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We study the transport through side-coupled double quantum dots, connected to normal and superconducting
�SC� leads with a T-shape configuration. We find, using the numerical renormalization group, that the Coulomb
interaction suppresses SC interference in the side dot, and enhances the conductance substantially in the Kondo
regime. This behavior stands in total contrast to a wide Kondo valley seen in the normal transport. The SC
proximity penetrating into the interfacial dot pushes the Kondo clouds, which screens the local moment in the
side dot, toward the normal lead to make the singlet bond long. The conductance shows a peak of unitary limit
as the cloud expands. Furthermore, two separate Fano structures appear in the gate-voltage dependence of the
Andreev transport, where a single reduced plateau appears in the normal transport.
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I. INTRODUCTION

Observation of the Kondo effect in a quantum dot �QD�
�Ref. 1� has stimulated researches in the field of quantum
transport, and recent experimental developments enable one
to examine the Kondo physics in a variety of systems, such
as an Aharonov-Bohm �AB� ring with a QD and double
quantum dots �DQD�. In these systems multiple paths for
electron propagation also affect the tunneling currents, and
the interference causes Fano-type asymmetric line shapes.

Superconductivity also brings rich and interesting features
into the quantum transport. Competition between supercon-
ductivity and the Kondo effect has been reported to be ob-
served in carbon nanotube QD and in semiconductor
nanowires.2–7 Furthermore, interplay between the Andreev
scattering and the Kondo effect has been studied intensively
for a QD coupled to a normal �N� lead and superconductor
�S�, theoretically8–19 and experimentally.20 So far, however,
the Andreev-Kondo physics has been discussed mainly for a
single dot. In this paper, we consider a DQD system with a
T-shape geometry as shown in Fig. 1, and study how mul-
tiple paths affect the interplay at low temperatures, using the
numerical renormalization-group �NRG� method.21 Golub
and Avishai calculated first, to our knowledge, the Andreev
transport through an AB ring with a QD,18 in which a similar
interference effect is expected. However, the underlying
Kondo physics in such a combination with superconductivity
and interference is still not fully understood, and is needed to
be clarified precisely, as measurements are being not
impossible.7

We find that the Coulomb interaction in the side dot �QD2
in Fig. 1� suppresses destructive interference typical of the
T-shape geometry, and it enhances substantially the tunnel-
ing current between the normal and superconducting �SC�
leads in the Kondo regime. This is quite different from the
behavior seen in the normal transport in the same configura-
tion Fig. 1�b�, for which the conductance is suppressed, and
shows a wide minimum called a Kondo valley as a result of
strong interference by the Kondo resonance in the side
dot.22–29 The SC proximity penetrating into the interfacial dot

�QD1 in Fig. 1� causes this stark contrast between the An-
dreev and normal transports. It also changes the Fano line
shape in the gate-voltage dependence of the conductance.
Furthermore, we show that the proximity deforms the Kondo
cloud to make a singlet bond long, and it can be deduced
from the Fermi-liquid properties of the ground state.

In Sec. II, we introduce the model and describe the effec-
tive Hamiltonian in a large gap limit. In Sec. III, we show the
numerical results and clarify the transport properties using
the renormalized parameters. The Fano structures in the gate-
voltage dependence of the conductance are also discussed. A
brief summary is given in Sec. IV.

II. MODEL

We start with an Anderson impurity connected to SC and
normal leads,

H = HDQD + HS + HN + HT,S + HT,N, �1�

where

HDQD = �
i=1,2

���d,i +
Ui

2
��ni − 1� +

Ui

2
�ni − 1�2�

+ t�
�

�d1�
† d2� + H.c.� ,

HS = �
k,�

�kcS,k�
† cS,k� − �

k

��cS,k↑
† cS,−k↓

† + H.c.� ,
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FIG. 1. �Color online� Quantum dots coupled to �a� a normal
lead �N� and superconductor �S�, and �b� two normal leads. QD1
�QD2� is referred to as the interfacial �side� dot. Dashed line illus-
trates a dominant singlet pair in the Kondo cloud.
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HN = �
k,�

�kcN,k�
† cN,k�,

HT,� = �
k,�

V�

�N
�c�,k�

† d1� + H.c.�, � = S,N . �2�

HDQD describes the interfacial �i=1� and side �i=2� dots: �d,i
the energy level, Ui the Coulomb interaction, ni=��di�

