore spin-
rotation invariance in the AFM paired boson superfluid by
condensing vortices in the spinons z�,

��↑ � 0, ��↓ � 0, ��+� = 0, ��−� = 0. �58�

We assume the Cooper pair vortex bilinear condensates that
are present here are the same as those in the AFM paired
boson superfluid. For the choice as in Eq. �57�, the present
phase will have VBS order, as in the insulator �see Fig. 7�.
This is because now the combination �00=�↑�↓�00 has a
nonzero expectation value, and this is a gauge-invariant ob-
servable which transforms like the VBS order parameter �see
Eq. �48��. The transition to this VBS supersolid state from
the AFM state in �iii� will be of the easy-plane CP1 variety,
just as in the insulator. The second possibility noted above
was to choose the Cooper pair vortex condensate as in Eq.
�55�; in this case the present phase will not break transla-
tional symmetry and will indeed be identical to the paired
boson superfluid in �ii�. For the transition between the AFM
paired boson superfluid and the paired boson superfluid �i.e.,
between the states in �iii� and �ii��, the mixing between �↑
and �↓

† implies that it is described by a single complex scalar
�which is a linear combination of these fields� coupled to the
a gauge field. By Dasgupta-Halperin duality,58 this transition
is in the O�2� universality class �and in the O�3� class with
full spin-rotation symmetry�—this is then nothing but the
conventional SDW transition. We will consider other choices
for the condensates of �mn in Sec. IV B below and also find
one in which the paired boson superfluid is a nematic, for a
case in which the density in the corresponding state in �iii�
has full square lattice symmetry. Other cases lead to a variety
of supersolids with density oscillation periods which are
characteristic of the total boson density 1+x.

B. Loss of AFM order in the paired boson superfluid

This section deals with the nature of the superfluid phases
�iii� and �iv� above and of the quantum phase transition be-
tween them. Both phases have a paired boson condensate,
but no single boson condensate, and so the flux quantum is
h / �2e�. The first phase also has antiferromagnetic �AFM�
order, and spin-rotation invariance is restored in the transi-
tion to the second phase. We will see here that a rich variety
of cases are possible, and we will present a few illustrative
examples.

We will argue that generically both the magnetically or-
dered and disordered phases break lattice symmetries. It is
possible that the pattern of lattice symmetry breaking on the
two sides of the magnetic phase transition is the same, in
which case we expect a critical point in the O�3� universality
class; this includes the case where there is no lattice symme-
try breaking in either state, as just noted above. It is also
possible to have a phase transition where antiferromagnetism
is lost, but a larger subgroup of the lattice symmetry is bro-
ken. Such transitions will either be first order or exotic �for
instance, of a deconfined variety�. We construct some spe-
cific examples of various scenarios.

We would like to describe the paired boson phase, in
which �g+g−�0. This operator corresponds to a monopole

of the b field, hence b must not be Higgsed in this phase. On
the other hand, we would like to suppress the single boson
condensates zsg+

† and zsg−, which correspond to monopoles
of flux 1/2 in all three of the gauge fields. This can be
achieved by Higgsing the gauge field c, which leaves the
freedom for the gauge field a to be either in the Higgs or
Coulomb phase—i.e., we can consider the loss of antiferro-
magnetism in the presence of a paired boson condensate.

We will Higgs c by a condensate �ei��+−�−��0. Note that
this condensate is not charged under the b field, and hence b
remains un-Higgsed as desired. If we, instead, condensed
ei�+ and ei�−, independently, then both b and c would be
Higgsed and the resulting state would be an insulator.

We would now like to integrate the fluctuations of � and
c fields out, obtaining an effective theory for the spinon vor-
tices �↑=ei�↑ and �↓=ei�↓ interacting with the gauge field a.
In principle, the massless gauge field b, corresponding to the
superfluid goldstone, also has to be included in the effective
theory; however, as argued previously, it will decouple at
low energies. The resulting theory will have two phases. In
one phase, ��↑=0, ��↓=0 and a is massless—this is the
antiferromagnetic phase. In the other phase, the spinon vor-
tices condense, ��↑�0, ��↓�0, the gauge field a is
Higgsed, and antiferromagnetism is lost.

