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A time-dependent approach is used to explore inelastic effects during electron transport through few-level
systems. We study a tight-binding chain with one and two sites connected to vibrations. This simple but
transparent model gives insight about inelastic effects, their meaning, and the approximations currently used to
treat them. Our time-dependent approach allows us to trace back the time sequence of vibrational excitation
and electronic interference, the vibrationally introduced time delay, and the electronic phase shift. We explore
a full range of parameters going from weak to strong electron-vibration coupling, from tunneling to contact,
and from one-vibration description to the need of including all vibrations for a correct description of inelastic
effects in transport. We explore the validity of single-site resonant models as well as its extension to more sites
via molecular orbitals and the conditions under which multiorbital and multivibrational descriptions cannot be
simplified. We explain the physical meaning of the spectral features in the second derivative of the electron
current with respect to the bias voltage. This permits us to nuance the meaning of the energy value of dips and
peaks. Finally, we show that finite-band effects lead to electron backscattering off the molecular vibrations in
the regime of high-conductance, although the drop in conductance at the vibrational threshold is rather due to
the rapid variation of the vibronic density of states.
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I. INTRODUCTION

The importance of inelastic effects in electronic transport
in molecular junctions is widely recognized and it is a rich
active research field. Several recent reviews on the topic give
a clear idea of its breadth.1,2 Advanced new experimental
techniques show that electrons transport through a few-atom
system is strongly dependent on the vibrational degrees of
freedom of the system. As miniaturization decreases device
sizes, the role of atomic vibrations needs to be considered in
the device functionalities. This dependence has been shown
to profoundly alter the device behavior: from new channels
of conduction3 to heating of the junction.4 It is then impor-
tant to understand the role of inelastic effects and the param-
eters that control them.

A large body of research has been devoted to inducing
controlled inelastic effects. A recent review article5 shows
that inelastic effects in a tunneling junction can be used to
chemically analyze the molecules at the junction by inelastic
electron tunneling spectroscopy �IETS�,6 to induce reactions
by displacing atoms,7 and to use molecular conformational
changes as a switch for possible devices.8 In this way, the
scanning tunneling microscope �STM� induces the reaction
and also detects its product; a dramatic example is the modi-
fication and detection of trans-2-butene on Pd �110�.9 The
effect of local vibrations during electron flow has also been
revealed in careful experiments of photon analysis,10 yield-
ing an unprecedented insight in vibrational dynamics. Not
only has the tunneling junction of an STM been used to
explore the coupled electron-vibration dynamics but also
point-contact spectroscopy has been used in molecular
wires,11,12 where the conductance showed drops at the mo-
lecular vibrational onset.

These many experimental results call for important theo-
retical development. Indeed, the past years have seen several

theoretical works spanning most of the experimental sys-
tems: from tunneling inelastic spectra13–15 to point-contact
spectroscopy16–19 and from systematic approaches studying
different parameters20,21 to lowest-order expansion with ab
initio parameters.22,23 A thorough review on methodology
and results can be found in Ref. 2.

A quantitative description of inelastic processes is manda-
tory in order to assess the relevance of the different ingredi-
ents characterizing electron transport on the atomic scale.
Recent developments in ab initio calculations together with
transport calculations permit us to grasp the essential param-
eters and, eventually, produce predictive calculations. Yet,
the typical ab initio-based calculations are on the one hand
heuristics because a well established dynamical theory of
electron transport is yet to come,24 and on the other hand,
they are complex and difficult to interpret. Most ab initio
approaches use ground-state density-functional theory with
nonequilibrium Green’s functions �NEGF� �Refs. 25 and 26�;
this combination is not justified, and the results have the full
complexity of NEGF. As signaled in Ref. 24, new method-
ology to treat quantum transport will be probably based in
time-dependent density-functional theory �TDDFT�. Hence,
time-dependent descriptions may be inherent to electron
transport. Indeed, progress has been made in the resolution
of the transport problem in time-dependent situations.27 Re-
cent results show that it is possible to treat nuclear �semiclas-
sically� and electronic �quantally� degrees of freedom within
TDDFT to treat the nonadiabatic transport problem.28,29 New
developments go a step further in the treatment of correlated
electron-ionic dynamics.30 However, time-dependent meth-
odology can have other benefits beyond its correctness. In
particular, it can be used to develop a physical picture of the
electron diffusion process,31 in this way yielding comple-
mentary information to the more involved NEGF approach.
Time-dependent approaches can also have interesting nu-
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merical behavior. Indeed, electron transport treated with the
short-iterative Lanczos method32 has a quasilinear scaling for
sparse Hamiltonians.

In this paper, we explore inelastic effects in electron trans-
port by means of electronic wave packet propagations in an
idealized atomic-size system. We consider tight-binding
chains connected to one and two vibrating electronic sites.
These vibrating sites can hold one and two nuclear modes
that are coupled to linear order in the nuclear displacement
with the electronic degrees of freedom. Despite the simplic-
ity of this model system, the main one-electron ingredients
are included, and the time resolved solution permits us to
have insight different from the perturbation-theory Green’s
functions results. Similar treatments have already been per-
formed for the case of electron-molecule collisions33,34 and
for inelastic effects in transport.35,36

The calculations presented here are distant from the ex-
perimental situation because the model system is very
simplified and because many-electron problems are absent.
Indeed, recent treatments show the richness of effects asso-
ciated with the many-electron aspects of the problem,37 as
well as the nonequilibrium many-phonon problem.38,39 De-
spite the absence of these very interesting ingredients of in-
elastic transport, our calculations can help in understanding
inelastic effects because there are situations in which one-
electron transport is justified even in the presence of inelastic
effects.40 To a certain degree, our calculations are equivalent
and complementary to those of Ness,41 the main difference
being that a time-dependent approach is adopted in the
present study.

II. TIME-DEPENDENT WAVE PACKET PROPAGATION

Stationary electron transport does not need a time-
dependent description. However, insight on vibrational exci-
tation processes during the current flow can be gained by
time-dependent calculations. Numerically, a time-dependent
description can benefit from the quasilinear scaling using
sparse Hamiltonians. As in stationary descriptions, the bottle-
neck of the calculation lies in the matrix-times-vector prod-
uct of the Hamiltonian acting on a system’s vector. Hence, a
time-dependent approach can yield especial insight in the
actual transport process in a realistic nanoscale system by
using a localized basis set that leads to a sparse Hamiltonian.
This strategy seems to be particularly appealing for the de-
scription of conduction in nanowires42 and nanotubes.43 In
this section, we explore the general time-dependent method-
ology using wave packets, beyond the Kubo linear theory in
Refs. 42 and 43.

A particularly interesting time-dependent approach to
have information on the full electronic trajectory is the short-
iterative Lanczos �SIL� wave packet propagation.32 The
initial-value problem is solved by applying the evolution op-
erator to the initial wave function so that the solution reads
��t�=e−iHt��0�, where H is the Hamiltonian of the system
under consideration �atomic units are used throughout, �
=m=e=1, unless otherwise specified�. The use of this equa-
tion is inconvenient in the case of large matrix dimensions
because it implies a diagonalization. Instead, we prefer to use

a numerical approximation which consists in successive in-
finitesimal evolutions of the wave function, ��t+�t�
=e−i�tH��t�. In order to have an efficient implementation,
the SIL method truncates the Hilbert space to a subspace
spanned by a few vectors. The computation of this truncated
subspace is the bottleneck of the calculation because the
matrix-time-vector product to generate the subspace is per-
formed on the total dimension of the problem. Despite the
truncation, the richness of the full Hamiltonian spectrum is
recovered by repeating this operation for all the different
time steps and propagating in this way the initial wave
packet.

Let �1 be a starting vector; the Lanczos propagation
method consists in the construction of a Lanczos matrix fol-
lowing the recursion relation,44,45

� j+1� j+1 = H� j − � j� j − � j� j−1, j � 1, �1�

where � j are the new diagonal matrix elements of the new
tridiagonal matrix and � j are the new upper and lower diag-
onal matrix elements. Since the recurrence relation is started
by �1, initial wave function, ��t=0�, then �1=0 and �0
=0. The vectors � j are called Krylov vectors and define the
Krylov space of order l by spanning the subspace given by
�� j�, namely,

Kl = Span��1,H�1, . . . ,Hl−1�1� . �2�

The Krylov vectors are orthogonal by construction, they
may be normalized, and they define thus a basis set in which
the Hamiltonian can be expressed. In this basis, the Hamil-
tonian is tridiagonal. Additionally, the order l can be much
lower than the initial matrix dimensions. Consequently, the
Lanczos matrix can be easily diagonalized using conven-
tional algorithms. Regarding the Krylov vectors, it is known
that for relatively large values of l, their orthogonality can be
lost; this is the reason why we have set sufficiently small
time steps to keep a rather small order l �l	9�. Its value can
be changed at each step in order to optimize the performance
of the calculation, lowering the computational cost as l de-
creases. An excellent description of this dynamical control of
the accuracy of the Lanczos propagation method can be
found in Ref. 46.

Another important feature is the undesirable effects pro-
voked by the finite size of the propagation grid. To eliminate
artificial reflections of the wave packet at the boundaries, we
use a parabolic absorbing potential. In order to account for
the errors which may be introduced by the reflections at the
boundaries in the presence of the absorbing potential, we
calculated the reflection coefficient with a broad wave
packet. We found that less than 0.01% of the wave packet
was reflected at any energy.