† di�,
and t the interdot hopping matrix element. HS/N describes the
SC/normal lead, and � is a s-wave BCS gap. VS/N is the
tunneling matrix element between QD1 and the SC/normal
lead. We assume that �S/N���	�VS/N

2 �k���−�k� /N is a con-
stant independent of the energy �, where N is the total num-
ber of k’s in the leads. Throughout the work, we concentrate
on a large gap limit �→	. Then the starting Hamiltonian H
can be mapped exactly onto a single-channel model, which
still captures the essential physics of the Andreev reflection
and makes NRG approach efficient,19,30,31

Heff = HS
eff + HDQD + HT,N + HN, �3�

HS
eff = − �d1�d1↑

† d1↓
† + H.c.� , �4�

�d1 	 �S. �5�

Note that at �→	 the real and virtual excitations toward the
continuum states outside the gap in the SC lead are prohib-
ited. Nevertheless, the proximity from the SC leads to the dot
remains finite, and it induces a local static pair potential �d1
�	�S� at QD1. Furthermore, the current can flow between
the SC lead and the QD1 via �S.

III. NUMERICAL RESULTS

A. εd2 dependence

We can calculate the conductance at zero temperature as a
function of the level position �d2 of QD2 for different values
of U2, using the Kubo formula.32 In this paper we focus on
the Coulomb interaction in the side dot �QD2�, assuming that
U1=0 in the following. The results of the conductance are
shown in Fig. 2 for �d1=U1=0 and �d1=1.0t. The coupling
to the normal lead is chosen to be �a� �N=1.0t and �b� �N
=0.2t. The conductance is enhanced for the Kondo regime
−U2
�d2
0, where the wide Kondo valley appears in the
case of the normal transport. This is a novel phenomenon
caused by the interplay between superconductivity and the
Kondo effect; the local gap �d1 due to the proximity into
QD1 leads to the Andreev transport with destructive interfer-
ence, but the introduction of U2 suppresses the SC interfer-
ence via QD2, which in turn enhances the conductance. Note
that the couplings are symmetric �S=�N for Fig. 2�a�, and in
this particular case the conductance increases with U2 for
any �d2, except for the values �d2
−U2 and 0.0. Outside of
the Kondo regime, the side dot is empty or doubly occupied,
and the interference becomes no longer important. When the
coupling to the normal lead is small �N
1.0t as Fig. 2�b�,
the conductance in the Kondo regime decreases after the
peak reaches the unitary limit 4e2 /h. This behavior can be
related to a crossover from short-range to long-range Kondo

screening as illustrated in Fig. 1, and is discussed later again.
We examine the behavior at the middle point �d2

=−U2 /2 of Fig. 2 in detail. The low-lying energy states show
the Fermi-liquid properties,19 and the conductance can be
deduced from the renormalized parameters for the quasipar-
ticles �see Eq. �7��. The conductance is plotted as a function
of �S / t in Fig. 3 for �a� �N=1.0t and �b� �N=0.2t. We see

0

0.2

0.4

0.6

0.8

-1.5 -1 -0.5 0 0.5

C
on

du
ct

an
ce

(4
e2 /h

)

εd2 / U2

(b) U2 / t
2.5

3.5

4.5

6.5

8.5

0

0.2

0.4

0.6

0.8

1

C
on

du
ct

an
ce

(4
e2 /h

)

(a)
U2 / t

2

4

6

8

FIG. 2. �Color online� Conductance vs �d2 /U2 for �a� �N=1.0t
and �b� �N=0.2t, for several side-dot repulsions U2. The parameters
for QD1 are chosen to be �d1=U1=0, and �d1=1.0t which is the
local SC gap defined by �d1	�S.
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FIG. 3. �Color online� Conductance vs �S / t at �d2=−U2 /2 and
�d1=U1=0 for several values of U2. �a� �N=1.0t and �b� �N=0.2t.
The dashed line is the conductance of a single dot �t=0�, for which
the horizontal axis should be interpreted as �a� 1.0�S /�N and �b�
0.2�S /�N.
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that the peak shifts toward smaller �S as U2 increases and
will coincide in the limit of U2→	 with the dashed line,
which corresponds to the conductance without the side dot. It
means that the interference caused by the side dot is sup-
pressed completely for large U2, and in this limit the conduc-
tance reaches the unitary-limit value for the symmetric cou-
plings �S=�N. The difference in the line shape of Fig. 2�a�
and that of Fig. 2�b� at fixed �S reflects the position of the
unitary-limit peak in Fig. 3.