It is clear that for a generic set of condensates ��mn the
lattice symmetry is broken because we can construct gauge-
invariant observables like �mn�m�n�

† which transform non-
trivially under the space-group symmetry. This has important
consequences for the structure of the effective theory for �↑,
�↓ fields governing the loss of antiferromagnetism. The con-
tinuum action for these fields will have the form,

L� = L0 + Lm, �59�

L0 =
1

2ẽ2 �� a�2 + ���� − 2�ia���↑�2

+ ���� + 2�ia���↓�2 + Ũ���↑�2, ��↓�2� , �60�

where Ũ is a potential term invariant under �↑↔�↓. L0 con-
tains the lowest dimension operators invariant under inde-
pendent phase rotations of �↑ and �↓.

59 However, due to the
presence of the last term in Eq. �33� or, more physically, due
to the compactness of the direct gauge field A, only combi-
nation �40� is a symmetry of the theory. Thus, we have an
additional term Lm, generated by the monopoles of the direct
theory, which will break the “flux symmetry,”

U�1�!: �↑ → ei�/2�↑, �↓ → ei�/2�↓. �61�

The simplest terms in Lm will be polynomials in the mono-
pole operator �=�↑�↓, which transforms as �→ei�� under
U�1�!. In the well understood case of a pure spin system,
lattice symmetry �47� implies that only “quadrupled mono-
poles” survive and the lowest-order term allowed in Lm is

Lm = − ym��4 + ��†�4� . �62�

Intuitively, this quadrupling is due to the presence of oscil-
lating Berry phases � j in Eq. �33�, which lead to a destructive
interference of single monopoles. We see that action �62�
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preserves a Z4 subgroup of U�1�!, which from the transfor-
mation in Eq. �47� is identified with �direct� lattice rotations.
More generally, as noted in Sec. IV A, � has the transforma-
tion properties of a valence-bond-solid �VBS� order param-
eter. On the magnetically ordered side of the phase diagram,
the Z4 symmetry is unbroken, ��=0, and hence the lattice
symmetries are preserved, while the magnetically disordered
side breaks the Z4 symmetry via ��= ��↑�↓�0 leading to a
VBS order. Term �62� is expected to be irrelevant at the
critical point where the magnetic order is lost and hence
monopoles are suppressed at the phase transition. Undualiz-
ing back to the direct theory, we obtain a model where the
gauge field A is noncompact and the resulting critical point is
of a deconfined variety. In particular, a direct second-order
transition between the two phases is allowed.

The above picture is still expected to hold in the present
model at zero doping in the presence of a paired doublon
superfluid, as the condensate �ei��+−�−� does not break any
lattice symmetries. However, once we go to doublon super-
fluid states at finite doping and develop condensates
��mn—we generically break lattice symmetry. Hence, lattice
symmetry will be broken both in the magnetically ordered
and disordered phases. Moreover, the monopole term in the
spinon vortex action is no longer constrained by Eq. �47�,
and single monopole terms will be generated from the cou-
pling in Eq. �50�,

Lm = − �ym� + ym
��†� . �63�

The fact that the monopoles are no longer quadrupled is
roughly due to the spatially oscillating nature of the conden-
sate �ei��+−�−�, which cancels the Berry phases in Eq. �33�.
As we know, the direct gauge theory with monopoles al-
lowed is equivalent to the O�3�  model �or its easy-plane
counterpart in the present case�. Thus, we will have a phase
transition in the O�3� universality class �or O�2� class in the
easy-plane case�. This is consistent with our expectations
since only the Néel order is lost and no new lattice order is
gained across the phase transition.

We note that though the above scenario is the most gen-
eral one at finite doping, it is possible that the set of nonzero
condensates ��mn does not break the lattice symmetry or
break it only partially. Note that for a lattice operator g to be
unbroken, it is enough that the product of g and a gauge
rotation be preserved. So if the lattice symmetry is preserved
by ��mn up to a rotation in the gauge group U�1�c, the trans-
formations of the monopole field � under the unbroken sym-
metries might be modified from the ones at zero doping in
Eq. �47�. This unleashes a whole set of different possibilities
for phase transitions out of the antiferromagnetic phase, ac-
companied by breaking of additional parts of the lattice sym-
metry. We will present some examples of this scenario be-
low.

