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We study theoretically the zero-temperature phase transition in two dimensions from a Fermi liquid to a
paramagnetic Mott insulator with a spinon Fermi surface. We show that the approach to the bandwidth-
controlled Mott transition from the metallic side is accompanied by a vanishing quasiparticle residue and a
diverging effective mass. The Landau parameters Fs

0 ,Fa
0 also diverge. Right at the quantum critical point there

is a sharply defined “critical Fermi surface” but no Landau quasiparticle. The critical point has a T ln 1 /T
specific heat and a nonzero T=0 resistivity. We predict an interesting universal resistivity jump in the residual
resistivity at the critical point as the transition is approached from the metallic side. The crossovers out of the
critical region are also studied. Remarkably the initial crossover out of criticality on the metallic side is to a
marginal Fermi liquid metal. At much lower temperatures there is a further crossover into the Landau Fermi
liquid. The ratio of the two crossover scales vanishes when approaching the critical point. Similar phenomena
are found in the insulating side. The filling-controlled Mott transition is also studied. Implications for experi-
ments on the layered triangular lattice organic material �− �ET�2Cu2�CN�3 are discussed.
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I. INTRODUCTION

Despite several decades of work the Mott transition be-
tween a metal and an insulator in two- or three-dimensional
systems remains poorly understood.1 The nature of the tran-
sition quite possibly depends on the structure of the insulat-
ing state that is obtained in the vicinity of the metal-insulator
transition. The most familiar example of a Mott insulator is
one that has magnetic long-range order but it has long been
known that other forms of order �such as spin-Peierls� are
possible as well. An exciting possibility is a Mott insulator
with no conventional order that does not break any
symmetries.2 Such states �popularly called quantum spin liq-
uids� are now known to be theoretically possible.3–5 Recent
experiments find encouraging evidence for the existence of
spin liquid states in a few different systems.6–8

In a number of materials the Mott transition is �at T=0�
first order.1 In several systems, however, strong fluctuation
effects attributable to the impending localization are seen in
metals that are close to the Mott transition.1 An important
and interesting question is whether second-order Mott tran-
sitions are at all possible. Recent experiments on the two-
dimensional organic material �− �ET�2Cu2�CN�3 provide
tantalizing hints that such a second-order Mott transition
may actually be possible. At ambient pressure this is a Mott
insulator which does not have magnetic long-range order
down to the lowest temperatures �much smaller than the spin
exchange energy�.6 Remarkably the spin susceptibility is a
nonzero constant at low temperature and the specific heat is
linear exactly as in a metal.9 Thus the Mott insulator retains
some of the characteristics of a Fermi liquid metal. These
results have been interpreted10,11 as evidence for a quantum
spin liquid with gapless neutral fermionic spin-1/2 spinon
excitations. Theoretically such spin-liquid behavior may be
expected if there is considerable amount of virtual charge
fluctuations. This may be roughly modeled as a large
multiple-ring exchange term in a spin model. Such ring-
exchange terms are known to promote spin-liquid behavior.10

In experiments optical transport shows that there is substan-

tial conduction down to reasonably low frequency somewhat
below the charge gap.12 Under pressure a Mott transition to a
metal is observed.13 All of these suggest that the ambient
pressure insulator is close to being a metal. Thus perhaps the
Mott transition in this material is a continuous one.

Theoretically �− �ET�2Cu2�CN�3 is believed to be de-
scribed by a one-band Hubbard model on an isotropic trian-
gular lattice �see Fig. 1�. In an important development the
Mott transition at fixed filling on such lattices was studied by
Florens and Georges14 within an approximate slave-particle
mean-field treatment of the Hubbard model. In this mean-
field calculation the Mott transition is second order. As it is
approached from the Fermi liquid side, the quasiparticle resi-
due vanishes but the effective mass stays constant.

In this paper we will go beyond this mean-field calcula-
tion by including fluctuations. Deep in the insulating side
fluctuation effects are well understood, and a gapless spin
liquid with a spinon Fermi surface and its associated gauge
fields are obtained. Indeed this state has been proposed10,11 to
describe the Mott insulating phase of �− �ET�2Cu2�CN�3.
Here we consider the vicinity of the Mott transition itself
with a focus on the approach from the metal. We show that
the quasiparticle effective mass of the metal diverges at this
Mott transition once fluctuation effects are included. Despite
this diverging mass the electronic compressibility vanishes,
and the spin susceptibility stays constant. This signals the
divergence of the Landau parameters Fs,a

0 . We calculate vari-
ous physical quantities right at the quantum critical point
associated with this Mott transition. In particular the specific
heat is shown to behave as T ln�1 /T�. The resistivity is
shown to be a constant, which is nonuniversal. However, as

Mott insulator Fermi liquid t/U

Mott critical point

FIG. 1. Possible schematic zero-temperature phase diagram for
a half-filled single-band repulsive Hubbard model on a nonbipartite
lattice. U is the Hubbard interaction strength and t is the hopping
amplitude.
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the transition is approached from either the metal or insula-
tor, the residual resistivity jumps. When approaching from
the metal this resistivity jump is a universal number of order
h /e2. �See Fig. 2�. This prediction can possibly be checked in
future experiments.

In a recent paper15 we argued that at a continuous Mott
transition, the Fermi surface will remain sharply defined
even though the Landau quasiparticle does not survive. We
demonstrated this within the mean-field treatment of Ref. 14
by a direct calculation of the electron spectral function. Here
we include fluctuation effects and show that the sharp critical
Fermi surface continues to exist. Further, in Ref. 15 we pro-
posed that the electron spectral function near the Fermi sur-
face at the critical point will satisfy the scaling ansatz

A�K� ,�� �
c0

����/zF0� c1�

k�
z � . �1�

Here we explicitly show that at the continuous Mott transi-
tion studied in this paper, this scaling ansatz is satisfied with
the exponents z=1+ and �=−� �where � is the anomalous
exponent of the boson field at the 3D XY fixed point�. The
exponent value 1+ means that expressions such as �1/z

should be replaced by � ln 1 /�. Specifically we show that

Ac�K� ,�� �
��

ln�
�

F�� ln�
�

vF0k�

� �2�

right at the Mott transition. Here k� is the deviation of K� from
the Fermi momentum along a direction parallel to the normal
to the critical Fermi surface at the point of closest approach.
Thus the Mott transition studied in this paper provides a
concrete example of a critical Fermi surface.

We also study the crossover out of the critical region into
either the Fermi liquid or the spin liquid Mott insulator. Re-
markably we find that on the metallic side, the initial cross-
over is not to a Landau Fermi liquid but rather to a marginal
Fermi liquid metal16 �see Fig. 3�. As the tuning parameter g

moves away from its critical value gc into the metallic side,
this happens at an energy scale

T� � �g − gc��, �3�

with ��0.67 a universal exponent �equal in fact to the cor-
relation exponent of the 3D XY model�. The marginal Fermi
liquid metal crosses over to a Landau Fermi liquid at a much
lower energy scale

T�� � �g − gc�2�. �4�

The ratio T�� /T� thus vanishes when approaching the critical
point. Similar phenomena happen in the insulating side as
well. The initial crossover �at energy scale T�� out of the
quantum critical point is to a marginal spinon-liquid insula-
tor. In this insulator the spinons have a sharp Fermi surface
and a scattering rate proportional to the energy. The specific
heat is T ln 1 /T. This eventually crosses over to the spinon
non-Fermi liquid state of Refs. 10 and 11 at the much lower
scale T��.