To compute the energy-resolved transmission or reflection
coefficients we use the virtual detector technique,47 which
consists in the evaluation of the wave function of some sites
after the region where the electron-vibration interaction takes
place. By a time-to-energy Fourier transform, transmission
or reflection coefficients are obtained. In the inelastic case,
this should be done for each vibrational state of the total
wave function. Hence, for a one-dimensional �1D� tight-
binding chain, the partial transmission, Tn�
�, is given by
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Tn�
� =
��d,n

int �
��2

��d,0
bare�
��2

, �3�

where we have assumed zero temperature and an initial wave
packet in the vibrational ground state, n=0. �d,n

int �
� is the
energy-resolved wave function in the vibrational state n after
the interacting region. The detector has been located at site d.
�d,0

bare�
� is the wave function computed with the same virtual
detector considering a bare Hamiltonian containing no vibra-
tional degrees of freedom or elastic defects.

The initial electronic wave function is a Gaussian function
of width � and velocity k expressed in site units since the
wave packet is given in the localized basis set of the tight-
binding chain. Hence, the electronic part of the initial wave
packet is

�d,0�t = 0� = exp�− ��d − d0

�
�2

+ ik�d − d0��	 , �4�

where d is an integer number referring to the dth chain site.
Initially, the wave packet is centered about the site d0. The
second subindex, 0, refers to the vibrator state, as above. In
this calculation, we use an arbitrary normalization since we
are interested in quantities such as the transmission 
Eq. �3��
and hence arbitrary constants factor out.

To analyze quantities such as total transmissions, espe-
cially for nontrivial Hamiltonians which may have two or
more vibrating electronic states, we have computed the den-
sity of states projected on any state, for instance, on any
linear combination of the tight-binding states. Consider a
state �� ,n�, with � as a particular electronic state and n its
vibrational state, evolving with Hamiltonian H. The density
of states projected on �� ,n� reads48

�
� = 
−�

� dt

2�
ei
t��,n�e−iHt��,n� . �5�

III. PHYSICAL MODEL

The Fröhlich-Holstein model49 is used to represent the
combined electron-vibration system: the electron-vibration
coupling is assumed to be linear in the normal-mode coordi-
nates. If we assume only one mode of vibration and a single
site, the Hamiltonian reads

H = �0c0
†c0 + �

k,i
�k,ick,i

† ck,i + �
k,i

tk,i�ck,i
† ck+1,i + ck+1,i

† ck,i�

+ �
k,i

tk,i�ck,i
† c0 + c0

†ck,i� + �b†b + Mc0
†c0�b† + b� , �6�

where ck
† and ck are the operators which create and an elec-

tron in state k. Similarly, b† and b are the operators that
create and a quantum of energy � in the considered vibra-
tional mode. The first term in the Hamiltonian �7� refers to
the site where the interaction takes place; it has an on-site
energy of �0. The second describes the energy of site k of
chain i. For simplicity we will be dealing with only two
chains �i=L ,R: left and right�. The third term describes the
couplings among sites of chain i. Here, we just consider

nearest neighbors. The fourth term is the coupling between
the two semi-infinite chains and the state of energy �0. The
fifth term is the energy of the harmonic oscillator. Finally, the
last term describes the electron-phonon interaction. In this
single-state single-mode model, M is only a scalar which
represents the strength of the interaction. It is called the
electron-phonon coupling. In the present work, we have ex-
plored both an electronic single site coupled to vibrations
and a double site. In the latter case, M will be a 2�2 matrix,
as presented in Sec. V.

Using a tensorial product description of the electronic and
nuclear coordinates, the full Hamiltonian can be expressed in
matrix form,

H =�
H�0�

M̂ 0

M̂ H�1� �2M̂ 0

0 �2M̂ H�2� �3M̂ 0

0 �3M̂ H�3� �4M̂ 0

� � �

0 �N − 1M̂ H�N−1�

� ,

�7�

where we have used a block representation in the vibrational
basis ��n��. The diagonal elements are electronic Hamilto-
nians, which define the propagation of a wave packet in a
vibrational subspace. For clarity we give their tight-binding
representation,

H�n� =�
� � �

0 t n� t 0

0 t n� Tl 0

0 Tl �0 + n� Tr 0

0 Tr n� t 0

0 t n� t 0

� � �

� ,

�8�

where n labels a particular vibrational state in the harmonic
approximation. t are off-diagonal matrix elements which
connect the nearest sites inside the left and right chains. Tl
and Tr play the same role as t; they connect the chains to the
site which has on-site energy �0. The diagonal term n� ac-
counts for the energy the electron must exchange with the
vibrational degrees of freedom of the system. If it propagates
from one vibrational state to another, it must lose or gain �,
the energy quantum of the vibration.

The matrices M̂ in Eq. �7� couple the Hamiltonians H�n�

in the different vibrational subspaces. In the case of a single-

site impurity, M̂ is essentially a sparse matrix with the same
dimensions as H�n�, where only one single element is non-
zero, the one connecting the diagonal matrix elements of
energy �0+n� and �0+ �n+1��. In Hamiltonian �7�, the fac-

tors that multiply M̂ come from the matrix representation of
the operators; they correspond to the factors which appear in
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the well-known relations b†�n�=�n+1�n+1� and b�n�=�n�n
−1�. We note that Hamiltonian �7� is truncated; the number
of vibrations that are considered in the calculation is N in this
example. This number N may be sufficiently large to repre-
sent suitably the vibrational space. A detailed study of the
calculation is presented hereafter.

Let us consider a molecule between two electrodes mod-
eled by a single state connected to two chains. In this single-
site case, Meir and Wingreen50 showed that the current can
be expressed as follows:

J = −
1

�
 
fL�
� − fR�
��Im�tr
��
�Gr�
���d
 , �9�

where � is defined as a function of the couplings to the right
and left leads, �=

�R�L

�R+�L
. Gr is the retarded Green’s function

of the molecule, and fL�R� is the Fermi distribution of the left
�right� lead. In the case where the couplings to the leads only
differ by a constant factor, �, such that �L=��R, � is auto-
matically well defined. This is satisfied in the wide-band ap-
proximation. In the case of a single site, ��
� is always
defined. A complete discussion of this approximation can be
found in Ref. 51.

The equation above can be viewed as the integral of a
quantity that we identify as a transmission, multiplied by an
energy window given by the difference of the Fermi distri-
butions of the leads, meaning that a current will flow if both
the transmission is nonzero and the voltage applied between
the electrodes is sufficiently large. Following the derivation
by Ness41 at the zero-temperature limit, the transmission
reads

Im�tr
��
�Gr�
��� = ��
�Im G00
r , �10�

where G00
r is the projection of the Green’s function in the n

=0 vibrational subspace, G00
r = �0�Gr�0�. This means that the

transmission is related to the projected density of states
�PDOS� 
Eq. �5�� in such a way that if we consider the wide-
band approximation, where the coupling � is independent of
energy, the transmission is proportional to the density of
states projected in the n=0 subspace. By using the optical
theorem one can explicitly retrieve the vibrationally excited
states in the inelastic current.41

In the case of the wave packet calculation, we can extend
these equations for the calculation of the electronic current
�see the Appendix�. We approximate the conductance assum-
ing that the Fermi level only enters to define possible final
electronic states �otherwise the calculation is fully one elec-
tron, and in general we will not consider a Fermi level�,

��
� =
1

�
�

n

Tn�
�
fL�
 + n�� + fR�n� − 
�� , �11�

where the factor 1
� is the conductance quantum in atomic

units. The terms between brackets are introduced to account
for the opening of vibrational channels since they contain the
Fermi distribution functions of the left electrode, fL, and the
right one, fR, at zero-bias voltage in the present case �see the
Appendix�. Actually, when electrons do not have sufficient
energy to deposit it into the vibrational degrees of freedom of

the system, only T0�
� is to be considered in the conduc-
tance. The same holds if the energy of the incident electron is
sufficient to excite one vibration; in this case we consider the
sum of T0�
� and T1�
�. Nevertheless, the calculation should
be performed with a sufficiently high value of n in order to
take into account the influence of closed channels in the con-
ductance. Finally, the current as a function of the voltage, V,
can be written as the integral over energy of the conductance,

J�V� = 
−�

�

��
�
fL�
� − fR�
��d
 . �12�

The terms between brackets ensures that the transmitted elec-
trons go from occupied states to empty ones where the volt-
age dependence is included.

The treatment presented here is complementary of the one
by Ness.41 Indeed, the physical model is the same one; the
difference is the solution method. As in the case of Ref. 41
the present approach is single electron, neglecting both elec-
tron occupation and electron-electron correlation effects. The
same physical model has also been analyzed and treated with
other methods52–58 and has stirred a lot of interest in the
literature related to inelastic effects in electron transport.59

IV. SINGLE-SITE RESONANT MODEL RESULTS

Let us assume a single state coupled to the two 1D tight-
binding chains of the above model. Figure 1 shows the re-
sults of a wave packet propagation. Figure 1�a� is the elastic
wave packet, n=0, because we assume that no vibration is
initially excited in the system and the temperature is zero.
The present system is composed two 1D electrodes sym-
metrically coupled to the vibrating site. Hence, in Fig. 1�b�
we see that only the reflected wave packet is different from
the transmitted one in the elastic channel, n=0, while it is
identical for the inelastic channels: the electron reaches the
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0.6

|Ψ
|2

(a)

500 600 700 800
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|Ψ
|2

n = 0

n = 1

n = 3

n = 4(b)

n = 2

FIG. 1. �Color online� �a� Spatial dependence for the squared
modulus of the electronic wave function for a fixed vibrational state
n, at different times, arbitrarily shifted for representation purposes.
Case �a� is the elastic propagation of the wave packet, n=0, where
n is the vibrational quantum number. Symmetric hopping matrix
elements, TL=TR, have been used. In �b� the wave packet is repre-
sented at the same instant in time for different vibrational states n.
The wave packet is initially propagated from the left electrode in
the vibrational ground state, n=0. The calculations are performed at
zero temperature. When the wave packet starts populating the site
number 600 
marked with a cross in �a��, the different vibrational
states are populated �b�, and the vibrationally excited wave packet
starts propagating in both directions, indistinctly, due to the sym-
metric electronic couplings.
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active site and populates the ladder of excited vibrational
states. In each state the electron has a finite and identical left
and right transmissions.