However, first we would like to discuss an alternative way
of looking at the magnetically restored phase, where the
spinon vortices �↑, �↓ are condensed. So far, we have been
thinking about the way the condensation of vortex-antivortex
pairs ��−l

† �+n affects the spinon vortices. This is the correct
logic for studying the phase transition where antiferromag-
netism is lost. However, once the spinon vortices �or more

generally the monopole field �� are condensed, it is instruc-
tive to ask the reverse question: how are the Cooper pair
vortices affected? The condensates �↑, �↓ Higgs the c �and
a� gauge fields and appear to break lattice symmetries. How-
ever, as long as ���↑�= ���↓� �i.e., time reflection symmetry
is unbroken�, a combination of lattice and U�1�c rotations is
always preserved. In particular, by a gauge rotation we can
choose �↑=�↓ real, and then Tx�i�c, Ty, R�/2

dual�ei�/4�c, Ix, and T
are preserved. Under these symmetries, the Cooper pair vor-
tices transform as �we list only translations here for brevity�

T̄x = Tx�i�c: �+l → i�−,l+1, �−l → − i�+,l+1,

T̄y = Ty: �+l → �−l�−l, �−l → �−l�+l. �64�

We observe

T̄yT̄x = ��̄�bT̄xT̄y , �65�

with

�̄ = − � = e2�ip̄/q̄, �66�

where

p̄

q̄
=

1 + x

2
. �67�

Hence, the condensed monopoles endow the Cooper pair
vortices with a new projective implementation of the lattice
symmetry. Comparing with Eq. �36� we conclude that the
condensed monopoles shift the effective density of boson
from x to 1+x, as we claimed above.

Now, we come back to specific examples of phase transi-
tions out of the antiferromagnet. In Secs. IV B 1, IV B 2, and
IV B 3 we will provide a complete listing of AFM paired
boson superfluids which have full square lattice symmetry in
the density; these cases will lead to transitions to the paired
boson superfluid, as shown in Fig. 5. The remaining Secs.
IV B 4 and IV B 5 will consider cases in which square lattice
symmetry is broken in both the AFM and nonmagnetic
phases, but with the nature of the lattice symmetry-breaking
changing across the transitions.

1. Š�00‹Å0: Deconfined critical point to a valence-bond solid
(x—arbitrary)

We imagine that the vortex-antivortex condensate present
is ��00. As already noted in Sec. IV A, this condensate does
not break any lattice symmetries. Hence, the discussion
given for zero doping applies here. Namely, the antiferro-
magnetic state will break no lattice symmetries, and we will
have a transition to a valence-bond-solid state via a decon-
fined quantum critical point described by the CP1 field
theory. The possible patterns of square lattice symmetry
breaking are as in the insulator and illustrated in Fig. 7.

2. Š��0‹ ,Š�0�‹Å0 (q—even)

The simple example below illustrates the range of possi-
bilities for the phase transition out of a paired doublon anti-
ferromagnet. We assume that q is even and ���0, ��0� are
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nonzero. However, a particular choice of ���0, ��0� exists
where by combining lattice operations with U�1�c transfor-
mations, all lattice symmetries can be preserved. The result-
ing symmetries are Tx�i�c, Ty, Ix

dual, T, and R�/2
dual�e�i�/4�c �we

will drop transformations under the time reflection symmetry
below, since it is never broken by ��mn�. As we will see the
factors �e�i�/4�c for R�/2

dual corresponding to the presence of
condensates ����0� i�0�� lead to two inequivalent sce-
narios. The transformations for the monopole operator �,
therefore, are

Tx: �→ �†,

Ty: �→ �†,

R�/2
dual: �→ � �†,

Ix
dual: �→ � . �68�

Note the two different possible transformations under R�/2
dual.