The presence of these two scales means that a universal
scaling function for the initial crossover out of criticality will
only describe the marginal Fermi liquid state. The low-
energy physics of the Fermi liquid is not part of this scaling
and is obtained only on including the second crossover at
T��. Thus the scaling hypothesis of Ref. 15 is not expected to
directly describe the approach to criticality at this particular
transition. We show that this is indeed the case. Similar phe-
nomena are well known in other simpler classical and quan-
tum phase transitions with “dangerously irrelevant” perturba-
tions. In such cases as in the present problem the usual
scaling only describes the initial crossover, and needs to be
modified to handle the second one.

Our theory for this Mott transition is formulated in terms
of a charge-0 spin-1/2 fermionic spinon field f�, a charge-e
spin-0 boson field b, and an associated U�1� gauge field. We
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FIG. 2. �Color online� Evolution of the extrapolated T=0 con-
ductivity across the Mott transition. The conductivity � jumps
twice—once from its value �m in the metal to its value �c at the
critical point, and then again to zero on moving to the insulating
phase. Neither of the jumps are universal. However, the jump in the
in-plane sheet resistivity � on going from the metal to the Mott
critical point is a universal constant Rh /e2 with R of order 1.
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FIG. 3. �Color online� Schematic phase diagram showing finite
temperature crossovers near the Mott transition studied in this pa-
per. The dashed lines represent the crossover scale T� and the
dashed-dotted lines the crossover at T��. The quantum critical metal
at T=0 has a sharp critical Fermi surface. The electron spectral
function at the Fermi surface sharpens into the marginal Fermi liq-
uid form on cooling through T�. It eventually acquires the usual
Landau quasiparticle peak only below the much lower scale T��.
The Mott insulating ground state is a spin liquid with a spinon
Fermi surface. A different spin liquid, which also has a spinon
Fermi surface, appears in the intermediate temperature regime in
the insulator. The critical Fermi surface evolves into the spinon
Fermi surface in the insulator.
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argue that at low energies near the critical point, the boson
field is dynamically decoupled from the spinon-gauge sys-
tem. Further, the critical properties of this boson are con-
trolled by the usual 3D XY fixed point. The spinons and the
gauge fields on the other hand form a strongly coupled sys-
tem. Remarkably in the presence of the critical boson field,
the mathematical structure of this strongly coupled system is
identical to that arising in the Halperin-Lee-Read composite
Fermi liquid state17 that describes the half-filled Landau
level. Specifically our problem maps on the case with 1 /r
Coulomb interactions studied in Ref. 17. We can thus make
use of the existing understanding of this state to calculate
critical properties of the Mott transition in detail.

We can now explain the origin of the two scales T� and
T�� that appear on moving away from criticality. The former
is when the boson field crosses over from criticality into
either a condensed or insulating phase. However, the decou-
pling between the bosons and the spinon-gauge system con-
tinues beyond this scale. It is only at the lower scale T�� that
the change in the boson dynamics from the critical point is
felt by the spinon-gauge system. Thus the charge and spin
sectors emerge out of criticality at two different energy
scales.

There are several well-studied examples of quantum criti-
cal phenomena with two �or more� distinct energy scales. A
prominent example is the deconfined quantum critical point18

separating Neel and valence-bond solid phases of spin-1/2
quantum antiferromagnets on two-dimensional square lat-
tices. Similar multiple energy scales are also a feature of
various metallic quantum critical points associated with the
onset of some density wave order.19 In all these prior ex-
amples the multiple energy scales can be understood within a
renormalization group framework as arising due to the pres-
ence of a dangerously irrelevant coupling. In the present
problem, loosely speaking, we may say that the coupling
between the bosons and the spinon-gauge system plays the
role of a dangerously irrelevant perturbation at the critical
fixed point. However, at present we do not have a suitable
renormalization group formulation to make this more pre-
cise.

We also briefly study the filling-controlled Mott transition
�i.e., tuned by a chemical potential� to the same spin-liquid
Mott insulator. Several properties of this transition have al-
ready been studied in prior work on the related Kondo break-
down model.20 We show that both Z and the inverse effective
mass vanish as the transition is approached from the metal.
The Landau parameters Fs,a

0 also diverge. In addition the
crossover on the metallic side is again characterized by two
scales. The marginal Fermi liquid regime of Fig. 3 is re-
placed by a non-Fermi liquid metal, which evolves into the
Landau Fermi liquid at the lowest energies.

We also note an earlier study21 of the Mott transition in a
half-filled Hubbard model on the two-dimensional honey-
comb lattice to a spin-liquid phase. As is well known the
conducting phase on this lattice consists of Dirac points and
not a full Fermi surface. The spin-liquid phase considered in
that work also inherits this Dirac structure. This is a big
difference from the Fermi surface case studied in this paper,
and leads to very different results. Another recent study22

discussed the evolution of gapped spin-liquid insulators into

the usual Fermi liquid on a triangular lattice and suggested
that this proceeds through various exotic lattice symmetry
broken states. In this paper we instead focus on the transition
to the gapless spin liquid state from the metal.

The rest of the paper is organized as follows. We begin in
Sec. II by defining the model and the slave-rotor field theory
that we employ to study the Mott transition. We then analyze
the field theory at the T=0 Mott transition and show that it
could stay second order beyond mean field. We argue that the
gauge field does not affect the critical properties of the
bosons, and determine the structure of the strongly coupled
spinon-gauge sector system. Next in Sec. III we study the
approach to the Mott transition at T=0 from the Fermi liquid
side. Critical singularities of several properties are deter-
mined. Next in Sec. IV we briefly study the singularities in
thermodynamic quantities at the critical point itself. We then
turn to transport properties in Sec. V, demonstrating in par-
ticular the universal resistivity jump discussed above. In Sec.
VI we show that the ground state at the critical point is
characterized by a sharp Fermi surface but no Landau qua-
siparticle. Next in Sec. VII we briefly discuss the approach to
the Mott transition at T=0 from the insulating side. The
structure of the full crossover from the critical point to either
phase is considered next in Sec. VIII. Here we show the
existence of two energy scales characterizing the crossover,
and demonstrate the emergence of marginal Fermi liquids.
The filling-controlled transition is briefly studied in Sec. IX.
Possible implications for experiments particularly in �
− �ET�2Cu2�CN�3 are discussed in Sec. X. We conclude with
a brief discussion of some theoretical issues. Two appendices
provide some details of the calculation of the spinon self-
energy and the electron vertex.

II. MODEL AND FIELD THEORY

We consider a one-band Hubbard model at half-filling on
a nonbipartite lattice �Fig. 1� such as the triangular lattice

H = − t 	

rr��

�cr
†cr� + h . c� + U	

r

�nr − 1�2, �5�

where cr destroys a spinful electron at site r of a triangular
lattice. nr=cr

†cr is the electron number at site r. U	0 is an
on-site repulsion. For large g= t /U the ground state is a
stable Fermi liquid metal. For small t /U a Mott insulator
results. Clearly there needs to be a Mott metal insulator tran-
sition at some critical value of gc= �t /U�c.

In application to electronic materials such as �
− �ET�2Cu2�CN�3, it is important to include the long-range
part of the Coulomb interaction. The Hubbard model can
also possibly be realized in cold fermionic atoms in a peri-
odic optical lattice in which case, there is no long-range Cou-
lomb interaction. We begin by first studying the Mott transi-
tion in the absence of the Coulomb interaction. At the end of
the paper we discuss the necessary modifications if such
Coulomb interaction is present.