B. Fermi-liquid properties at εd2=−U2 Õ2

In order to clarify the properties of the ground state pre-
cisely, we consider a special case �d2=−U2 /2. Then the
Hamiltonian Heff can be written in terms of the interacting
Bogoliubov particles, which conserve the total charge, as
shown in the Appendix.19 Consequently, the low-energy
states can be described by a local Fermi liquid, the fixed-
point Hamiltonian33 of which can be written in the form

H̃qp
�0� = �̃d2�d2↑

† d2↓
† + H.c.� + t̃�

�

�d1�
† d2� + H.c.� − �d1�d1↑

† d1↓
†

+ H.c.� + HT,N + HN. �6�

Here, �̃d2 is a local SC gap that emerges in QD2 via the

self-energy correction due to U2, while �d1	�S as defined in
Eq. �5� is caused by the direct proximity from the SC lead. t̃
is the renormalized value of the interdot hopping matrix el-
ement. We calculate these parameters from the fixed-point of
NRG.34 Then, the conductance G and a staggered sum K of
the pair correlation are deduced from the phase shift, �, of
the Bogoliubov particles,

G =
4e2

h
sin2 2�, K 	 �

i=1,2
�− 1�i−1�i =

2�

�
, �7�

tan � 	
�̃d2�N

t̃ 2 − �̃d2�S

, �i 	 di↑
† di↓

† + di↓di↑� . �8�

In Fig. 4, we show the U2 dependence of the ground-state
properties at �d2=−U2 /2 for �d1=U1=0 and �S=1.0t. The
coupling is chosen to be �N=0.2t, and 1.0t. The conductance
for �N
�S shows a peak as a function of U2, while for �N
=�S it increases simply toward the unitary limit. This corre-
sponds to the difference that we see in Figs. 2�a� and 2�b� at
�d2=−U2 /2. Figure 4�b� shows the renormalized parameters

�� ,�� t̃ and �� ,�� �̃2. The ratio t̃ / t, which equals to the
square root of the wave-function renormalization factor Z
�see Appendix�, decreases monotonically from 1.0 to 0.0

with increasing U2, while the local SC gap �̃d2 becomes
large for intermediate values of U2. The behavior of these
Fermi-liquid parameters implies that a crossover from weak
to strong correlation regimes occurs around U2
4.5t. The
nature of the crossover can be related to a level crossing
taking place in a molecule limit �N=0, where QD1 is decou-
pled from the normal lead. In this limit, the isolated DQD is
described by a Hamiltonian HDQD+HS

eff, which includes the
local SC gap �d1	�S at QD1. The ground state of the mol-
ecule is a singlet or doublet depending on U2 / t and �S / t, as
shown in the inset of Fig. 4�b�. The ground state is a spin-
singlet, if either U2 / t or �S / t is small. In the opposite case, a
spin-doublet becomes the ground state. The local moment in
this doublet state emerges mainly at QD2, because the cor-
relation at QD1 is small in the present situation �d1=U1=0.
We see in the phase diagram in Fig. 4�b� that the transition
takes place in this molecule limit at U2
4.5t for �S=1.0t,
and it agrees well with the position where the conductance
peak appears in Fig. 4�a�.

For finite �N, conduction electrons can tunnel from the
normal lead to QD2 via QD1. However, the SC correlation
�d1	�S tends to make the local state at QD1 a singlet,
which consists of a linear combination of the empty and
doubly occupied states. Thus, for large �S, the electrons at
QD1 cannot contribute to the screening of the moment at
QD2. In this situation, the Kondo screening is achieved
mainly by the conduction electrons tunneling to QD2 virtu-
ally via QD1. This process is analogous to a superexchange
mechanism, which can also be expected from the Hamil-
tonian written in terms of the Bogoliubov particles �A6� in
the Appendix. From these observations we see that the con-
ductance peak at U2
4.5t in Fig. 4�a� reflects the crossover
from the short-range singlet to long-range one due to the
superexchange screening process �see also Fig. 1� for the
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FIG. 4. �Color online� Ground state properties at �d2=−U2 /2:

�a� Conductance, �b� t̃, �̃d2, �c� �1, �2, and K	�1−�2. We choose
�d1=U1=0, �S=1.0t, and for filled �open� marks �N=1.0t �0.2t�.
Inset of �b�: Phase boundary, between singlet and doublet ground
states, for an isolated DQD ��N=0� with a finite local SC gap
�d1	�S.
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Bogoliubov particles. Note that the peak structure of the con-
ductance vanishes for �N=�S.