If we choose the + sign, then the Berry phases of spinon
vortices and Cooper pair vortices cancel each other, and the
lowest allowed term in Lm is

Lm = − ym�� + �†� . �69�

We can also view this term as arising from Eq. �50�. Thus,
we obtain a theory with unsuppressed monopoles and expect
a phase transition in the O�3� �O�2� in the present easy-plane
model� universality class. Note that the lattice symmetry will
be unbroken on both sides of the phase transition. This is the
conventional SDW transition between AFM paired boson su-
perfluid and paired boson superfluid discussed in Sec. IV A.

Alternatively, if we choose the minus sign for R�/2
dual, the

Berry phases of �’s and �’s add up and Eq. �68� become the
transformations of a monopole operator in an antiferromag-
net with odd-integer spins. The lowest allowed term in Lm is

Lm = − ym��2 + ��†�2� , �70�

and the monopoles are “doubled;” this term arises from Eq.
�51�. The residual Z2 flux symmetry corresponds to direct
lattice rotations. Thus, in the antiferromagnetic phase ��
=0 and the lattice symmetry is unbroken. In the nonmagnetic
phase, ���0 and lattice symmetry is broken—there are two
different patterns for this depending on microscopic details
�similar to dimer and plaquette states of a VBS�. In one case,
��= ��† and the only broken symmetry is R�/2

dir �broken to
�R�/2

dir �2�. This is the nematic superconductor, and a schematic
picture of this state is given in Fig. 8�a�. In the other case,
��=−��† and the lattice symmetry is broken to TxTy, TxTy

−1,
R�/2

dual, and Ix
dual. A schematic picture of this state is given in

Fig. 8�b�. As for the nature of the phase transition in this
case, it is expected that the doubled monopole is a relevant
operator, which can lead to a direct first-order phase transi-
tion.

3. Š���‹Å0 (q—even)

This is another case in which the antiferromagnetic super-
conductor has no density wave order. The nature of the non-

magnetic supersolid requires a separate analysis for q /2 even
and odd.

For q /2 even, we observe from Eqs. �44� and �45�, in a
gauge where ���� is purely imaginary, the square lattice
symmetry operations are Tx, Ty, Ix

dual, and R�/2
dual�i�c. The trans-

formations for the monopole operator �, therefore, are

Tx: �→ − �†,

Ty: �→ �†,

R�/2
dual: �→ − i�†,

Ix
dual: �→ � . �71�

It is now easily seen that this case is the same as the super-
solid for ��00�0 above, and the VBS order is as in Fig. 7.
The transition between the AFM and nonmagnetic states is
described by the deconfined CP1 theory.

For q /2 odd, we find from Eqs. �44� and �45�, again in a
gauge where ���� is purely imaginary, the square lattice
symmetry operations of the antiferromagnet are Tx, Ty,
Ix

dual�i�c, and R�/2
dual, and therefore

Tx: �→ − �†,

Ty: �→ �†,

R�/2
dual: �→ i�†,

Ix
dual: �→ − � . �72�

Again, only quadrupled monopoles as in Eq. �62� are al-
lowed. Now in a nonmagnetic state with ���0, as above,
the symmetry of the state is different for arg����
=0,� /2,� ,3� /2 and arg����=� /4,3� /4,5� /4,7� /4.
For the first case, the state with arg����=0 preserves Tx

2, Ty,
i, and Ix

dir, while for the second case, the state with
arg����=� /4 preserves Tx

2, Ty
2, R�/2

dual, and Ix
dualTxTy. Unlike

other states we have considered here that these states cannot
be constructed purely out of modulations of the bond energy

variable Qij =S� i ·S� j, where S� i is the spin operator on site i of
the direct square lattice. Instead, we also need a directed

bond variable Pij = �S� i ·S� j��S� i
2−S� j

2� which is a spin singlet ob-
servable obeying Pij =−Pji. Note that because we are consid-
ering a doped system, the on-site spin fluctuates between

S� i
2=0 ,3 /4, and so Pij is not identically zero. The spatial

modulations in these variables in the states for q /2 odd are
shown in Fig. 9. As was the case for q /2 even, the transition
between the AFM and nonmagnetic states is described by the
deconfined CP1 theory.