The Mott transition and the spin-liquid phase are conve-
niently discussed using the slave-rotor representation of Ref.
14. We write
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cr� = ei
rf r� �6�

with ei
r �br a spin-0 charge-e boson, and fr� a spin-1/2
charge-0 fermionic spinon. The rotor representation enables
a proper description of the electronic Hilbert space at each
lattice point. In particular it enables including the empty and
doubly occupied states on an essentially equal footing.
Clearly the physical electron operator is invariant under local
opposite-phase rotations of br and fr�, respectively. This
means that a proper reformulation of the Hubbard model in
terms of the br and fr� will necessarily include a U�1� gauge
field.

We start with a mean field description in which the
spinons are noninteracting and form a Fermi surface. If the
boson br is condensed �
br��0� the result is the Fermi liquid
phase of the electrons. If the boson is gapped �and hence
uncondensed�, a spin-liquid Mott insulator with a spinon
Fermi surface results. The phase transition at gc between the
two phases is driven by the condensation of the boson br. A
low-energy effective theory11 for the transition is given by
the action

S = Sb + Sf + Sa + Sbf , �7�

Sb = d2xd����� − ia��b�2 + V��b�2� , �8�

Sf = 
x�,�

f̄��� − � f + ia0�f + 
k�,�

f̄ k�,�k�+a�
f fk�,�, �9�

Sa = 
x�,�

1

e0
2 ������a��2. �10�

The a� is a U�1� gauge field that appears due to the redun-
dancy introduced by the slave-rotor representation of the
electron operators. The potential V��b�2� may simply be taken
to be of the usual form r�b�2+u�b�4.  f is the mean-field
spinon dispersion. The last term Sbf represents residual short-
range interactions between the bosons and fermions. Poten-
tially the most important of these is a coupling between �b�2
and long-wavelength deformations of the spinon Fermi
surface.24 We emphasize that the action for the boson field b
has a quadratic time derivative term as opposed to the linear
time derivative term in theories of doped t−J models. This
difference is already familiar from discussions of the super-
fluid Mott transition of bosons.23

Before proceeding we note that in the microscopic deri-
vation of this action,11 the U�1� gauge field a� should be
taken to be compact. However, as shown in the theory of
gapless spin liquids with a large number of gapless matter
fields,5 the spinon Fermi surface is expected to suppress
space-time monopole configurations of the gauge field at low
energies. Therefore we will henceforth take the gauge field
a� to be noncompact.

In the “mean-field” approximation we ignore the gauge
fields but not other interactions. The boson condensation
transition of action Sb is then in the 3D XY universality
class. Let us now consider the effect of the interaction terms
Sbf. The operator O= �b�2 can couple to the particle-hole con-

tinuum of the spinon Fermi surface near q=0. The arguments
of Ref. 24 now show that this is an irrelevant perturbation at
the 3D XY fixed point. Integrating out the spinon Fermi
surface leads to a perturbation of the form24

v
�,q�

���
q

�O�q� ,���2. �11�

The operator O has scaling dimension 3−1 /� at the 3D XY
fixed point, where � is the correlation length exponent. Thus
v can be seen as irrelevant so long as �	

2
3 . This inequality is

satisfied for the 3D XY model.
Thus the bosons and spinons are decoupled in the absence

of gauge interactions. The electron Green’s function in the
Fermi liquid side is then simply given by

Gc
�mf��K� ,�� � �
b��2G�mf��K� ,�� , �12�

where Gc,f
�mf� are the electron and spinon Green’s functions

within this mean-field approximation. This leads to a quasi-
particle residue Z��
b��2. Clearly Z vanishes when ap-
proaching the Mott transition due to the vanishing conden-
sate fraction as Z��g−gc�2�, where � is the order parameter
exponent for the 3D XY model. In this approximation the
quasiparticle effective mass does not diverge and stays finite
as the transition is approached. In Ref. 15 we calculated the
electron spectral function at the critical point and found the
scaling form

Ac
�mf��K� ,�� � ����F�mf�� c0�

k�
� . �13�

Thus in the simple mean-field calculation there is a sharp
critical Fermi surface at which the electron spectral function
has singularities even though there is no Landau quasiparti-
cle.

Now we consider how these results are modified upon
including gauge fluctuations. We begin by treating the gauge
field within the standard random phase approximation
�RPA�. As in other problems with a Fermi surface coupled to
the gauge field, this is actually expected to capture the exact
low-energy form of the gauge propagator even beyond the
RPA. We thus expect that the critical properties calculated
below are correct descriptions of the low-energy physics. We
work in the Coulomb gauge so that a0 and the transverse
spatial component of the gauge field a� are decoupled. The a0
component is screened out by the finite density of spinons,
and can be integrated out. The effective action for the trans-
verse gauge field found by integrating out all matter fields
and truncating to quadratic order is

Seff�a� = 
q� ,�

� k0���
q

+ �dq2 + �0
��2 + c2q2��a�q� ,���2.

�14�

The first two terms come from the spinons and the third term
from the bosons. The fermion contribution is well known and
involves the important Landau damping term k0��� /q with k0
of order the typical spinon Fermi momentum. �d is the dia-
magnetic susceptibility of the spinons. The boson contribu-
tion is what is obtained right at the critical point, and reflects
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the presence of a nonzero universal boson conductivity �0 at
the mean-field boson fixed point. c is the space-time rescal-
ing factor in the boson sector. Away from the critical point
this boson contribution will be modified �see Sec. III�.

In the presence of the ��� / �q� term we expect that the
important gauge fluctuations will involve frequencies ���
�q. Then in the low ��� ,q limit the gauge action may be
approximated to

Seff�a� = 
q� ,�

� k0���
q

+ �0cq��a�q� ,���2. �15�

This gives overdamped dynamics for the gauge field. The
same structure of gauge field dynamics is also encountered in
the theory of the half-filled Landau level,17 and we may di-
rectly take over many results. First the spinon self-energy at
zero temperature due to interaction with this gauge field is
given by

� f�K� ,i�� = vF0
2 

q� ,�
� 1

k0���
q + �0c�q�

� 1

�i� − 
K� −q�
f �

. �16�

Here  f is the mean-field spinon dispersion. We are interested

in this integral for K� close to the spinon Fermi surface and
small �. From Ref. 17 we have �see also Appendix A�

� f�K� ,i�� � ia� ln� 1

���� �17�

with a a nonuniversal constant.
The boson self-energy due to the interaction with the

gauge field is also readily evaluated. To leading order the
�k� ,�� dependence of the self-energy is given by

�b�k�,i�� − �b�0,0� = 
q� ,�

�k� � q̂�2

k0���
vF0q + �0c�q�

Gb
0�k� − q� ,� − �� ,

�18�

where Gb
0 is the boson propagator at the mean-field critical

point:

Gb
0�q� ,�� =

1

��2 + c2q2�2−�/2 . �19�

Here � is the anomalous dimension of the boson field at the
3D XY fixed point. ��b�k� =0, i�=0� leads to a trivial shift of
the location of the critical point and hence has been sub-
tracted out�. Evaluating the integral we find

�b�k�,i�� − �b�0,0� � k2 �20�

in the limit k→0, ���=0 limit, and is zero if k� =0,�→0. We
see that the gauge interaction only leads to an analytic cor-
rection to the inverse boson propagator and hence does not
alter the critical singularities coming from the boson self-
interaction.