A simple-minded picture of the structure appearing in the
transmission as a function of incident electron energy could
be that there is a series of N resonances displaced by the
phonon energy, in agreement with the scheme of Fig. 2. At a
given initial electron energy, the wave packet probes the
resonant electron site if the energy is within n� of the reso-
nant site energy. The result is a series of equidistant peaks
spaced by �. This is plotted in Fig. 3�a�. There, the trans-
mission for the single electronic state without electron-
vibration coupling is depicted by a dotted line, and the full
line corresponds to the case when the electron-vibration cou-
pling is included.

However, the physical picture is more complex than just a
series of equidistant resonances. In order to understand the
appearance of the vibrational sidebands we divide the trans-
mission according to the final state of the vibrator 
Fig. 3�b��
This yields information on the vibrational state once the
wave packet has propagated through the resonant site. The
result is that each transmission curve for a well-defined final
vibrator state displays a similarly rich peak structure. The
above picture 
Fig. 2� has to be changed: there are complex
vibrational pathways, in which different vibrational states are
probed before the system is left in a singly well-defined vi-
brational state. Given the coherence of the electron propaga-
tion, the different pathways can interfere and will give rise to
Fano line shapes in the transmission function.60

A. Vibrational state population sequence: Electron coherence

Wave packet dynamics can probe the different structures
appearing in the transmission function in order to yield in-
formation on the actual interference process. Let us take a
vibrational ground state, broad electronic wave packet ener-
getically centered about the first maximum of the full trans-
mission function 
Fig. 3�. A spatially broad wave packet

large � in Eq. �4�� is almost a plane wave and synonymous
of a monochromatic packet; hence we can be sure to probe
only the structure of the first maximum.

Figure 4 shows the modulus square of the electronic wave
function for the first three vibrational levels on the vibrating
site as a function of time. We first notice that the population
of the vibrations is sequential: the peaks are slightly shifted
in time as n increases. The linear electron-vibration coupling
forces this sequential population since n is changed in steps
of one quantum of vibration 
Eq. �7��. The population shows
a time modulation, in the present case, we see that the modu-
lation frequency of the n=1 wave packet is roughly twice the
modulation of the ground state and of n=2. This is easily
explained by considering populating and depopulating the
n=1 level by populating n=0 and n=2. After a certain time
the n=2 level can depopulate again in n=1 as well as n=0.
Despite the simplicity of the electron-vibration coupling and
the electronic model, the final population dynamics depend
on the wave packet energy, the strength of the vibrational
coupling, and the electron lifetime at the site, leading to non-

FIG. 2. Vibrational energy-level scheme: The electronic wave
packet propagates from left to right in the n=0 vibrational ground
state. When the electron wave packet populates the impurity site
connected to the vibrator, the population of n=1, n=2, . . ., be-
comes different from zero and the wave packet propagates in both
directions. The transmitted wave packet permits us to compute the
transmission resolved in n, Tn 
Eq. �3��. The transmitted wave
packet can be assigned to a vibrational channel. The n=0 channel is
the elastic one, which can have contributions from all channels due
to the excitation and deexcitation of the vibration during the wave
packet propagation. This leads to a rich vibronic structure in the
electron transmission even for the elastic channel.

-0.8 -0.7 -0.6 -0.5
Initial Electron Energy (eV)

0

0.2

0.4

0.6

0.8

1

T
ra

ns
m

is
si

on

(a)

-0.8 -0.7 -0.6 -0.5
Initial Electron Energy (eV)

0

0.05

0.1

0.15

0.2

0.25

0.3

T
ra

n
sm

is
si

o
n

n=0
n=1
n=2

(b)

FIG. 3. �a� Electron transmission for two 1D tight-binding elec-
trodes connected by a single electronic site with electron-vibration
coupling �full line� and in its absence �dashed line�. �b� Transmis-
sion decomposition in the final vibrational state of the single site, Tn


Eq. �3��, where n is the number of excited vibrational quanta. The
elastic transmission is the n=0 curve in �b�. The parameters are
�0=−0.7 eV, ��=0.05 eV, the electron-vibration coupling is M
=0.04 eV, and the resonance width is set by the hopping matrix
elements Tl=Tr=0.05 eV. The bandwidth is 2 eV.
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FIG. 4. Time dependence for the squared modulus of the elec-
tronic wave function at the site connected to the vibrator. In case �a�
an almost monochromatic wave packet has been centered at the
energy of the lowest peak of Fig. 3�b�. In the case �b� the wave
packet has been centered at the second peak, where the transmission
in n=1 is smaller than the transmission in n=2. Parameters are the
same as for Fig. 3.
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trivial dynamics. The lifetime of the site is fixed by the hop-
ping matrix elements Tl and Tr 
Eq. �8��.

The Fano profile characterizing the transmission functions

Fig. 3� can then be explained by the interference of several
of these vibrational pathways. Indeed, asymmetric Fano pro-
files are the rule in Fig. 3�b�. For the case of the total trans-
mission, the addition over final vibrational states smear out
the different profiles, rendering more difficult the determina-
tion of an asymmetric Fano profile in the peak sequence.

B. Time delay and phase shifts

Spatially narrow wave packets 
small � in Eq. �4�� con-
tain most of the energy components needed to span the spec-
tral region of interest, i.e., the main peaks of Fig. 3. The
Fourier coefficients in the energy domain can be evaluated to
obtain the phase of each component and hence the phase
shift between Fourier components. The derivative of the
phase shift with respect to energy yields the time delay of the
Fourier component in the wave packet.33 Hence, we can ana-
lyze the effect of the vibrational excitation of the electronic
site by means of the time delay imposed on the propagating
wave packet.

Figure 5�a� shows the phase shift for the elastic compo-
nent of the wave packet �the n=0 component�. The full phase
shift over all of the vibronic peaks is �; this is the phase shift
of the electronic resonance. The phase shift of each indi-
vidual contribution to the transmission is more complex. We
see that the phase shift varies rapidly after each maximum,
very much indicating a suite of Breit-Wigner-type reso-
nances. Indeed, the phase shift � for a Breit-Wigner reso-
nance of FWHM � centered at E0 is given by33

� = − tan−1� �

2�E − E0�� .

The time delay, �, is given by the energy derivative33 of the
phase �,

� =
d�

dE
.

In the case of a single Breit-Wigner resonance, the time de-
lay is then

� =
�/2

�E − E0�2 + ��/2�2 .

On resonance the time delay is just �=2 /�, yielding direct
information on the resonance width, �. In the present case,
the time delay 
Fig. 5�b�� gives some definite interpretation:
the time delay is maximum once the wave packet has encom-
passed one of the vibronic resonances. Hence, just above the
resonance, the electron is deterred in its propagation by in-
teraction with the vibration. The vibration contributes to the
partial width of the electronic resonance; however the total
width is independent of the vibration.54 A spatially narrow
wave packet will have the phase shift and time delay of an
electronic resonance regardless of the existence or not of the
vibrations. We also find negative time delays, which corre-
spond to drops in the phase shift. Electrons can hence be
expelled from the resonance more easily in the presence of
vibrations at certain incident energies. This behavior is due
to the interference between two consecutive vibronic reso-
nances. As emphasized in Ref. 33, the time delay has to be
interpreted with care in the case of a multichannel problem
such as the present one. The time dependence is indeed com-
plex and the time delay is just a number that cannot summa-
rize the full interference pattern. The interferences among
vibrational paths are ubiquitous in all present results. Their
effects can be seen in the Fano-type line shapes of the trans-
mission function �Fig. 3�, in the oscillating population of
vibrational states with time �Fig. 4�, and in the rapid changes
in the phase shifts and in the negative time delays �Fig. 5�.

C. Time scales

To develop an understanding of the vibrational excitation
process, many authors resort to comparing the different ti-
mescales in play.1,2,61 This is a very appealing approach be-
cause it permits us to rationalize the excitation process and
the excitation regime of different systems. Let us define �mol
as the lifetime of an electron in the molecule, which is given
by the inverse of the resonance width, 1 /�. Typically, for
chemisorbed molecules, ��1–3 eV, which means electron
lifetimes in the subfemtosecond range. In order to estimate
the change in conductance due to an inelastic process, we
can compute the inelastic fraction of electrons passing by the
molecule. This can be estimated by computing the ratio of
the excitation time to the first quantum of vibration, �n=1, and
the lifetime of the electron in the molecule, �mol. Let us es-
timate the magnitude of the electron-vibration coupling, M,
to attain a measurable change in conductance �larger than
1%�. This is the regime where perturbation theory is valid. In
this case, the excitation process has been classified as sudden
in the electron-molecule collisions literature.62

In a sudden process, the molecule is assumed to be very
briefly in its negative-ion potential-energy surface �PES�.
This can be indeed very brief as has been said above. As in
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FIG. 5. �a� Electronic phase shift and �b� time delay for the
elastic channel, n=0, for the case of Fig. 3�b�. The phase shift over
the full resonant structure amounts to �, but the vibrational sub-
structure leads to fast variations of the phase, showing the resonant
nature of the vibronic peaks of Fig. 3. The time delay is maximum
away from each resonance, but it can change signs on resonance,
depending on the order of the vibronic peak. This delay/acceleration
process is related to the interference path inside the vibrator. Param-
eters are the same as for Fig. 3.
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Ref. 3, let us assume that the PES is basically parabolic but
displaced with respect to the neutral PES,64

E− =
1

2
K�Q − Q−�2, �13�

where K is the spring constant of the PES related to the mode
frequency by K=��2, where � is some reduced mass �this is
easily generalized to the case of multi nuclear modes�. Here,
Q− is the displaced center of the negative PES. When the
electron flows through the molecule, the molecule is sud-
denly in its negative PES. Hence, the nuclei experience a
force given by

F = − � �E−

�Q
�

Q=0
.