4. Š�±�Õ2,0‹Å0 [qÆ0(mod 4)]

Here we consider a transition in the background of con-
densates ����/2,0 for q divisible by 4. As we will see, one of
the possible magnetically disordered states in this case is a
charge-density wave with period four. Such a state is actually
observed on the hole-doped side of the cuprate phase dia-
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gram close to the doping x=1 /8 �p=1, q=16�.60 We note,
however, that we reach such a state only from an AFM su-
perconductor which already has density wave order as in Fig.
7�a�.

It turns out that once the condensates ����/2,0 are
present, Tx is automatically broken, as can be seen from the
transformation properties of the gauge-invariant observable
���/2,0�−�/2,0

† . However, one can still arrange for Ty and
Tx

2�i�c to be preserved �generally, the condensates ����/2,�
will also be allowed by these symmetries�. Moreover, we
have the choice of preserving rotations by 180° about either
direct or dual lattice site. For brevity we will only discuss the
later case, as it might be physically relevant. Then one can
preserve Tx

2�i�c, Ty, �R�/2
dual�2, and Ix

dual. We recognize that a
state with such a symmetry is a valence-bond solid �see Fig.
7�a��, with superposed antiferromagnetic order. The transfor-
mation properties of the monopole operator under the re-
maining symmetry group are

Tx
2: �→ − � ,

Ty: �→ �†,

�R�/2
dual�2: �→ � ,

Ix
dual: �→ � . �73�

Thus, we again have the case of doubled monopoles �Eq.
�70��. Note, however, that now the residual Z2 flux symmetry
corresponds to translations by two lattice sites along the x
direction. So the antiferromagnet has ��=0 and carries a
VBS order. Once antiferromagnetism is lost and ���0, we
break an additional subgroup of the lattice symmetry. There
are again two cases:

(a) ��= ��†. Then the remaining symmetry group is Tx
4,

Ty, �R�/2
dual�2, and Ix

dual. This state is a bond centered charge-
density-wave with period four. A cartoon picture of this state
is shown in Fig. 10�a�. Precisely such a configuration is ob-
served by STM experiments on hole-doped cuprates near x
=1 /8.60

(b) ��=−��†. Then the remaining symmetry group is
Tx

2Ty, Tx
2Ty

−1, �R�/2
dual�2, and Ix

dual. A schematic picture of this
state is shown in Fig. 10�b�.

Note that in both of cases �a� and �b� we have a transition
from a state with a unit-cell area of 2 to a unit-cell area of 4.

5. Š�±�Õ2,0‹Å0 and Š�0,±�Õ2‹Å0 [qÆ0(mod 4)]

The present example is of interest as we will be able to
construct a deconfined critical point other than the one sepa-
rating an antiferromagnet and a valence-bond solid. Once
����/2,0 and ��0,��/2 are turned on, both translations along
x and y are broken. However, the combinations Tx

2Ty
2�i�c and

Tx
2Ty

−2�i�c are preserved. Moreover, one can now arrange for
rotations about either direct or dual lattice site to be pre-
served. We will concentrate on the direct lattice site case as it
yields a deconfined critical point. Then, it turns out that we
can maintain Ix

dir and either �a� R�/2
dir or �b� R�/2

dir �e−i�/4�c. The
spatial modulations in such a state are shown schematically
in Fig. 11�a�. The transformations of the monopole operator
in the case �a� are

Tx
2Ty

2: �→ − � ,

Tx
2Ty

−2: �→ − � ,

R�/2
dir : �→ i� ,

Ix
dir: �→ − �†, �74�

with case �b� differing only in the transformation under R�/2
dir ,

R�/2
dir : �→ � . �75�

Therefore, “doubled” monopoles are permitted in case �b�,
making it of less theoretical interest. Below, we will, there-
fore, concentrate on case �a�. Here, as a consequence of a Z4
flux symmetry associated with direct lattice rotations, only
“quadrupled” monopoles are permitted as in Eq. �62�, and a
deconfined phase transition may be possible. We note that we
have addressed only the instability of the phase transition to
monopole proliferation here. However, since the symmetry
group in the present case is smaller than for the usual
antiferromagnet—valence-bond-solid deconfined critical
point—other relevant operators can arise, such as, e.g.,
�������a�����↑�2− ��↓�2�. A classification and renormalization
group �RG� treatment of such operators is beyond the scope
of this work.