In fact the gauge coupling does not at all alter the critical
properties of the bosons. At the mean-field critical fixed
point, the bosons have dynamical critical exponent 1 so that
� and q� should scale identically. With that scaling the � /q
term in the gauge field action scales in the same way as a

Higgs mass term. This term quenches the effects of the gauge
fluctuations in the boson sector. Thus as far as the boson
sector is concerned, the critical properties are the same as the
3D XY fixed point.

In contrast in thinking about the effects of the gauge fluc-
tuations on the fermions, the scaling is different, as has been
emphasized in various prior treatments of the problem of a
Fermi surface coupled to a gauge field.17,25–28 Consider any
definite point on the Fermi surface with, say normal along
the x̂ direction and let the momentum deviation from this
point be q� = �qx ,qy�. Then qx scales as the frequency � but
the tangential momentum scales as qy

2��. The quadratic
scaling of frequency with the tangential momentum means
that gauge fluctuations �which from Eq. �15� also have such
quadratic scaling� can couple efficiently by transferring tan-
gential momentum to the fermions.

Thus we have the interesting situation that the bosonic
sector behaves as it would in the absence of any gauge field
while the spinon sector is modified �albeit in well-understood
ways� by the gauge field. This enables us to reliably analyze
the critical point in great detail.

Note that the argument for the irrelevance of Sbf remains
unmodified even after taking into account the modification of
the fermion sector by the gauge field. This is because even
with the gauge field present, the two particle Green’s func-
tions of the spinons at small q retain their “Fermi liquid”
form,29 and hence the term in Eq. �11� is unmodified.

Before proceeding we note one other result we will need.
The physical electron c� is a product of the boson and fer-
mion operators. At mean-field level the electron Green’s
function is simply a convolution of the boson and fermion
Green’s functions. Beyond mean field, apart from the self-
energies just discussed, we also need the correction to the
c�→b+ f� vertex from gauge fluctuations. In Appendix B we
show that �at T=0� there is no singular enhancement of this
vertex at low frequency/momenta near the Fermi surface.
Therefore we can simply calculate the electron Green’s func-
tion by convolving the boson and fermion Green’s functions.

III. APPROACH FROM THE FERMI LIQUID

We first consider the approach to the Mott transition from
the Fermi liquid side. In terms of the b and f� this phase is
the boson condensate 
b��0. This has the immediate effect
that the boson contribution to the gauge propagator is modi-
fied. At the longest wavelengths the gauge field acquires a
“Higgs” mass proportional to the phase stiffness �s of the
condensed boson. In general we write

Seff�a� = 
q� ,�

� k0���
q

+ �dq2 + �b�q� ,�,�s���a�q� ,���2,

�21�

where the boson polarizability �b satisfies the scaling form

�b�q� ,�,�s� = �0
�c2q2 + �2P��c2q2 + �2

�s
� . �22�

The universal scaling function P�x� behaves as
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P�x → 0� �
1

x
, �23�

P�x → �� � 1. �24�

The boson phase stiffness �s goes to zero at the transition as
the inverse correlation length

�s �
1

�
, �25�

� � �g − gc�−�, �26�

where � is the correlation length exponent of the 3D XY
model.

Repeating the calculation of the fermion self-energy in
Eq. �16� with this modified gauge propagator, we find �see
Appendix A�

� f�K� ,i�� = 2ia� ln
1

�s
+ o��2� . �27�

Thus the finite gauge field mass �s cuts off the frequency-
dependent logarithm in the self-energy that is obtained at the
critical point. The electron Green’s function close to the
Fermi surface is then simply determined to be

Gc�K� ,�� =
�
b��2

i��1 + 2a ln 1
�s

� − vF0k�

, �28�

where k� is the deviation from the Fermi momentum in the
direction parallel to the normal to the Fermi surface. For
small �s this gives

Gc�K� ,�� =
Z

i� − vFk�

. �29�

The quasiparticle residue Z behaves as

Z �
�
b��2

ln
1

�s

, �30�

�
�g − gc�2�

ln
1

�g − gc�

, �31�

where � is the order parameter exponent for the 3D XY
model. Thus Z vanishes as the Mott transition is approached.
The power-law dependence on �g−gc� is already obtained
within mean-field theory; gauge fluctuations lead to the extra
logarithm in the denominator. The renormalized Fermi veloc-
ity behaves as

vF

vF0
�

1

ln
1

�g − gc�

. �32�

Thus the quasiparticle effective mass diverges logarithmi-
cally when approaching the Mott transition. This divergence
is entirely a fluctuation effect and is absent in a mean-field
treatment.

In the Fermi liquid the specific heat Cv��T, and the di-
vergence of the effective mass immediately implies that

� � ln
1

�g − gc�
�33�

close to the transition.
In the problem of a spinon Fermi surface coupled to a

gauge field, the spin susceptibility on the other hand is
known not to be enhanced by the gauge interactions. Thus �0
goes to a finite nonzero constant as the transition is ap-
proached. �Indeed it continues to a finite nonzero value in the
insulating spin liquid as well�. In Fermi liquid theory

�0 �
�o

1 + F0
a . �34�

Here �0��FS1 /vF is the quasiparticle density of states at the
Fermi surface and F0

a is a Landau parameter. As �0 diverges
while �0 stays constant, we infer that the Landau parameter
F0

a diverges in exactly the same way as the effective mass:

F0
a � ln

1

�g − gc�
. �35�

Next we consider the compressibility �=dn /d�, where n
is the electron density and � is the electron chemical poten-
tial. This quantity receives contributions from both the
bosons and the fermions. Indeed there is an Ioffe-Larkin
composition rule:30

�−1 = �b
−1 + � f

−1, �36�

where �b,f are the compressibilities of the boson and spinon
subsystems. The boson compressibility vanishes as the Mott
transition is approached in a well-known way. We have

�b �
1

�
. �37�

The spinon system on the other hand has a finite nonzero
compressibility, which �like the spin susceptibility� is not
enhanced by gauge fluctuations. Clearly then the full com-
pressibility is dominated by the bosons and vanishes at the
transition. We have

� �
1

�
, �38�

��g − gc��. �39�

In Fermi liquid theory the compressibility may be written
as

� �
�o

1 + F0
s , �40�

where F0
s is a different Landau parameter. The combination

of diverging effective mass and vanishing compressibility
implies a strongly diverging Landau parameter

F0
s � � ln � . �41�

We note that the diverging Fs
0 implies that the zero-sound

velocity will diverge.
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If we had kept the term of o��2� in Eq. �27� we would
have found the usual quasiparticle decay rate ���2. Includ-
ing it we find that

� �
�2

�s
2 , �42�

��2�2, �43�

��g − gc�−2��2. �44�

To summarize the approach to the Mott transition from
the Fermi liquid is characterized by a vanishing Z, diverging
effective mass, and diverging F0

s,a �such that the spin suscep-
tibility stays constant and the compressibility vanishes�. We
emphasize that even though Z vanishes and the effective
mass diverges, Z is not inversely proportional to the effective
mass �a result that is even more strikingly true at the mean-
field level where there is vanishing Z but no mass diver-
gence�. This is in striking contrast to the results from dy-
namical mean-field theory for the Hubbard model in infinite
dimensions.31

IV. THERMODYNAMIC SINGULARITIES AT THE
CRITICAL POINT

Now we briefly consider singularities in thermodynamic
properties right at the Mott critical point. The specific heat
receives contributions from both the critical bosons and the
coupled spinon-gauge system. The former contribution is
well known and goes as T2 at low T. The spinon-gauge con-
tribution is readily calculated and behaves as

Cv � T ln� 1

T
� . �45�

This is therefore the dominant contribution at the critical
point.