Then, they acquire a speed, v, of the order of

v � −
1

�
� �E−

�Q
�

Q=0
�mol,

and �mol�1 /�. Hence,

v �
KQ−

��
,

where KQ− is the electron-vibration linear coupling,
M /�Qrms, of Eq. �7� with �Qrms=1 /�2�� coming from the
second quantization of the displacement Q. The speed gained
by the nuclei at an excitation of one quantum of vibration
near Q=0 is vM =�2� /�. In this way, we find an upper limit
for �,

� 	 �M� . �14�

This simple estimation shows that for strong electron-
vibration coupling, vibrational excitation is unavoidable,
where strong means larger than the molecule-electrode cou-
pling.

Weak coupling is then the regime when �M���. The
natural perturbation parameter is then �M� /�. We can use
Fermi’s golden rule to estimate the vibrational excitation
rate,63

1

�n=1
� 4

�M�2

�
.

Assuming typical IETS branching ratios �mol /�n=1�10−2

leads to

�M�2

�2 	
1

400
.

Therefore the coupling becomes �M��� /200. For chemi-
sorbed molecules this is in the range of 0.01 eV. This cou-
pling is easily found in a large class of molecules, and there-
fore IETS is a feasible spectroscopy. This is a simple
estimation showing that rather small M ��0.01 eV� can
have a measurable change in conductance for molecules ad-
sorbed on metallic leads.

One more time scale is fixed by the vibrational frequency,
�. As discussed in Ref. 33, there are three basic regimes that
can be distinguished.

�1� ��� the negative ion is long lived and the molecule
can vibrate in the new state.

�2� ��� the negative ion is short lived and we are in the
above sudden regime.

�3� ��� strong interference effects appear due to the
nuclear motion.

The time scale given by � defines then the type of
electron-vibration interaction that will result. In the first case,
the electron has ample time to interact with all the nuclear
degrees of freedom and depending on the electron-vibration
coupling, M, vibronic signatures can appear. This has been
shown in the case of STM studies of electronic states on
surfaces3,65 with a band gap leading to small �. The second
case corresponds to the IETS case discussed above. The third
case has been studied in the gas phase �see, for example, Ref.
33� but we are not aware of any report on the consequent
boomerang effect in the electron-transport regime.

D. Finite-band effects

The wide-band approximation simplifies the expression
for the transmission that becomes analytical.54 One of the
results of the wide-band approximation is that the transmis-
sion function and the spectral function or PDOS 
Eq. �5��
have the same behavior with the electron energy. This is
definitely not the case when finite-band effects are consid-
ered; indeed, the energy dependence of the coupling to the
electrodes leads the transmission function to have a different
energy behavior than the site spectral function 
Eq. �10��.
When the initial level �0 is near the center of the band, the
conditions for the wide-band limit are easily attained. As the
level approaches one of the band edges, � becomes strongly
dependent on energy as well as the center of the transmission
distribution �Fig. 3�.

One of the apparent features is that the transmission peaks
become thinner and better defined. As �0 approaches the
band edge, many inelastic channels start closing because the
final electron energy falls out of the electron band, leading to
a substantial decrease in the transmission peaks. This is
clearly seen in Fig. 6. The parameters of the transmission
calculated in Fig. 6 are exactly the same as for Fig. 3�a�
except that �0 is −0.95 eV instead of −0.7 eV. The bottom
of the band is at −1 eV and the quantum of vibration is
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FIG. 6. Transmission function for the same system of Fig. 3
where �0 is −0.95 eV instead of −0.7 eV. The closing of channels
due to the band edge leads to sharper and singular-like transmission
peaks. The band edge is at −1.0 eV.
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��=0.05 eV. The singular aspect of the peaks is enhanced
by the 1D character of the electrodes. Indeed, when the final
energy of the electron approaches the bottom of the band a
van Hove singularity appears in the density of states making
the transmission more singular. In more realistic cases with
three-dimensional �3D� electrodes we expect less singular
transmission peaks. For an electron resonance approaching
the top of the band, the situation is rather different. Here, the
higher vibronic side bands disappear but the n remains the
same because no channel is closed, leading to low-energy
side bands of the same width as for the case of the resonance
at the center of the band.

E. Dynamical polaron shift

The polaron shift is defined as the energy displacement of
the first peak in Fig. 3�a� with respect to the dashed-line
peak. The polaron shift is related to the appearance of a
vibronic structure. As we showed above, in the time-scale
discussion, two conditions need be satisfied. Namely, M
must be sizable and ���. This leads to considering37 the
parameter p=M2 / ����. When p�1 the polaron shift be-
comes measurable.

Hyldgaard et al.37 showed that the polaron shift critically
depends on the initial occupation of the vibrating electron
site. When the electron site is occupied, the transmission
function shows a main peak displaced by −3M2 /�. At half-
filling the displacement is −2M2 /� and for an empty site the
polaron shift is −M2 /�.

We can give a direct interpretation of the polaron shift by
using the above parabolic model 
Eq. �13�� Following the
above discussion, the polaron shift for the empty site is
−M2 /� which is equal to − 1

2KQ−
2. The neutral PES is given

by 1
2KQ2; hence the polaron shift is exactly the energy dif-

ference between the neutral PES and the negative one at the
nuclear coordinate at which electron capture takes place.
Thus, the polaron shift is the energy gain in the formation of
the negative intermediate because the electron-vibration cou-
pling permits the electron to probe the negative-ion PES. In
the absence of coupling, the nuclear coordinates do not
evolve, and the negative-ion resonance is just a simple
Lorentzian.

In order to probe the polaron peak, the nuclear wave func-
tions in the two ground states �neutral and negative� need to
overlap. The overlap is large at weak electron-vibration cou-
pling; hence a well-defined peak appears, just shifted by the
energy gain. As the coupling increases, the overlap dimin-
ishes, leading to a decrease in the polaron peak. In the limit
of strong coupling, the polaron peak is basically zero and a
rich structure of evenly distributed peaks of the negative-ion
vibrational states is apparent with an envelop.65,66

The polaron shift is a good test for the numerical calcu-
lations with the number of vibrational states included in the
expansion of Eq. �7�. Figure 7 shows the of the polaron shift
with the number N of phonons included in the calculation. A
correct value is obtained ��−0.038 eV� at about N=5
phonons. Following the results of the calculation of Hyld-
gaard et al.37 for an empty state, the polaron shift would be
−0.032 eV with our parameters �M =0.04 eV and �
=0.05 eV�

We also show in Fig. 7 the interpeak distance as a relevant
quantity regarding the calculation. We observe that the peaks
of lower energy tend to converge with less phonons than the
peaks of higher energy, which need a higher number of
phonons. Trivially, higher-order peaks need higher N; other-
wise they may not even appear in the result.

The polaron shift is also very sensitive to the different
approximations that are used when evaluating inelastic ef-
fects in electron transport. Indeed, the self-consistent Born
approximation �SCBA� �Ref. 37� yields wrong polaron
shifts. Such a study is performed in Ref. 41. There, it is
shown that the SCBA is equivalent to neglecting the �n fac-
tors of Eq. �7�; this leads to wrong interpeak distances. Nev-
ertheless, the SCBA captures much of the physics of inelastic
processes and is an all-order theory, becoming reliable
enough and very interesting for the evaluation of inelastic
processes in a wide range of problems. In the particular case
of weak electron-vibration coupling, N�1 and the SCBA is
virtually exact.

V. TWO-SITE RESONANT MODEL RESULTS

Most of the literature devoted to transport in the presence
of electron-vibration coupling is based on the single-site
model. However, Bringer et al.35 showed that the single-site
case has a behavior that cannot be extended to more realistic
systems in which several electronic states are coupled with
vibrations. Here, we will analyze when one can reduce the
problem to the single-site case and when not. In the same
way, we will show that when several vibrations are involved,
neglecting some of the vibrations can lead to qualitatively
wrong results.

A. Two sites and one vibration

Our previous one-site model is extended to have two elec-
tronic sites connected to a vibration. This model has been
recently explored in the context of ab initio based calcula-
tions of inelastic transport between two pyramidal
electrodes.67 The simplified two-site model permits us to un-
derstand the more complex ab initio results. The model is
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FIG. 7. �Color online� Convergence in the polaron shift and
interpeak distance with the number of vibrational states included in
the calculation. The polaron shift is the displacement of the first
peak with respect to the resonance without electron-vibration cou-
pling, dashed lines in Fig. 3�a�. It is a critical measurement of the
strength of the electron-vibration coupling, and hence, sensitive to
the number of phonons. Also sensitive is the interpeak distance that
is equal to �. Parameters are the same as for Fig. 3.
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given again by Hamiltonians �7� and �8�, where �0 and M are
2�2 matrices.

Here, one only vibration is assumed to interact with the
electron flow. In the case of weak coupling,67 this assumption
is justified because Eq. �7� is truncated to the first phonon of
each mode and the inelastic effects of each mode are sepa-
rable. In Sec. V B, we will see that when in the number of
phonons needs more than one excited vibration, all of the
vibrations need to be considered at once.

In this one-dimensional model, there are two only pos-
sible modes.67 We will call them the center-of-mass mode
�c.m.� and the anti-bond-length mode �ABL�. The c.m. mode
means that both sites displace in phase; hence the electron-
vibration coupling matrix have nonzero onsite elements �the
diagonal�,

MCM = �m3 0

0 − m3
� , �15�

and the second element is negative in order to account for the
sign of the displacement of each site. In the ABL mode, the
sites are moving out of phase, corresponding to an internal
stretch mode. Hence, the electron-vibration matrix becomes

MABL = �m1 m2

m2 m1
� . �16�

Figure 8 shows the transmission for the ABL and c.m.
modes, independently computed and together �to be analyzed
in Sec. V B�. These figures show series of vibronic peaks
difficult to analyze.