The deformation of the Kondo cloud can also be deduced
from the results shown in Fig. 4�c�. This is because the stag-
gered pair correlation K is related directly to the scattering
phase shift � of the Bogoliubov particles, by the Friedel sum
rule Eq. �A10� given in the Appendix. Therefore, the value of
K reflects the changes occurring in the Kondo clouds. Par-
ticularly, a sudden change observed in K around U2
4.5t
shows that the phase of the wave function shifts by ��

0.4� during this change. This also explains the occurring
of the crossover from the short-range to long-range screen-
ing. We can also calculate each correlation function �i di-
rectly with NRG based on the definition. The local SC cor-
relations �1 and �2 have the same value in the noninteracting
case U2=�d2=0, and thus in this particular limit there is no
reduction in the amplitude of the proximity from QD1 to
QD2. The Coulomb interaction U2 causes the reduction, as
both �1 and �2 decrease for small U2 where the ground state
is a singlet with a molecule character. For large U2, the SC
correlation �2 almost vanishes in QD2, while �1 shows an
upturn and approaches the value expected for t=0. There-
fore, the SC proximity into QD1 is enhanced when the
Kondo cloud expands to form a long-range singlet. Then the
tunneling current is not interfered much by the local moment
at QD2, and flows almost directly without using the path to
the side dot.

Here, we wish to make a brief comment on the Kondo
temperature TK in our system. Since we consider a double
dot system with specific T-shaped geometry including sev-
eral relevant parameters, it is not straightforward to write
down the expression of the Kondo temperature explicitly.
Nevertheless, we can deduce TK from the screening process
by observing the flow of the low-lying energy levels of NRG
�Ref. 21�: around the energy scale corresponding to TK the

NRG flow changes its character from weak- to strong-
coupling behavior. In fact we have confirmed from the en-
ergy flow that the value of the Kondo temperature depends
on whether the range of the singlet near QD2 is short or long.

C. Fano line shape for εd1Å0

So far, we have chosen the level of QD1 to be �d1=0. The
result obtained for different values of �d1 is plotted as a
function of �d2 in Fig. 5. We see that two asymmetric Fano
structures, each of which consists of a pair of peak and dip,
emerge at �d2
0 and −U2 for �d1�0, as the Fermi level
crosses the energy corresponding to the upper and lower lev-
els of the atomic limit. The conductance peaks become
sharper for �N
�S as ��d1� increases. Maruyama et al. stud-
ied the Fano structure in the side-coupled DQD system with
two normal leads,29 and showed that at low temperatures the
conductance has only one pair of the peak and dip, which are
separated widely by a Fano-Kondo plateau at −U2�d20.
This type of the plateau was known earlier to appear in a QD
embedded in an AB ring.35 In contrast, our result shows that
the Fano-Kondo plateau vanishes, when one of the leads is a
superconductor. This is because the Kondo screening in this
case is achieved by the long-range singlet bond due to the
superexchange process, as a result of the competition be-
tween the SC proximity into QD1 and Coulomb interaction
at QD2.

IV. SUMMARY

We have studied Andreev transport through the side-
coupled DQD with NRG approach. We have found that the
Coulomb interaction in the side dot suppresses the destruc-
tive interference effect typical of the T-shape geometry, and
enhances the tunneling current between the normal and SC
leads. This novel phenomenon is caused by the interplay
between the SC correlation and the Kondo effect; the SC
proximity into QD1 pushes the Kondo cloud toward the nor-
mal lead, and the conductance shows a peak of the unitary
limit as the nature of the singlet changes from a short-range
to long-range one. We have also clarified that two asymmet-
ric Fano structures appear in the gate-voltage dependence of
the Andreev transport, instead of a reduced single Fano-
Kondo plateau which appears in the Kondo regime of the
normal transport.
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APPENDIX: BOGOLIUBOV PARTICLES