The compressibility at a nonzero T at the critical point is
determined by the Ioffe-Larkin rules. The boson compress-
ibility �b�T while � f is a temperature-independent constant.
Therefore at low T the boson contribution dominates and we
find

� � T . �46�

The spin susceptibility is of course determined by the
spinons and is a T-independent constant at low T.

V. TRANSPORT

We now consider the transport properties. We will assume
that there is some weak disorder which gives some nonzero
residual resistivity in the metal. In principle if the associated
elastic mean free path is l, the Landau damping term in the
gauge action will be modified from ��� /q to ���l for q�1 / l.
We will assume that l is large enough so that this modifica-
tion can be ignored at all but the lowest temperatures. We
will also ignore all localization effects due to the presence of
disorder, which might be important at the lowest tempera-

tures. With these caveats we now consider dc transport
across the Mott transition.

The resistivity � is again determined by the Ioffe-Larkin
rule, which states that

� = �b + � f . �47�

Consider first the residual resistivity at T=0 �i.e., the resis-
tivity extrapolated from temperatures higher than the low
temperature at which the modification of the gauge propaga-
tor due to disorder must be considered�. In the Fermi liquid
phase the bosons are condensed and so �b=0. We therefore
get �=� f. In the Mott insulator on the other hand �b=� and
hence �=� at it must be. Thus the T=0 conductivity jumps
on crossing the Mott transition. A similar argument was first
used by Coleman et al.32 to argue that the residual resistivity
jumps at the Kondo breakdown transition of Ref. 20. In the
present problem, however, there is a new interesting feature
associated with the resistivity jump, which is absent at the
Kondo breakdown transition. Consider the resistivity right at
the quantum critical point. Then from prior studies of the
superconductor-insulator transition of bosons,33 we know
that �b=Rh /e2 is nonzero and universal. Thus the residual
resistivity �cr at the critical point is

�cr =
Rh

e2 + � f . �48�

Thus the residual resistivity right at the critical point jumps
from its value in both the metallic phase �where it is � f� and
the insulating phase �where it is ��. Furthermore, we see that
when approaching from the metallic side, the jump in the
resistivity at the critical point is the universal number Rh /e2.
This remarkable universal resistivity jump can be tested in
experiments.

It is instructive to consider the behavior of the conductiv-
ity �=1 /� as we move across the transition. This is depicted
in Fig. 2. The conductivity jumps twice and takes a value at
the critical point intermediate between that of the metal and
the insulator. However, clearly neither conductivity jump is
universal.

The universal jump in resistivity rather than the conduc-
tivity is closely tied to the Ioffe-Larkin rule. Thus observa-
tion of the universal resistivity jump can provide direct sup-
port for the Ioffe-Larkin rule, and hence the general
correctness of the gauge theoretic description of the transi-
tion.

Now let us consider the T dependence of the resistivity at
the critical point. In principle this could be addressed
through an appropriate quantum Boltzmann formulation
combined with some suitable approximation to treat the
bosonic XY critical point. We leave such a calculation for the
future and estimate the T dependence through some crude
arguments. The spinon conductivity is determined by the
scattering off the critical gauge fluctuations. The calculation
of the transport lifetime of the spinons is standard and is
described in Ref. 25 for the case where the �-independent
term in the gauge propagator is q2 �as opposed to the �q� that
arises in the present problem�. The transport scattering rate at
low temperature is thus given by
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�tr � 
0

T

d�
T

�
 dq

�q3

�2 + ��0cq2

k0
�2 , �49�

�T2 ln� 1

T
� �50�

Thus the spinon resistivity will have a T2 ln�1 /T� depen-
dence right at the quantum critical point. The boson resistiv-
ity is only expected to have weak temperature-dependent
corrections to its universal T=0 value so that the leading
temperature dependence of the total resistivity is T2 with a
log correction.

VI. CRITICAL FERMI SURFACE

In Ref. 15 we argued that at a second-order Mott transi-
tion, the Fermi surface will continue to be sharply defined
even though the Landau quasiparticle is absent. We dubbed
this as “critical Fermi surface.” We also demonstrated the
existence of such a critical Fermi surface within the slave-
rotor mean-field theory of the Mott critical point discussed in
this paper. Here we show that the critical Fermi surface re-
mains sharply defined even beyond the mean-field approxi-
mation.

To leading order the c�→b+ f� vertex is not singularly
enhanced by gauge fluctuations. Therefore the electron
Green’s function Gc�x� ,�� is simply the product of the boson
and spinon Green’s functions

Gc�x�,�� = Gb�x�,��G f�x�,�� . �51�

The electron spectral function Ac�K� ,�� for real positive fre-
quencies is then given by

Ac�K� ,�� = 
q�


0

�

d�Ab�q� ,��Af�K� − q� ,� − �� �52�

with Ab,f the boson and spinon spectral functions, respec-
tively. At the critical point of interest these take the form

Ab�q� ,�� = A ���2 − c2q2�
��2 − c2q2�2−�/2 , �53�

Af�q� ,�� =

���

2

����

2
�2

+ �� ln
�

�
− q

f�2 . �54�

The spinon Green’s function includes the nontrivial self-
energy that arises from the gauge field interaction. A ,� ,�
are all nonuniversal constants. Let us consider a momentum

K= �KF+k�x̂ with k small. The spinon is at momentum K�

−q� . The spinon energy may be taken to be


K� −q�
f � vF0�k − qx� + Cqy

2 �55�

with C related to the curvature of the spinon Fermi surface.
Putting these into Eq. �52�, for small �k� ,� the important

region of integration involves �qx���qy�����. Thus we
may drop the curvature term Cqy

2 in the fermion dispersion
above. Further, at the lowest frequencies � ln � /��� so
that we may drop the imaginary part of the spinon self-
energy compared to its real part. Note also that the momen-
tum transfer �qx����� ln 1 /� and hence to leading order
we should drop that as well. The spinon spectral function can
then be replaced with a delta function

Af��,K� − q�� � ��� ln
�

�
− vF0k� . �56�

The q integrals in Eq. �52� may now be readily performed
and we find

A�K� ,�� � 
0

�

d��� − ������ ln
�

�
− vF0k� . �57�

A scaling limit can now be defined with scaling parameter
� ln � /� /vF0k. In the limit that k ,� go to zero while keep-
ing this parameter constant, we find

A�K� ,�� �
��

ln�
�

F�� ln�
�

vF0k
� �58�

with the scaling function

F�x� = �1 −
1

x
��

��x − 1� . �59�

Thus we conclude that the electron spectral function has
sharp singularities at the Fermi surface right at the critical
point even after including gauge fluctuations. However, the
Landau quasiparticle is absent. Thus this provides an explicit
example of a “critical Fermi surface” at the quantum critical
point.

VII. APPROACH FROM THE INSULATING SIDE

Now we briefly consider approaching the Mott transition
at T=0 from the insulating side. First clearly there will be a
charge gap determined by the boson gap �, which vanishes
as

� �
1

�
. �60�

We emphasize that the charge gap vanishes at the same point
that the Fermi surface disappears on approaching from the
metallic side, once again in contrast to results in infinite
dimension.31 This was already pointed out at the mean-field
level,14 and continues to be the case after including fluctua-
tions.