In order to analyze the electron transmission 
Fig. 8�, it is
more convenient to use PDOS of the full vibronic structure
on molecular orbitals, Fig. 9�a� for the ABL mode and Fig.
9�b� for the c.m. mode. These orbitals are linear combina-
tions of the two sites,

��� =�1

2
��L� + �R�� ,

and

���� =�1

2
��L� − �R�� ,

that diagonalize the uncoupled two-site Hamiltonian with ei-
genvalues �0− tmol and �0+ tmol, respectively, where �0 is the
level energy for each site and tmol is the hopping matrix
element between sites.

In this new basis set, the above coupling matrices 
Eq.
�15� and �16�� become

MCM = � 0 m3

m3 0
� , �17�

and

MABL = �m1 + m2 0

0 m1 − m2
� �18�

that hint at the interpretation of the above vibronic peaks. In
the case of the c.m. mode, the �� and � orbitals are coupled
via the vibration, while in the ABL case, the molecular or-
bitals are not mixed by the electron-vibration interaction.
The ABL case can then be interpreted as two single-sites
connected to a vibration, and hence two vibronic sequences
are associated with the spectral feature of �� at −0.4 eV and
the spectral feature of � at −0.8 eV. Since the effective
electron-vibration coupling 
Eq. �18�� is m1+m2 for �, the
number of peaks and the general vibronic sequence corre-
sponds to stronger coupling than the vibronic sequence of the
�� peak. This is clearly seen in the PDOS on �� and � �Fig.
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FIG. 8. �Color online� Electron transmission as a function of
incident energy for the two-site problem in semilogarithmic scale.
Two different modes are consider: the ABL in full line with dots
and the c.m. in dashed lines. These two calculations are performed
independently; however when both modes are simultaneously con-
sidered the transmission function is different and becomes the full
line marked by ABL and c.m. modes. We see that no direct assign-
ments of the transmission peaks can be performed and the vibronic
structure grows in complexity beyond a superposition of transmis-
sion peaks from both modes. Following the notation in the text, the
parameters used in these calculations are the frequencies �c.m.

=�ABL=0.05 eV, and the electron-vibration matrix elements m1

=0.03 eV, m2=0.01 eV, and m3=0.06 eV, the internal hopping
matrix elements between the two sites is �=−0.2 eV, and the elec-
trode parameters are as in Fig. 3.
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FIG. 9. PDOS on molecular orbitals: bonding ��� in full line
and anti bonding ���� in dashed lines. The modes are considered
separately in order to analyze the transmission functions of the ABL
mode �full line with dots in Fig. 8� and of the c.m. mode �dashed
line in Fig. 8�. In �a� the vibronic density of states for the ABL
mode is projected onto the two molecular orbitals and in �b� the
vibronic density of states of the c.m. mode. In �a� we see two
distinct series of vibronic peaks corresponding to the bonding and
the antibonding molecular orbitals since the ABL mode does not
couple these molecular orbitals. However �b� shows mixed structure
due to the coupling of molecular orbitals by the c.m. mode.
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9�, where we see that the vibronic sequences with �� and �
characters are energetically localized near the original
molecular-orbital peaks. The c.m. mode mixes �� and �;
hence we obtain vibronic peaks that are shared in the PDOS
over both molecular orbitals.

For small enough couplings, we can estimate the vibronic
structure keeping just n=1 in the vibrational part. Hence we
can diagonalize Hamiltonian �7� for the sites connected to
the vibrations. This can also be expressed by a hybridization
scheme �Fig. 10�. We realize that the new peaks correspond
one to one to the peaks found in the PDOS, and that they
have contributions in different ratios from the �� and � or-
bitals according to the matrix elements of M. Depending on
the magnitude of gM = �

m3

�CM
�2 more or less phonons, n, will be

needed to converge the vibronic sequence,66 and more or less
elements will be included in scheme �Fig. 10�. In order to
obtain the type of diagram �a� or �b�, only knowledge of the
symmetry of the system is required. In the present case,
while the c.m. mode mixes �� and � orbitals efficiently, the
ABL mode does not mix them. Hence, only this last case can
be understood by a single-level model.

It is interesting to study the time dependence of the modu-
lus square of the electronic wave packet at each site depend-
ing on the considered mode. In Fig. 11�a� we see that the
ABL mode leads to population of both sites at the same time,
while in presence of the c.m. mode 
Fig. 11�b��, the popula-
tion sequence of each site is shifted and dependent on time.

In this case, the wave packet has been centered about the
energy �� and its energy span is smaller than the difference
between ��� and ��.

FIG. 10. Hybridization scheme �a� for ABL mode and �b� for
c.m. mode considering only the two first vibrational levels n=0 and
n=1, which generally are not enough to attain convergence, but it
permits us to discuss the physical process. The levels on the left and
right are without electron-vibration coupling, but the right levels are
shifted by one quantum of vibration with respect to the left levels.
The coupled orbitals have a different vibrational state n because
they are mixed by the electron-phonon interaction. It is clearly seen
that in the ABL case, the coupling does not mix the molecular
orbitals between them ��n=0−�n=1 and �n=0

� −�n=1
� �, while in the

c.m. case, the orbitals are mixed ��n=0−�n=1
� and �n=0

� −�n=1�.
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FIG. 11. Population �a� of the ABL mode and �b� of the c.m.
mode on the two different sites that are connected to the vibration
as a function of time �atomic units�. The ABL mode shows the same
population for the two sites as a function of time, while the c.m.
mode presents a time-dependent sequential population.
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FIG. 12. �Color online� Conductance for a model system of two
levels of CO on Cu�100�. In the inset d2I /dV2 is depicted. The
asymmetry in the size of the change in conductance is a conse-
quence of the two-level model. The variation in the conductance
away from the vibrational threshold is due to the energy depen-
dence of the two-level density of states. As can be seen in d2I /dV2,
the variation is small with respect to the inelastic change in conduc-
tance. The parameters used in this calculations are an electrode
internal matrix element hopping t=−0.5 eV, molecule-electrode
hoppings Tr=Tl=−0.02 eV, internal molecular hopping �=
−0.45 eV and level �=0.3 eV, electron-vibration matrix element
m3=0.025 eV, and frequency �=0.03 eV. The zero of energy is at
the center of the electrode band, and it is assumed to coincide with
the Fermi energy.
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FIG. 13. Transmission for a model system of one electronic
level for O2 on Ag �110�. In the inset d2I /dV2 is depicted. The
decrease in d2I /dV2 originates in the change in slope of the trans-
mission due to the vibrational side bands. These results are qualita-
tive since they correspond to a one-electron picture and the hole
contribution is missing. The hole contribution leads to a shoulder
below the main peak and to a peak in d2I /dV2. These side bands
belong to all vibrational channels, in particular, to the elastic one.
Hence, the contribution of the elastic channel alone gives a decrease
in conductance because the density of states is rapidly changing due
to the electron-vibration coupling. In this case, the level is taken at
�=−0.005 eV, the electron-vibration matrix element is M =0.04,
and the frequency is �=0.08 eV.
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The reason for this behavior is that one should think in
terms of molecular orbitals rather than site orbitals. In this
case, the ABL motion does not couple the �� and � orbitals;
hence, the electron populates one of the molecular orbitals,
��, at one time and interacts with the vibration in the same
way as in the case of the single site. Instead of a single site,
we have a single level; otherwise there is no physical differ-
ence. Let us approximate the wave packet by the evolution
on the two sites,

���t�ABL�2 � ����2,

without any time dependence �except the one due to the cou-
pling to the electrodes that we have neglected in this simpli-
fied discussion� because �� is basically an eigenstate of the
Hamiltonian. This explains Fig. 11�a�.

In the case of the c.m. mode, we saw above that a single-
site analogy cannot be applied and we have the two molecu-
lar orbitals involved in the wave packet propagation. Let us
again approximate the wave packet by the evolution on the
two sites,

���t�c.m.�2 � �����2 + ����2 + 2 Re����
� ��ei����−���t� ,

where a clear time dependence subsists, in good agreement
with Fig. 11�b�.

B. Two sites and two vibrations

When more than one phonon per mode is needed to be
converged with respect to the electron-vibration coupling,
the inelastic transmission cannot be separated in additive
contributions from different modes and all of them have to
be considered at the same time. In the above case, the trun-
cated Hamiltonian reads now

�
H0

M̂a 0 M̂c 0

M̂a H0 + �̂a
�2M̂a 0 M̂c 0

0 �2M̂a H0 + 2�̂a 0 0 M̂c 0

M̂c 0 0 H0 + �̂c M̂a 0 �2M̂c 0

0 M̂c 0 M̂a H0 + �̂c + �̂a
�2M̂a 0 �2M̂c 0

0 M̂c 0 �2M̂a H0 + �̂c + 2�̂a 0 0 �2M̂c

0 �2M̂c 0 0 H0 + 2�̂c M̂a 0

0 �2M̂c 0 M̂a H0 + 2�̂c + �̂a
�2M̂a

0 �2M̂c 0 �2M̂a H0 + 2�̂c + 2�̂a.

� .

Here the subindex a refers to the ABL mode and c to the c.m.
one. At intermediate coupling, we need some three phonons
to converge the transmission. Hence, the Hamiltonian matrix
in this basis set is composed of 9�9 blocks; each block
contains the infinite number of electron sites, which we deal
with as above.

The inclusion of several modes changes the transmission
from the superposition of peaks coming from each mode
because the spectral weights change and the peaks shift. This
is seen in Fig. 8. There the peaks of the full transmission are
shifted with respect to the sum of peaks from the c.m. and
ABL modes. This can be understood in terms of the different
Hilbert spaces that are considered as new modes are in-
cluded. Indeed, since the in phonons, n, means the shift of
peaks, the transmission also needs to be converged with re-
spect to modes. In terms of the Green’s function this is easily
understandable because there are terms in the self-energy
stemming from all modes.