The Hamiltonian Heff defined in Eq. �3� can be trans-
formed, at �d2=−U2 /2, into the interacting Bogoliubov par-
ticles, which conserve the total charge. For describing this
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FIG. 5. �Color online� Conductance vs �d2 for several values of
�d1, where U1=0 and �S=1.0t. Other parameters: �a� �N=1.0t, U2

=8.0t. �b� �N=0.2t, U2=6.5t.
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property briefly, we rewrite Heff using the logarithmic dis-
cretization of NRG,21

HNRG
eff = ��N−1�/2�HS

eff + HDQD + HT,N + HN� ,

HT,N + HN = �
n=−1

N−1

�
�

tn�−n/2�fn+1�
† fn� + H.c.� . �A1�

For n�0, the operator fn� describes the conduction electron
in the normal lead, and tn is given by

tn = D
1 + 1/�

2

1 − 1/�n+1

�1 − 1/�2n+1�1 − 1/�2n+3
. �A2�

Here, D is the half width of the conduction band. For the
double-dot part, we use a notation f−i,�=di� for i=1,2. Cor-
respondingly, t−1	 v̄�−1/2 and t−2	 t�−1 with

v̄ =�2�NDA�

�
, A� =

1

2
�1 + 1/�

1 − 1/��log � . �A3�

At �d2	�d2+U2 /2=0, the system has a uniaxial symmetry
in the Nambu pseudospin space,36 and the Hamiltonian can
be simplified by the transformation

� �n↑

�− 1�n−1�n↓
† � = �u − v

v u
�� fn↑

�− 1�n−1fn↓
† � , �A4�

u =�1

2
�1 +

�d1

Ed1
�, v =�1

2
�1 −

�d1

Ed1
� . �A5�

Here, Ed1	��d1
2 + ��d1�2, �d1	�d1+U1 /2, and �d1	�S as

defined in Eq. �5�. Then HNRG
eff is transformed into a normal

two-impurity Anderson model for the Bogoliubov particles

HNRG
eff = ��N−1�/2�Ed1�n̂�,−1 − 1� + �

i=1,2

Ui

2
�n̂�,−i − 1�2

+ �
n=−2

N−1

�
�

tn�−n/2��n+1�
† �n� + H.c.�� . �A6�

Here, n̂�i	���i�
† �i�, and the total number of the Bogoliubov

particles, Q̂�	�i=−2
N n̂�i, is conserved. The Eq. �A6� implies

that the low-energy excited states can be described by a local
Fermi-liquid theory. This is true also for the original Hamil-
tonian Heff, and it does not depend on the discretization pro-
cedure of NRG.36

To be specific, we assume that U1=0 in the following. In
this case, the Bogoliubov particles feel a normal impurity
potential Ed,1 at QD1, and this potential causes the superex-
change mechanism that makes the singlet-bond long range as
discussed in Sec. III B. The retarded Green’s function for the
Bogoliubov particle �−2,� at QD2 takes the form

G���� =
1

� − ����� − t2

�−Ed1+i�N

, �A7�

where ����� is the self-energy caused by the interaction
�U2 /2��n̂�,−2−1�2. At zero temperature, the asymptotic form
of Green’s function for small �
0 is given by

G���� 

Z

� − �̃d2 − t̃2

�−Ed1+i�N

, �A8�

�̃d2 	 Z���0�, t̃ 	 �Zt, Z−1 	 1 − � ������
��

�
�=0

.

�A9�

Note that �̃d2 has a finite value even though �d2=0, because

Ed1�0. The value of the parameters �̃d2 and t̃ can be de-
duced from the fixed point of NRG.34 Then, using the Friedel
sum rule for Eq. �A6�, the local charge at the double dot can
be calculated from the phase shift � of the Bogoliubov par-
ticles,

n̂�,−2� + n̂�,−1� =
2

�
�� − �� , �A10�

� 	 tan−1� �̃d2�N

t̃ 2 − �̃d2Ed1

� . �A11�

The charge of the Bogoliubov particles corresponds to the
SC pair correlation for the original electrons fn�. Specifically
for �d1=0, it is transformed into the staggered sum K given
in Eq. �7�, by the inverse transformation of Eq. �A4�. Simi-
larly, the conductance G can be expressed in terms of the
phase shift �. Furthermore, the free quasiparticles corre-
sponding to Green’s function given in Eq. �A8� can be de-
scribed by a Hamiltonian, which is rewritten in terms of the
original electron operators in Eq. �6� by the inverse transfor-
mation.
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