As for the pattern of spatial modulations, in the antiferro-
magnetic phase, we have ��=0 and we obtain the state in
Fig. 11�a�. Once antiferromagnetism is lost and ���0, we
break an additional lattice subgroup. As for the usual decon-
fined critical point there are two possible cases: ���1 and
���ei�/4. In the first case, the remaining symmetries are Tx

4,
Ty

4, �R�/2
dir �2Tx

2Ty
2, and Iy

dir, and we get the state in Fig. 11�b�. In
the second case, the remaining symmetries are Tx

4, Ty
4,

�R�/2
dir �2Tx

2Ty
2, and Ix

dirR�/2
dir �for brevity we omit a figure of this

state�.

V. DISCUSSION

We have discussed different possibilities for the destruc-
tion of Néel order in metallic or superconducting two-
dimensional quantum antiferromagnets by doping in a small
density of charge carriers into the parent insulators. We have
summarized our results already in detail in Sec. I, and so we
will be brief here.

The standard SDW theory for the appearance of Néel or-
der in a metal generically requires an intermediate state be-
tween the large Fermi-surface metal at overdoping and the
small Fermi-pocket state at very low doping. This interme-
diate state has eight zero crossings in the fermion dispersion
along the Brillouin-zone diagonals. Because such an inter-
mediate state has not so far been observed, we have exam-
ined other routes to connecting such states. We used a for-
malism which decomposed the electron operator as a product
of bosonic spinons and fermionic spinless doublons. Despite
our use of this “fractionalized” approach, one of our results
was the remarkable reappearance in this formalism of the
conventional SDW criticality for the loss of Néel order in the
superconductor. In addition, we also found other universality
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classes for the loss of magnetic order in the AFM+SC state
which mimic those found in insulating antiferromagnets for
different values of S, as shown in Fig. 5. For the metallic
case, we found a transition to an algebraic charge liquid—the
doublon metal.

Our endeavor was motivated by the fairly strong evidence
for a magnetic quantum critical point at which Néel order is
lost in the electron-doped cuprates.2–7 We hope that the sce-
narios presented here will be tested in future experiments. A
clear strategy to do so has been provided in Sec. I A.

In principle, our results here can be extended to the case
of the hole-doped cuprates, which were considered earlier in
Refs. 18 and 40. The main phenomenological difficulty, as
we noted in Sec. I, is that the antiferromagnetism in the La
based hole-doped cuprates does not remain pinned at �� ,��.
However it may well be that �� ,�� antiferromagnetism is
more important in the other hole-doped cuprates. So, we can
consider the transition from the antiferromagnetic metal to
the holon metal—all of our analysis here on the transition to
the doublon metal carries over, and the transition is in the
O�4� class. Unlike the doublon superconductor, the holon
superconductor is not immediately unstable to confinement.
The holon superconductor has Nf =4 gapless Dirac fermion
excitations which carry the U�1� gauge charge and which
suppress monopole proliferation for large Nf. It was assumed
in Ref. 18 that Nf =4 was large enough for monopole sup-
pression. However, in the event Nf�4 fermions are required,
the holon superconductor would be unstable to supersolid
states, as discussed in the present paper. However, an under-
standing of the nature of the symmetry breaking in these
supersolids requires computation of the monopole symmetry
properties in the presence of gapless Dirac fermions—this
we will address in future work.
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APPENDIX A: TIME-REVERSAL SYMMETRY

Here we outline how the time-reversal symmetry was
implemented in the symmetry tables. We begin by defining
time reversal on the lattice Grassman numbers c� ,c�†,

T�c�� = − ���c
�†, �A1�

T�c�†� = ���c�. �A2�

This definition results as follows: �1� the dynamic term in the
action is left invariant under time reversal, �2� the local elec-

tron density is invariant under time reversal, and �3� the elec-
tronic spin-density changes sign under time reversal.