We can improve our previous hybridization diagram to
describe the peak structure by including all modes. This type
of correlation diagram has been termed “progression of pro-
gressions” and used in the literature to explain the vibronic
sequence of C60 and naphtalocyanine molecules.68,69 One

word of caution is important: the knowledge of the actual
coupling matrices is needed in order to perform the correct
hybridization of orbitals. The hybridization scheme can be
obtained by symmetry arguments alone; however the separa-
tion and strength of the vibronic peaks need a quantitative
evaluation of the matrix elements, which is increasingly dif-
ficult with the number of involved modes.

VI. MEANING OF DIPS AND PEAKS IN THE d2I ÕdV2

The increase or decrease in conductance over the vibra-
tional threshold has been used to determine the occurrence of
vibrational excitation during electron flow through molecular
electronic states.6,12 A simple explanation for the increase in
conductance in the tunneling regime was already advanced
in IETS of metal-insulator-metal junctions.70 The conduc-
tance increases because new conduction channels become
available above a vibrational threshold. This interpretation is
correct when the vibrational side bands of the electron trans-
mission lie beyond �� of the electrode’s Fermi energy. As
we have already seen, opening a new channel means that we
have to add the n=1 contribution to the n=0 contribution of
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the transmission. Hence, the d2I /dV2 will present a positive
peak at positive voltage and negative at negative voltage.70

However, we can also have decreases in conductance.
This is experimentally found in tunneling71 and in contact
regimes.12 In the present theory, one always adds a positive
contribution to the transmission above the vibrational thresh-
old, but the change in conductance is given by the slope of
the transmission, and this can have a rapid variation in the
presence of a sideband. In the case where the sideband is in
the tail of the main peak, and the width of the main peak is
on the order of the vibrational frequency, then the slope will
change from a smoothly varying one to the faster varying
sideband slope, giving rise to a negative d2I /dV2 at positive
voltage. Let us give two examples of the above cases.

A. Tunneling regime

In the case of the excitation of the CO frustrated rotation
mode,72 the 2�� and the 5� molecular orbitals are coupled
via the electron-vibration coupling. This is easily seen by
symmetry arguments73 since the mode is antisymmetric with
respect to the planes containing the molecular axis and the
nonzero matrix elements will couple a symmetric orbital
�5�� with an antisymmetric one �2���.74,79 Assuming weak
coupling, we can neglect the effect of all other modes and
estimate the change in conductance by using the two-site
model coupled to a vibration that we presented above. Figure
12 shows the result of the conductance 
Eq. �11�� and in the
corresponding d2I /dV2. We see that the Fermi energy plus �
for the frustrated rotation gives the threshold where the trans-
mission for n=1 enters, giving a clear discontinuity in the
conductance �positive contribution� and hence a positive
peak in the d2I /dV2. This is the case in metal-insulator-metal
junctions.70 The two-level model leads to different inelastic
efficiencies at positive and negative voltage bias.

However, the case of IETS of O2 on Ag �110� �Refs. 71
and 79� is different. Experimentally, dips are found instead
of positive peaks in the d2I /dV2 at positive bias voltage. Let
us consider the excitation of the internal stretch mode. By
computing the PDOS on molecular orbitals,75 we know that
the �g perpendicular to the surface is close to the Fermi
energy, and that tunneling takes place through it.75 The mode
has the same symmetry as the molecular orbital and the di-
agonal matrix element will be different from zero. We are
hence in a case that can be approximated by the single-site
model. Figure 13 shows the result. We have located �g at the
Fermi energy as the PDOS on molecular orbitals75 seems to
indicate. The orbital width is taken as 0.1 eV and the fre-
quency energy is 0.08 eV. We see that the transmission func-
tion is an asymmetric peak because the sideband is inserted
in the tail of the main peak. We also include the contribution
of n=1 above the Fermi energy plus the frequency in order
to calculate the d2I /dV2, as for the CO case while we prefer
to plot the complete one-electron transmission because in the
present case the initial level occupation matters and we can-
not treat it in this one-electron approach. Instead, we realize
that we see the change in slope due to the side bands in the
n=0 and n=1 contributions. d2I /dV2 gives a dip correspond-
ing to the change in slope of the n=0 contribution. Hence,

the elastic component of the transmission contains the infor-
mation of the IETS. The decrease in conductance in this case
is due to the rapid change in transmission already in the
elastic channel. It is then a decrease due to the variation of
the vibronic density of states.

From these models we conclude that negative peaks in
d2I /dV2 are due to sidebands in the elastic transmission. This
statement is equivalent to the one found in the pioneering
work of Davis.76 Davis realized that a decrease in conduc-
tance could be found in some especial circumstances.
Namely, that the single-site resonance was at the Fermi en-
ergy and that the resonance width was of the order of the
vibrational frequency. These are the same conditions as we
find. The interpretation of Davis76 is that virtual phonons
were emitted and absorbed giving rise to an interference pat-
tern. This interpretation is based on perturbation theory, and
it just accounts for the vibration’s effect on the elastic chan-
nel. In our terms, it is just the vibrational sideband of the
elastic channel. The only cases in which a vibrational side-
band can yield a decrease in conductance is when the main
peak of the transmission is at the Fermi energy77 �this is
half-filling, we discuss below that we cannot have half-filling
in our models�, and the electronic widths are of the order of
the vibrational frequency, so as to enlarge and distort the
main peak by the sideband. In the case of half-filling, the
sidebands are symmetric with respect to the Fermi energy37

giving rise to a peak at negative voltage and to a dip at
positive one in d2I /dV2. The voltage of the dip does not
exactly correspond to the vibrational frequency since it cor-
respond to the largest slope of the vibrational side band, not
its maximum. Hence, these results suggest that the voltages
at the dips are not direct measurements of the vibrational
frequencies, while in the case the peaks correspond to
d2I /dV2, the voltages are direct readings of the vibrational
frequencies.

There is certain confusion in the literature because pertur-
bation theory is currently used. In this case the current in the
absence of electron-phonon coupling is confused with the
elastic current. As can be seen in Fig. 3�a� in the absence of
electron-phonon coupling one gets a single Lorentzian peak
�dashed lines�; however the elastic contribution is the n=0
curve of Fig. 3�b�. As is shown in the Appendix, even in the
perturbation theory, elastic contributions of the electron-
vibration coupling are present. Hence, it is wrong to identify
the elastic current with the one without electron-vibration
coupling.

B. Contact regime

Paulsson et al.78 showed that in the case of symmetric
contact to the electrodes one can continuously pass from a
peak to a dip in d2I /dV2 by increasing the transmission prob-
ability. At transmission 1/2 the threshold between both be-
haviors is found. In the case of contact, a large density of
states is pinned at the Fermi energy. Hence, it is �—the
parameter that controls the coupling to the leads and there-
fore the passage from peaks to dips in the change in conduc-
tance at the vibration threshold. In general, this passage will
depend on the coupling to the two electrodes and the electron
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transmission.79 Recent experimental evidence has been re-
ported in Ref. 80.

Figure 14 shows the behavior of the electronic wave
packet after collision with a four-site chain in the contact
regime. The parameters are those from Ref. 81. The chosen
mode is the ABL, which corresponds to the one giving the
largest change in conductance in gold monatomic chains.12

The wave packet is mainly transmitted in the elastic channel
as is to be expected from the contact regime; however the
vibrationally excited wave packets are mainly reflected in
agreement with the interpretation of Ref. 12. However, the
behavior is more complex: electronic wave packets in chan-
nels with odd n are reflected, even n are transmitted. In this
particular calculation, the reflection of the n=1 component is
due to finite-band effects. As we discussed above, a finite
band leads to the closing of transmission channels when in-
elastic effects are operative, increasing the electronic wave
packet reflection. As the number of vibrational excitations
increases, the closing of channels corresponds to each exci-
tation process, implying an increase in the reflection in each
case. As a consequence, even excitations mean even number
of reflections, leading to an increase in transmission. Indeed,
we have found this behavior for large electrode-molecule
couplings even in the single-site case.

Some of the calculations in Ref. 78 have been performed
in the wide-band approximation, and hence the closing of
channels due to finite-band effects is not present. Hence, we
cannot conclude that the decrease in conductance leads to an
increase in electron reflection such as the one found in this
section. Instead, we think their calculations correspond to the
regime where rapid changes in the vibronic density of states
are found which correspond to the precedent section.

VII. MANY-ELECTRON AND ELECTRON-ELECTRON
EFFECTS IN THE PRESENCE OF VIBRATIONS

Our calculations are exact regarding the vibrational dy-
namics during electron transport. The price to pay is the
neglect of multielectron effects. The description of multielec-
tron effects together with vibrational excitation necessarily
implies approximations. A recent treatment of both effects is
the one by Galperin et al.21 Despite approximations, their
treatment is correctly evaluating the vibrational dynamics.
Indeed, we can reproduce their results, and the main differ-
ence between both calculations is an absorption shoulder ap-
pearing below the first peak in the multielectron case. Galp-
erin et al.21 assumed this absorption peak to be due to
heating created by the electron flux.

Even in the absence of a direct electron-electron interac-
tion in the Fröhlich-Holstein model used here 
Eq. �7��, the
electron-vibration coupling can lead to effective electron-
electron interactions—see, for example, Ref. 37. This leads
to electron-electron correlations and has extensively been
studied in the literature in the so-called bipolaron problem.82

This is absent in our one-electron approach but could in prin-
ciple be treated by using two-electron propagations.

Perhaps, more important for the description of transport in
metallic systems is the absence of the initial electron occu-
pation in the present approach. In this on-resonance case,
important interference between the electron and hole propa-
gations is expected. This is easily solved by usual nonequi-
librium Green’s functions approaches37 at the price of sim-
plifying the treatment on the phononic description. Indeed,
while the present approach treats the nuclear-coordinate de-
scription exactly within the one-electron problem and the
harmonic approximation, NEGF approaches need to rely on
approximate treatments.21,37,39 This situation can be solved
by using a time-dependent Hartree-Fock approach to gener-
ate a many-body wave packet, extending the present treat-
ment to a multielectron case. Some encouraging results in
time-dependent Hartree-Fock and beyond techniques have
been presented in Refs. 83 and 84.