The electron spectral function is of course also gapped in
the Mott insulator. This gap derives from the boson gap � as
the spinon is gapless even in the insulator. When approach-
ing the transition this single-particle gap vanishes at the mo-
menta that correspond to the Fermi surface of the metallic
phase and not at isolated momenta. This is exactly as ex-
pected for a continuous Mott transition.15

The Mott insulating state is a gapless quantum spin liquid
with a spinon Fermi surface. This is a non-Fermi liquid state
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of the spinons with well-understood properties.10,11,25,27 For
instance the low-T specific heat goes as T2/3. The proportion-
ality coefficient will vanish as the critical point is approached
in a manner that is readily determined. In the insulator the
gauge propagator will be given by a form analogous to Eq.
�21� except that the �s that appears in the scaling function P
is replaced by �. At small momenta q the boson polarizabil-
ity must go as q2 /�. This implies that the T2/3 specific heat
must have a coefficient D that vanishes as

D � �1/3 ln
1

�
. �61�

VIII. CROSSOVER OUT OF CRITICALITY: MARGINAL
FERMI LIQUIDS

In this section we study in greater detail the crossover out
of criticality. Consider first the boson sector. On moving
away from the critical point the crossover out of criticality is
determined by a single energy scale that vanishes at the criti-
cal point. On the metallic side this scale may be taken to be
the boson stiffness �s, and on the insulating side the boson
gap �. Let us focus on the metal. The structure of the gauge
propagator Eq. �21� implies that it is modified from the criti-
cal point at momenta q��s /c or a frequency ���s

2 /ck0.
Thus the frequency scale, at which the gauge fluctuations
notice the Bose condensation, is much smaller than the scale
�s. This can also be seen in the spinon self-energy. In Appen-
dix A we show that this can be written as

� f��;�s� − � f��;�s = 0� � ia�g� ck0���
�s

2 � , �62�

where the function g�x�� ln x for small x and goes to zero
for large x. Thus we see that the spinon self-energy is modi-
fied from its critical form at a scale ��s

2 much smaller than
the Bose condensation scale �s.

What are the properties of the system in the intermediate
energy range between �s and �s

2 /ck0? In that regime we can
treat the bosons as having already condensed. However, this
condensation is not yet felt as a “Higgs” effect by the gauge
fields, and hence by the spinons. Thus the coupled spinon-
gauge system continues to behave as it would right at the
quantum critical point. The electron Green’s function in this
regime will therefore have the same form as Eq. �28� but
with �s in the spinon self-energy replaced by ��. Thus we
have

Gc�K� ,�� =
ZMFL

i��1 + a ln
1

���� − vF0k�

�63�

with ZMFL= �
b��2��g−gc�2�. Remarkably this is exactly the
same form of the electron Green’s function postulated in the
“marginal Fermi liquid” �MFL� state introduced by Varma et
al.16 to describe the optimally doped cuprates.

At a nonzero temperature T the two vanishing energy
scales should manifest themselves as two distinct tempera-

ture scales T���s and T���
�s

2

ck0
that both vanish when ap-

proaching the transition. The properties are that of the quan-

tum critical metal for T�T�, that of the marginal Fermi
liquid for T��T�T��, and that of a Landau Fermi liquid for
T�T�� �see Fig. 3�.

What are the properties of the marginal Fermi liquid
state? Apart from the electron spectral function described
above, it will have a specific heat C�T��T ln 1 /T unchanged
from the quantum critical regime. This is because the specific
heat is controlled by the spinon-gauge system, which is still
critical in the MFL. However, the compressibility �which is
dominated by the bosons� will be a temperature-independent
constant �1 /�. The spin susceptibility will also be constant
independent of temperature. Finally the resistivity will now
be dominated by the fermions and will extrapolate to a T
=0 value equal to just the spinon resistivity. This is again due
to the Ioffe-Larkin rule. Below the Bose condensation scale
T�, the boson resistivity becomes very small so that the
spinons give the dominant contribution.

Thus we see that the temperature scale at which the resis-
tivity jump becomes evident is T�. On the other hand the
scale at which the crossover in the specific heat happens is
T��. The presence of the two energy scales thus leads to rich
crossover phenomena near this transition.

Exactly the same considerations describe the insulating
side as well. The boson gap � is not felt by the spinon-gauge
system until a much lower energy scale �2 /ck0. In the inter-
mediate temperature range the behavior is that of a spin-
liquid insulator with a marginal Fermi liquid of spinons. We
will call this a marginal spinon liquid to distinguish it from
the non-Fermi spinon liquid that is obtained at the lowest
temperatures. The marginal spinon-liquid state is an incom-
pressible Mott insulator with gapless spinon excitations at a
Fermi surface �just like the low-temperature spinon liquid of
Refs. 10 and 11�. However, it has a T ln 1 /T specific heat.
Further, the spinon scattering rate �given by the imaginary
part of the spinon self-energy� will be proportional to T; thus
the thermal conductivity should behave as K /T�1 /T. In
contrast in the spinon non-Fermi liquid state that is obtained
at low T, K /T�1 /T2/3.

Thus the primary transition that occurs is between a mar-
ginal Fermi liquid metal and a marginal spinon-liquid Mott
insulator. Both these states are eventually unstable at the
lowest energies to the Landau Fermi liquid and the non-
Fermi spinon-liquid state, respectively. In renormalization
group language we may say that the relevant flow away from
the critical fixed point �say on the metallic side� leads to a
marginal Fermi liquid fixed point. A different operator which
is irrelevant at the critical fixed point is, however, relevant at
the MFL fixed point, and that eventually leads to the Landau
Fermi liquid fixed point. This is the classic instance of a
“dangerously irrelevant” perturbation. Here it corresponds to
the coupling between the bosons and the spinon-gauge sys-
tem.

We note that the scaling hypotheses for the crossover out
of criticality described in Ref. 15 presumed that the relevant
flow out of the critical fixed point leads directly to the Lan-
dau Fermi liquid. As this does not happen in the present
problem, the approach to criticality at T=0 should not be
described by the scaling ansatz of Ref. 15. This can be ex-
plicitly seen by considering for instance the scaling of the
specific heat—the crossover scale is T�� rather than the T�
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that would be obtained if there was simple scaling. This fea-
ture may be a general limitation of gauge theoretic ap-
proaches to quantum phase transitions with a disappearing
Fermi surface.

IX. CHEMICAL POTENTIAL TUNED MOTT TRANSITION

In this section we very briefly consider the Mott transition
that results when the spinon Fermi surface insulator is turned
into a metal by the process of doping, i.e., by tuning a chemi-
cal potential rather than by pressure at fixed filling. The re-
sults also describe the asymptotic critical behavior in the
Kondo breakdown transition of a Kondo lattice studied in
Ref. 20. The Kondo breakdown model has in addition to the
sheet of the Fermi surface undergoing the Mott transition a
separate Fermi surface sheet that is nonsingular through the
transition. However, Paul et al.34 have suggested that there
may be a small but nonzero energy scale E� at the transition
such that at temperatures above E�, these additional sheets of
the Fermi surface become important. In application to the
Kondo breakdown model, the results of this section only
pertain to the asymptotic low-energy regime T�E�. We also
note that Ref. 20 primarily focused on d=3 space dimensions
though the results for d=2 were also mentioned. In this paper
our primary concern is in two dimensions. We will therefore
make use of the results of Ref. 20 as appropriate to two-
dimensional systems.