Now using the following transformation for the bosons:

T�b��=���b
�† and T�b̄��=���b̄�

† �for bosons the conjugates
are of course not independent�, we can infer what the g
should transform into under time reversal �since we know
how to write c in terms of g and b and we know how the c
transform�. This is recorded in Table II. The last step is to go
from the lattices f , g, and b into their continuum counterparts
and this requires knowledge of where the g fields have their
minima but is otherwise straight forward. This is recorded in
Table III. Note that unlike the analysis in Ref. 40 the two
sublattice fermions g� transform in the same way. This is
related to the position of the doublon pockets in the BZ.

APPENDIX B: MONOPOLE ACTION
IN THE DOUBLON METAL

This appendix will consider the action of a monopole in
the U�1� gauge theory of the doublon metal state of Sec.
III A. The g� Fermi surfaces have low-energy excitations
which carry a U�1� gauge charge, and we will discuss their
influence on the monopole dynamics. This problem was
originally considered by Herbut et al.61 using a duality analy-

(b)

(a)

FIG. 9. Ordering in the nonmagnetic state in the presence of
���� condensate for q /2 odd. The states are defined by Eq. �72� for
�a� arg����=0 and �b� arg����=� /4. Both states are fourfold de-
generate. The line patterns indicate the link energy variable Qij

=S� i ·S� j, while the arrows indicate the directed link variable Pij

= �S� i ·S� j��S� i
2−S� j

2�. Note that the arrows do not imply spin or charge
currents �time-reversal symmetry is preserved�, and the state can be
fully characterized by modulations in the charge density along the
links.
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sis, but an oversight in their reasoning was pointed out by
Hermele et al.44 Here, we will update the analysis of Herbut
et al.61 and find that the action of a monopole diverges lin-
early with system size, consistent with other
investigations.44,55

We begin with the effective action of the U�1� gauge field,
A�, after the g� fermions and the z� have been integrated
out. At quadratic order, this can be written56 in terms of the
components of the “electromagnetic” field F��=��A�−��A�,

Seff�A� =
1

2
� d2kd�

8�3 ���k,��Fi�
2 + ��k,��Fxy

2 � , �B1�

where ��k ,�� and ��k ,�� are the dielectric constant and the
magnetic permeability, respectively. For ����vFk, in the
doublon metal we have61

��k,�� � 1 + �
���
k3 , ��k,�� �

1

k2	1 + ��
���
k

 , �B2�

while at the O�4� quantum critical point to the AFM metal
the critical z� spinons lead to the propagator in Eq. �16�
which corresponds to the magnetic permeability,

��k,�� �
1

k
+ �

���
k3 . �B3�

We now apply the duality methods discussed in Sec. IV A to
Eq. �B1� and obtain the dual theory for the “height” field h,

Sh =
1

2
� d2kd�

8�3 � k2

��k,��
+

�2

��k,���h2, �B4�

where the monopole operator is m�e2�ih. Note that for �
=0, the leading k dependence in Eq. �B4� is of order k4.
Herbut et al.61 argued that renormalization effects would al-
ways generate an analytic term of order k2 and proceeded to
investigate its consequences. As noted by Hermele et al.,44

this is incorrect—the leading term remains �k4 because it is
protected by the presence of the g� Fermi surface.

We can now estimate the action of a monopole in the
present Gaussian/RPA approximation,56

exp�− Sm� = �m = exp�− 2�2�h2� , �B5�

from which we obtain

Sm = 2�2� d2kd�

8�3

��k,����k,��
k2��k,�� + �2��k,��

. �B6�

From Eqs. �B2� and �B3� we now find an infrared divergence
��d2kk−3, which indicates that Sm diverges linearly with
system size. This justifies the neglect of monopoles in the
doublon metal and at the O�4� quantum critical point.

(b)

(a)

FIG. 10. An example of a phase transition out of an antiferro-
magnet with dimer order as in Fig. 7�a� to the nonmagnetic states
�a� and �b� above.

(b)

(a)

FIG. 11. A candidate for a deconfined phase transition from �a�
a magnetic state to �b� a nonmagnetic state with a higher degree of
lattice symmetry breaking.
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