VIII. SUMMARY AND CONCLUSIONS

Time-dependent wave packet propagations for the study
of inelastic effects in electron transport can be very interest-
ing because of the physical picture they permit us to develop
as well as the good size-scaling properties that they can have.
Indeed, in the case of sparse Hamiltonians, the scaling is
basically linear with the system size when Lanczos-type
propagation methods are used.

In the present work we have analyzed the electron-
vibration problem when a single electronic site is connected
to two electrodes. We have used a time-dependent descrip-
tion to understand the vibrational excitation sequence, the
electronic phase shift, and the interference patterns. The
time-dependent calculation has given us access to the same
quantities we can calculate using an energy-resolved theory
but with the time-dependent insight.

We have also studied the case of two sites and two vibra-
tional modes, and we have realized that the two-site problem
can be simplified to the single-site one when molecular or-

500 550 600 650 700
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|Ψ
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FIG. 14. �Color online� Electronic wave packets for different
vibrational channels at a time instance after the elastic wave packet
has passed the vibrating chain centered at site 600. Four electronic
sites are connected to an ABL vibration. This four-site chain is
strongly coupled to the leads, representing the contact regime.
Hence, the elastic wave packet is basically unperturbed by the
chain, but the vibrationally excited channels have wave packets that
are reflected for odd n and transmitted for even n. In this case the
chain to electrode couplings are assumed to be the same as the
internal hopping Tr=Tl= t=−0.5 eV, the mode frequency is �
=0.011 eV, and the electron-vibration matrix elements are m1

=0.013 eV, m2=−0.035 eV, m3=0.035 eV, and m4=−0.013 eV
corresponding to parameters of a four-atom gold chain �Ref. 81�.
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bitals can be used. The electron-vibration coupling will de-
termine when molecular orbitals are meaningful. This is seen
by expressing the electron-vibration coupling matrix in the
molecular-orbital basis set. Pursuing these idea, we have de-
veloped a simple hybridization scheme that permits us to
understand the vibronic structure of an electron transmission
function in terms of the symmetry of the electron-vibration
couplings. We have shown that for medium and strong
electron-vibration couplings, all modes need to be consid-
ered.

We have applied our simple model to get some insight in
the case of the vibrational excitation of CO on Cu�100� �Ref.
72� and O2 on Ag�110�.71 Due to our one-electron treatment,
the calculations are missing fundamental ingredients, but
they permit us to explain the IETS signals in terms of vibra-
tional channels. In the case of O2, the calculation shows that
the elastic channel leads to a decrease in d2I /dV2. Contrary
to perturbation theory, the elastic channel is not the elec-
tronic structure in the absence of electron-vibration coupling
but the n=0 transmission function. Hence the elastic channel
contains all of the information about the electron-vibration
coupling. In particular, the elastic contribution will contain
vibrational satellites. These satellites or side bands have a
strong energy dependence that naturally leads to dips in
d2I /dV2. Indeed this means that the density of states that
should be considered is the vibronic one; this density of
states contain rapid variations with the energy that lead to
decreases of d2I /dV2. In perturbation theory, one needs to
consider the effect of the vibration on the elastic channel to
retrieve the effect of the vibration in the electronic structure
and hence to take into account the vibronic density of states
in the conductance.

We have also explored the case of contact with the two
electrodes. In this case, it has been shown that the conduc-
tance should drop at the vibrational thresholds because the
vibrations backscatter the impinging electrons. Our calcula-
tion show that for the first excited state �and generally odd
vibration channel, n�, the electronic wave packet is reflected
at the vibration. However for even n the wave packet is
transmitted. This behavior is due to the finite electronic band
of the present calculation, which leads to the closing of in-
elastic channels increasing reflection. An even number of
consecutive reflections lead to increased transmission. New
developments in time-dependent Hartree-Fock lead us to
think that a full time-dependent treatment of the physics usu-
ally explored with nonequilibrium Green’s functions will be
soon available permitting us to develop a different point of
view on inelastic effects in electron transport on the atomic
scale.
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APPENDIX

It is interesting to briefly consider the full many-body
expression in connection with the expressions used in this
work. In particular, it is interesting to justify the form of Eqs.
�11� and �12� from the more elaborated many-body expres-
sion of Meir and Wingreen.50 We start from the generalized
expression as found in Refs. 17 and 20,

J =
1

�
 d
tr��L

�G� − �L
�G�� , �A1�

where the many-body Green’s functions and self-energies are
expressed in a localized basis set, hence becoming matrices
and giving sense to the use of the trace. We follow the usual
notation for Keldysh Green’s functions.17,20 In order to sim-
plify, we just consider the current flowing from the left elec-
trode and we have marked the self-energies to the leads as
the coupling to the left electrode �L; we will soon obtain the
coupling to the right electrode.

The self-energies have three contributions from the cou-
pling to the left and right electrodes and to the vibration,
respectively,

�tot = �L + �R + �ph. �A2�

Let us proceed with a perturbation-theory expansion on the
above self-energy and, at the same time, considering the
number of exchanged quanta n. The perturbation expansion
comes through Dyson’s equations �see, for example, Refs.
17, 20, and 85�:

G� = G0,� + G0,r�1 + �ph
r G0,r + ¯��tot

� G0,a�1 + �ph
a G0,a

+ ¯� . �A3�

Here, G0,�=0 because it corresponds to the initial population
of the empty states.

If we neglect all electron-vibration coupling, Eq. �A3� be-
comes

G� = Gr��L
� + �R

��Ga.

Using in Eq. �A1�,

�L,R
� �
� = i
fL,R�
� − 1��L,R�
� ,

�L,R
� �
� = ifL,R�
��L,R�
� , �A4�

where fL,R�
� is the Fermi occupation factor for the left and
for the right electrodes and �L,R are the widths due to the
couplings to the electrodes as defined in Sec. III, we retrieve
Landauer’s expression,25

J =
1

�
 d
 tr��LGr�RGa�
fL�
� − fR�
�� . �A5�

Here we learned that there is a certain combination of self-
energies leading to a nonzero contribution: since we start
from the left coupling, the only coupling that survives in G�

giving rise to the current is the right self-energy. In this way,
we can simplify the hierarchy of terms appearing in Eq. �A3�
keeping the ones that contribute to the current.

To the lowest order in the electron-vibration coupling we
can study the elastic term, n=0. We see that to the above
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Landauer term we have to add new contributions coming
from the electron-vibration coupling that present no energy
threshold,

G� � G0,r�R
�G0,a + G0,r�ph

r G0,r�R
�G0,a + G0,r�R

�G0,a�ph
a G0,a

+ ¯ . �A6�

As higher orders in the electron-vibration coupling are in-
cluded, we will recover the full vibronic structure of Fig.
3�b� for n=0.

The n=1 term can be obtained in the same way. From the
bigger function than the Green’s function in Eq. �A1� we find
a contribution to the empty-state Fermi distribution of the
right electrode. Indeed, to lowest order �we assume no initial
phonon population�,

�ph
1,� = MG0,��
 − ��M ,

where as in Sec. IV M is the electron-vibration coupling
matrix and � is the vibration frequency. In the evaluation of
the current only the coupling to the right electrode survives
again; hence,

�ph
1,� = MG0,r�R

��
 − ��G0,aM .

From Eq. �A4� we see that a factor fR��−
� is obtained in
the first term of Eq. �A1�. In the same way, the second term
of Eq. �A1� contains

�ph
1,� = MG0,r�R

��
 + ��G0,aM ,

which gives a factor fR�
+��, which at zero-bias voltage
can be confounded with the left electrode’s Fermi distribu-
tion. Regrouping terms we can factored out fL�
+n��
+ fR�n�−
� which permits us to write Eq. �11� for n=0 and
n=1. As we increase n 
the self-energy becomes substan-
tially more complex and there are terms where n� appears in
the energy argument as can be easily found in simplified
self-energies such as the SCBA �Refs. 37 and 41��, the order
of the expansion has to be higher and new terms appear in
the elastic �n=0� and inelastic contributions, eventually de-
veloping all the vibronic structure explored before. The lead-
ing term in the self-energy contains a factor fR�
−n�� and
fR�
+n�� depending on which of the self-energies is con-
sidered that can be extracted to obtain a form equivalent to
Eq. �11�.

1 M. Galperin, M. A. Ratner, A. Nitzan, and A. Troisi, Science
319, 1056 �2008�.

2 M. Galperin, M. A. Ratner, and A. Nitzan, J. Phys.: Condens.
Matter 19, 103201 �2007�.

3 M. Berthe, A. Urbieta, L. Perdigao, B. Grandidier, D. Deresmes,
C. Delerue, D. Stievenard, R. Rurali, N. Lorente, L. Magaud,
and P. Ordejon, Phys. Rev. Lett. 97, 206801 �2006�.

4 N. Néel, J. Kröger, L. Limot, T. Frederiksen, M. Brandbyge, and
R. Berndt, Phys. Rev. Lett. 98, 065502 �2007�.

5 W. Ho, J. Chem. Phys. 117, 11033 �2002�.
6 B. C. Stipe, M. A. Rezaei, and W. Ho, Science 279, 1907 �1998�.
7 H. J. Lee and W. Ho, Science 286, 1719 �1999�.
8 J. Gaudioso, L. J. Lauhon, and W. Ho, Phys. Rev. Lett. 85, 1918

�2000�.
9 Y. Kim, T. Komeda, and M. Kawai, Phys. Rev. Lett. 89, 126104

�2002�.
10 X. H. Qiu, G. V. Nazin, and W. Ho, Science 299, 542 �2003�.
11 R. H. Smit, Y. Noat, C. Untiedt, N. D. Lang, M. C. V. Hermet,

and J. M. V. Ruitenbeek, Nature �London� 419, 906 �2002�.
12 N. Agrait, C. Untiedt, G. Rubio-Bollinger, and S. Vieira, Phys.