A field theory appropriate for these transitions takes the
same form as Eq. �7� except that the boson action becomes
nonrelativistic. Indeed a nonzero chemical potential couples
to the boson density. As explained in Ref. 23 the action for
the bosons then acquires a linear time derivative term. This
term dominates over the quadratic time derivative at long
times, and the low-energy theory becomes nonrelativistic.
For the present problem we therefore have

Sb = d2xd�b̄��� − ia0 −
��� − ia��2

2mb
�b . �64�

The physical electron operator is given by c�=bf�. Many
properties of this transition were studied in Ref. 20. In par-
ticular it was found that the bosons decouple from the
spinon-gauge system just like at the transition at fixed den-
sity studied in earlier sections in this paper. Furthermore, the
universal conductivity of the bosons at the chemical potential
tuned transition is zero. Thus the gauge propagator retains
the same structure that it has in the spin-liquid phase itself.
The physical properties in the quantum critical region are
strikingly non-Fermi-liquid-like. We will denote this non-
Fermi liquid NFL1 to distinguish it from other non-Fermi
liquid states that appear in other regimes �see Fig. 4�. The
electron Green’s function at the critical point was not calcu-
lated in Ref. 20. This is easy to do as once again the c�

→b+ f� vertex is not singular at low energies so that the
electron Green’s function may be obtained by convolution.
The boson Green’s function is20

Gb�k�,�� =
1

i� −
k2

2mb

, �65�

while the spinon Green’s function is20,25

G f�k�,�� =
1

i� sgn������2/3 − k
f �66�

with � a nonuniversal constant. We find that there is a critical
Fermi surface with the exponents �=−1,z=2. The large
negative value of � means that there are weak singularities at
this critical Fermi surface.

Turning to the approach to the Mott transition from the
Fermi liquid, the gauge action now gets modified20 to

Seff�a� = 
q� ,�

� k0���
q

+ �dq2 + �s��a�q� ,���2. �67�

The divergence of the specific heat coefficient was calculated
in Ref. 20. In two dimensions

� �
1

��s

�
1
�x

, �68�

where x is the number density of doped electrons. Calculat-
ing the spinon self-energy due to interaction with gauge field,
we find a spinon self-energy � f � i� /��s. This then gives an
electron effective mass �1 /��s �in agreement with the �
divergence� and an electron quasiparticle residue

Z � �
b��2�s, �69�

�x3/2. �70�

Once again Z is not inversely proportional to the effective
mass. The spin susceptibility is again constant through the
transition so that Fa

0 diverges exactly as the effective mass.

T

Non-fermi liquid
metal

Landau FLMott insulator

Quantum critical
non-fermi liquid

µ0

NFL1

NFL2

FIG. 4. �Color online� Schematic phase diagram showing finite
temperature crossovers near the filling-controlled Mott transition in
two dimensions. � is the chemical potential. The Mott insulating
ground state is a spin liquid with a spinon Fermi surface. The black
dashed line is the crossover scale T� and the red dashed line is the
crossover scale T��. There are two non-Fermi liquid regimes near
the critical point denoted NFL1 and NFL2. The former appears right
above the quantum critical point, and has weak singularities on a
critical Fermi surface. NFL2 appears between T� and T�� on the
metallic side and has strong singularities at the critical Fermi sur-
face. The Landau Fermi liquid is obtained only below T��.
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The boson compressibility diverges logarithmically35 with x
and that determines the divergence of Fs

0.
Perhaps most interestingly the crossover out of criticality

is again in two stages as with the bandwidth-tuned transition
�see Fig. 4�. At a finite density x the bosons condense below
an energy scale T���s but this is not felt by the spinon-
gauge system until a lower energy scale T����s

3/2. In the
intermediate energy regime the bosons may be treated as
condensed but the spinon-gauge system has not yet emerged
out of criticality. This leads to a genuine non-Fermi liquid
metal �NFL2� with �at T=0� an electron spectral function
determined by the spinon Green’s function �and an overall
prefactor ��
b��2�. This state therefore has strong singulari-
ties at the critical Fermi surface. This non-Fermi liquid metal
will have a T2/3 specific heat, a constant susceptibility, and a
constant compressibility. It crosses over to the Landau Fermi
liquid at low temperature. The arguments of Ref. 32 show
that the residual resistivity will jump to zero at T=0 across
the metal-insulator transition. At nonzero temperatures it is
clear from our discussion that this jump will become evident
across the T� line in the metallic phase.

Note that the gauge action right at the quantum critical
point is the same as that in the spin-liquid Mott insulating
phase itself. Thus the criticality of the bosons does not affect
the spinon-gauge system as the transition is approached from
the Mott side. The spin physics right at the critical point �and
in the quantum critical regime at finite temperature� is then
the same as in the spin-liquid Mott insulating phase. It fol-
lows then that—unlike in the bandwidth controlled Mott
transition—there is no second crossover scale on the insulat-
ing side for the chemical potential tuned transition. Thus
there is only a single crossover line on the left side of Fig. 4
associated with the emergence of the charge sector out of
criticality.

X. EXPERIMENTS

Apart from its intrinsic theoretical interest the main moti-
vation for this paper is to develop an understanding of the
pressure-tuned Mott transition in �− �ET�2Cu2�CN�3. In
thinking about the experiments we first need to dispose of
some preliminaries. The theory developed in this paper was
for a transition from a Fermi liquid metal to a Mott insulator
with a spinon Fermi surface in two dimensions. In experi-
ments on the metallic side, superconductivity appears at low
T�5 K near the Mott transition.13 As discussed in Sec. I
there is evidence that a spin-liquid state is indeed realized in
the Mott insulator. This insulator also apparently has gapless
spin excitations, thus supporting the proposal of Refs. 10 and
11 that it has a spinon Fermi surface. However, recent
measurements9 of the low-temperature specific heat have
shown it to be linear in T as opposed to the T2/3 power law
predicted for the spinon non-Fermi liquid insulator.10,11 This
could be due to a low-temperature instability of the spinon
Fermi surface state36,37 that occurs at T�5 K and perhaps
has the same origin as the superconductivity on the metallic
side. The discussion in this paper applies to the physics
above this low-T instability related to pairing.

We have thus far ignored the long-range part of the Cou-
lomb interaction. We can consider its effects by perturbing

about the critical theory we have described in previous sec-
tions. For the boson theory, which describes the charge sec-
tor, the long-range Coulomb interaction is marginal by power
counting.38 An approximate renormalization group analysis
was used to suggest that the transition could either be second
order or driven first order by fluctuations depending on
parameters.38 In the former case the Coulomb interaction is
marginally irrelevant and will lead to log corrections to the
properties we have calculated. At any rate we see that a
second-order Mott transition is allowed even after including
the Coulomb interaction. Further, except perhaps at the low-
est temperatures, the criticality is unchanged from the short-
ranged case discussed in the bulk of the paper. Note that in
the metallic phase the Coulomb interaction will get screened.
The screening length will diverge when approaching the
Mott transition in the same way as 1 /��, where � is the
compressibility.