Rev. Lett. 88, 216803 �2002�.
13 N. Mingo and K. Makoshi, Surf. Sci. 438, 261 �1999�; Phys.

Rev. Lett. 84, 3694 �2000�.
14 N. Lorente and M. Persson, Phys. Rev. Lett. 85, 2997 �2000�.
15 T. Mii, S. Tikhodeev, and H. Ueba, Surf. Sci. 502-503, 26

�2002�; T. Mii, S. G. Tikhodeev, and H. Ueba, Phys. Rev. B 68,
205406 �2003�.

16 M. J. Montgomery and T. N. Todorov, J. Phys.: Condens. Matter
15, 8781 �2003�.

17 T. Frederiksen, M. Brandbyge, N. Lorente, and A.-P. Jauho,
Phys. Rev. Lett. 93, 256601 �2004�.

18 G. C. Solomon, A. Gagliardi, A. Pecchia, T. Frauenheim, A. Di
Carlo, J. R. Reimers, and N. S. Hush, J. Chem. Phys. 124,

094704 �2006�.
19 N. Sergueev, A. A. Demkov, and H. Guo, Phys. Rev. B 75,

233418 �2007�.
20 M. Galperin, M. A. Ratner, and A. Nitzan, J. Chem. Phys. 121,

11965 �2004�.
21 M. Galperin, A. Nitzan, and M. A. Ratner, Phys. Rev. B 73,

045314 �2006�.
22 M. Paulsson, T. Frederiksen, and M. Brandbyge, Nano Lett. 6,

258 �2006�.
23 A. Troisi, M. A. Ratner, and A. Nitzan, J. Chem. Phys. 118,

6072 �2003�.
24 E. Prodan and R. Car, Phys. Rev. B 76, 115102 �2007�.
25 S. Datta, in Electronic Transport in Mesoscopic Systems, edited

by H. Ahmed, M. Pepper, and A. Broers �Cambridge University
Press, Cambridge, England, 1995�.

26 H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and
Optics of Semiconductors �Springer-Verlag, Berlin, 1996�.

27 J. Maciejko, J. Wang, and H. Guo, Phys. Rev. B 74, 085324
�2006�.

28 C. Verdozzi, G. Stefanucci, and C.-O. Almbladh, Phys. Rev. Lett.
97, 046603 �2006�.

29 M. Di Ventra and R. D’Agosta, Phys. Rev. Lett. 98, 226403
�2007�.

30 E. McEniry and T. Todorov, J. Phys.: Condens. Matter 19,
196201 �2007�.

31 A.-P. Jauho, Phys. Rev. B 41, 12327 �1990�.
32 S. Mahapatra and N. Sathyamurthy, J. Chem. Soc., Faraday

Trans. 93, 773 �1997�.
33 J.-P. Gauyacq, J. Chem. Phys. 93, 384 �1990�.
34 W. Domcke, Phys. Rep. 208, 97 �1991�.
35 A. Bringer, J. Harris, and J. W. Gadzuk, J. Phys.: Condens. Mat-

ter 5, 5141 �1993�.
36 F. Grossmann, Chem. Phys. 268, 347 �2001�.

INELASTIC EFFECTS IN ELECTRON TRANSPORT… PHYSICAL REVIEW B 78, 035445 �2008�

035445-15



37 P. Hyldgaard, S. Hershfield, J. H. Davies, and J. W. Wilkins,
Ann. Phys. �N.Y.� 236, 1 �1994�.

38 K. Flensberg, Phys. Rev. B 68, 205323 �2003�.
39 A. Mitra, I. Aleiner, and A. J. Millis, Phys. Rev. B 69, 245302

�2004�.
40 Y. Imry, O. Entin-Wohlman, and A. Aharony, Europhys. Lett.

72, 263 �2005�.
41 H. Ness, J. Phys.: Condens. Matter 18, 6307 �2006�.
42 T. Markussen, R. Rurali, M. Brandbyge, and A.-P. Jauho, Phys.

Rev. B 74, 245313 �2006�.
43 S. Roche, J. Jiang, F. Triozon, and R. Saito, Phys. Rev. Lett. 95,

076803 �2005�.
44 J. C. Lanczos, J. Res. Natl. Bur. Stand. 45, 225 �1950�.
45 J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for

Large Eigenvalue Computations �SIAM, Philadelphia, 2002�.
46 A. G. Borisov and S. V. Shabanov, J. Comput. Phys. 209, 643

�2005�.
47 J. Sjakste, A. G. Borisov, J.-P. Gauyacq, and A. K. Kazansky, J.

Phys. B 37, 1593 �2004�.
48 D. J. Tannor, Introduction to Quantum Mechanics: A Time De-

pendent Perspective �University Science, Sausalito, 2006�.
49 T. Holstein, Ann. Phys. �N.Y.� 8, 325 �1959�.
50 Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 �1992�.
51 A.-P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev. B 50, 5528

�1994�.
52 B. Y. Gelfand, S. Schmitt-Rink, and A. F. J. Levi, Phys. Rev.

Lett. 62, 1683 �1989�.
53 J. A. Stovneng, E. H. Hauge, P. Lipavsky, and V. Spicka, Phys.

Rev. B 44, 13595 �1991�.
54 N. S. Wingreen, K. W. Jacobsen, and J. W. Wilkins, Phys. Rev.

Lett. 61, 1396 �1988�; Phys. Rev. B 40, 11834 �1989�.
55 J. W. Gadzuk, Phys. Rev. B 44, 13466 �1991�.
56 J. Bonca and S. A. Trugman, Phys. Rev. Lett. 75, 2566 �1995�.
57 E. G. Emberly and G. Kirczenow, Phys. Rev. B 61, 5740 �2000�.
58 M. Cizek, M. Thoss, and W. Domcke, Phys. Rev. B 70, 125406

�2004�.
59 C. Benesch, M. Cizek, M. Thoss, and W. Domcke, Chem. Phys.

Lett. 430, 355 �2006�.
60 Ph. Durand, I. Paidarová, and F.-X. Gadea, J. Phys. B 34, 1953

�2001�.
61 A. Baratoff and B. N. J. Persson, J. Vac. Sci. Technol. A 6, 331

�1988�.
62 J.-P. Gauyacq, Dynamics of Negative Ions, Lecture Notes in

Physics �World Scientific, Singapore, 1987�.

63 M. Persson and B. Hellsing, Phys. Rev. Lett. 49, 662 �1982�; B.
Hellsing and M. Persson, Phys. Scr. 29, 360 �1984�.

64 We assume that the main difference between the negative PES
and the neutral one is the change in geometrical conformation of
the negative ion with respect to the neutral molecule. However,
frequencies also change and as a matter of fact the electron-
vibration coupling should be computed for the negative PES.

65 J. Repp, G. Meyer, S. Paavilainen, F. E. Olsson, and M. Persson,
Phys. Rev. Lett. 95, 225503 �2005�.

66 G. D. Mahan, Many-Particle Physics, 3rd ed. �Kluwer,
Dordrecht/Plenum, New York, 2000�, p. 226.

67 T. Frederiksen, N. Lorente, M. Paulsson, and M. Brandbyge,
Phys. Rev. B 75, 235441 �2007�.

68 N. A. Pradhan, N. Liu, and W. Ho, J. Phys. Chem. B 109, 8513
�2005�.

69 N. Ogawa, G. Mikaelian, and W. Ho, Phys. Rev. Lett. 98,
166103 �2007�.

70 P. K. Hansma, Phys. Rep. 30, 145 �1977�.
71 J. R. Hahn, H. J. Lee, and W. Ho, Phys. Rev. Lett. 85, 1914

�2000�.
72 L. J. Lauhon and W. Ho, Phys. Rev. B 60, R8525 �1999�.
73 N. Lorente, R. Rurali, and H. Tang, J. Phys.: Condens. Matter

17, S1049 �2005�.
74 N. Lorente and M. Persson, Faraday Discuss. 117, 277 �2000�.
75 F. E. Olsson, N. Lorente, and M. Persson, Surf. Sci. 522, L27

�2003�.
76 L. C. Davis, Phys. Rev. B 2, 1714 �1970�.
77 B. N. J. Persson and A. Baratoff, Phys. Rev. Lett. 59, 339

�1987�.
78 M. Paulsson, T. Frederiksen, and M. Brandbyge, Phys. Rev. B

72, 201101�R� �2005�.
79 M. Paulsson, T. Frederiksen, H. Ueba, N. Lorente, and M.

Brandbyge, Phys. Rev. Lett. 100, 226604 �2008�.
80 O. Tal, M. Krieger, B. Leerink, and J. M. van Ruitenbeek, Phys.

Rev. Lett. 100, 196804 �2008�.
81 T. Frederiksen, M. Brandbyge, A. P. Jauho, and N. Lorente, J.

Comput. Electron. 3, 423 �2004�.
82 C. Zhang, E. Jeckelmann, and S. R. White, Phys. Rev. Lett. 80,

2661 �1998�; Phys. Rev. B 60, 14092 �1999�.
83 M. Nest and T. Klamroth, Phys. Rev. A 72, 012710 �2005�.
84 P. Krause, T. Klamroth, and P. Saalfrank, J. Chem. Phys. 127,

034107 �2007�.
85 T. Frederiksen, M. Paulsson, M. Brandbyge, and A.-P. Jauho,

Phys. Rev. B 75, 205413 �2007�.

S. MONTURET AND N. LORENTE PHYSICAL REVIEW B 78, 035445 �2008�

035445-16