Now let us highlight some features of our results that
directly bear on current or possible future experiments. First
we note that even if the transition is second order the resis-
tivity will jump. Thus observation of a resistivity jump is by
itself not evidence of a first-order transition. If the transition
is second order our prediction of a universal resistivity jump
of order h /e2 �see Fig. 2� should be observable. Note that
this universal jump is in the in-plane sheet resistance of each
layer. At nonzero T the jump in resistivity will manifest itself
as a strong crossover at the temperature scale T�: getting
closer to the transition the evolution of the resistivity on
crossing the T� line by varying pressure will get sharper.
Other aspects of our results at the critical point �such as
T ln 1 /T specific heat and the Wiedemann-Franz violation�
should also be observable.

It should also be interesting to map out the finite T cross-
overs depicted in Fig. 3. On the insulating side the crossover
scale T��� the charge gap. The lower crossover tempera-
ture T�� will then be of order �2 /ck0. The boson velocity c
can be roughly estimated as �Uta /� in a Hubbard model
description with a the lattice parameter. As k0�� /a we es-
timate

T�� �
�2

�Ut
. �71�

It is at present not clear from experiments precisely how big
the charge gap is even at ambient pressure, but it seems
likely12 that it is much smaller than t and U. Thus even for
the ambient pressure material, T�� may be much smaller than
T�. It is interesting to consider the possibility �which will
certainly be realized close to the transition� that the low-T
instability discussed above occurs at a scale comparable to
T��. Then the crossover to the spinon non-Fermi liquid insu-
lator will not be observed, and much of the finite-T physics
will be that of the marginal spinon-liquid state with proper-
ties as discussed in Sec. VIII.

The crossovers in the metallic side are perhaps of even
greater interest. The presence of an intermediate temperature
state close to the Mott boundary raises the possibility that the
metallic state above the superconducting transition is actu-
ally a marginal Fermi liquid and not a true Landau Fermi
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liquid. Direct measurements of the single-particle spectrum
�perhaps by tunneling� will be thus very useful.

XI. DISCUSSION

In this paper we have developed a theory of a continuous
Mott transition between a Fermi liquid and a paramagnetic
Mott insulator with a spinon Fermi surface. As such this
provides a valuable example of a quantum critical point
where a Fermi surface disappears. Before concluding it is
instructive to place our results in a more general context of
phase transitions involving the disappearance of a Fermi sur-
face. Such transitions were discussed from a general scaling
point of view recently in Ref. 15. First we see that this Mott
critical point provides a concrete example of a sharp critical
Fermi surface with no Landau quasiparticle. The scaling ex-
ponents at this surface are independent of position on the
Fermi surface. Even more importantly we found that the pri-
mary transition was not actually between the Fermi liquid
state and the spinon Fermi surface ground state but rather
between a marginal Fermi liquid state and its spinon coun-
terpart. Thus universal scaling functions for the initial cross-
over out of criticality will only capture these marginal liquid
phases. The physics of the Landau Fermi liquid metal is not
obtained without accounting for the second crossover at a
lower energy scale. Perhaps this is a feature of all slave-
particle approaches to such problems.

The slave-particle approach is of course well suited to the
particular transition studied in this paper �where the insulat-
ing state was a deconfined spin liquid�. However, there are
other continuous phase transitions associated with the disap-
pearance of a Fermi surface where both phases are conven-
tional. It is hardly clear that slave-particle approaches are the
way forward for such transitions. The scaling approach we
developed in Ref. 15 might provide guidance in searching
for suitable alternate theoretical approaches.

Note added. Recently, I learned that a field theory similar
to the one in Sec. II but with two boson species is being
studied by R. Kaul, S. Sachdev, and C. Xu39 in a different
context. They conclude, as I do, that the criticality of the
boson sector is unaffected by the gauge fluctuations.
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APPENDIX A: CALCULATION OF SPINON SELF-
ENERGY

First consider Eq. �16� for the spinon self-energy at the
critical point. In evaluating that integral we observe that due
to the structure of the spinon propagator, the important re-
gion of qx ,qy has qx�qy

2. This implies that �qx�� �qy� so that
the qx can be ignored compared to qy in the gauge propaga-
tor. The qx integral can now be done, and we get

� f��� =
ivF0

2�


�,qy

sgn�� − ��
k0���
�qy�

+ �0c�qy�
. �A1�

The qy integral is divergent in the ultraviolet region. Impos-
ing a cutoff � we find �for small ��

� f =
ivF0

4�2�0c


�

sgn�� − ��ln
�

�
. �A2�

The � integral can now be done and yields the result quoted
in Eq. �17�.

Now consider the spinon self-energy at low frequencies in
the metallic phase. The necessary modification to the gauge
propagator was discussed in Sec. III. The self-energy is then
given by Eq. �A1� but with the modified gauge propagator.
The infrared cutoff for the qy integral is now set by ��s

2

rather than �. Thus we get Eq. �17� but with �s
2 replacing �

for the argument of the logarithm.
Finally it is convenient to calculate the difference

� f�� ;�s�−� f�� ;�s=0�. The advantage is that the qy integral
that enters this quantity is both ultraviolet and infrared con-
vergent. So we can scale qy =y�s and write the answer in the
form

� f��;�s� − � f��;�s = 0� = i
�

sgn�� − ��g̃� ck0���
�s

2 �
= ia�g� ck0���

�s
2 � .

Thus the crossover from the critical spinon self-energy to
one characteristic of the Fermi liquid phase happens at an
energy scale ��s

2.

APPENDIX B: CALCULATION OF ELECTRON VERTEX

Here we consider the correction to the c�→b+ f� vertex
at T=0 coming from the exchange of one gauge boson. Let

�K� ,K� f ,k�b� be the momenta of the electron, the spinon, and
the boson, respectively, and �� ,� f ,�b� the corresponding
frequencies. The vertex may be written

V�K� ,K� f,k�b;�,� f,�b���K� − K� f − k�b���� − � f − �b� .

�B1�

In the absence of the gauge field, V=1. The correction V1
due to exchange of one gauge boson is

V1 � 
q� ,�

�v�F . K� b − �v�F . q̂��K� b . q̂��

�D�q� ,��G f�K� f − q� ,� f − �� � Gb�K� b + q� ,�b + �� ,

where D is the gauge propagator, and Gb,f are the spinon and
boson propagators. v�F is a vector normal to the Fermi surface

and of magnitude vF0. For small K� b we will show that V1

�K� b .A� with A� finite as all the other small external momenta
and frequencies go to zero. To that end let us examine the
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integral that determines A� from the equation for V1 above.

We choose K� f =Kfx̂ ,� f =0. Then

A� � 
q� ,�

�v�F − �v�F . q̂�q̂� � D�q� ,��G f�K� f − q� ,− ��

�Gb�+ q� ,�� .

As in the calculation of the self-energy above due to the
presence of the spinon Fermi surface, the important q region
has qx�qy

2 so that �qx�� �qy�. Then q̂ is nearly perpendicular

to vF so that �v�F− �v�F . q̂�q̂� can be replaced by v�F so that A�

points along x̂. Further, we may replace �q� in the boson and
gauge propagators by �qy�. Then we may do the qx integral to
get

Ax � i
�,qy

� sgn�− ��
k0���
�qy�

+ �0c�qy�
� 1

���b + ��2 + c2qy
2�2−�/2 .

�B2�

Clearly Ax��b=0�=0. For small �b the integrals can be
evaluated to show that Ax� i sgn��b���b��. Thus the vertex

correction V1�k�b .A� goes to zero for small boson momenta
and can be ignored in the scaling limit.
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