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A model describing spin-polarized current via discrete energy levels of a metallic nanoparticle, which has
strongly asymmetric tunnel contacts to two ferromagnetic leads, is presented. In absence of spin relaxation, the
model leads to a spin accumulation in the nanoparticle, a difference ���� between the chemical potentials of
spin-up and spin-down electrons, proportional to the current and the Julliere tunnel magnetoresistance. Taking
into account an energy dependent spin-relaxation rate ����, �� as a function of bias voltage �V� exhibits a
crossover from linear to a much weaker dependence, when �e������ equals the spin-polarized current through
the nanoparticle. Assuming that the spin relaxation takes place via electron-phonon emission and Elliot-Yafet
mechanism, the model leads to a crossover from linear to V1/5 dependence. The crossover explains recent
measurements of the saturation of the spin-polarized current with V in aluminum nanoparticles, and leads to the
spin-relaxation rate of �1.6 MHz in an aluminum nanoparticle of diameter 6 nm, for a transition with an
energy difference of one level spacing.
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I. INTRODUCTION

Spin-dependent electron transport through nanometer-
scale structures has attracted increased interest recently.1,2 In
general, short spin-diffusion lengths in metals make it neces-
sary to investigate spin-dependent transport in micron-scale
metallic structures.3,4 More recently, spin-dependent electron
transport has been investigated in single nanometer-scale
metallic particles,5,6 including spin-polarized transport via
discrete electronic energy levels of a nanoparticle.6

In this paper, we develop a model to explain a previously
reported experiment designed to detect spin-polarized cur-
rents in a normal aluminum nanoparticle connected to ferro-
magnetic leads by weak tunnel barriers.6 These experiments
were carried out on lithographically defined tunnel junctions
as featured in Fig. 1. In principle, spin-polarized current can
be determined by analyzing the TMR= �I↑↑− I↑↓� / I↑↑, where
I↑↑ and I↑↓ are the currents through the nanoparticle in the
parallel and antiparallel magnetization configurations.

It is assumed here that the difference between I↑↑ and I↑↓
arises from the differences in spin-up and spin-down densi-
ties of states in the leads. In sequential electron tunneling via
the nanoparticle, spin-polarized current is a consequence of
spin accumulation, a difference in the chemical potentials of
the spin-up and spin-down electrons in the nanoparticle,
caused by the tunnel electric current and the spin-polarized
densities of states.7–22 Spin accumulation is found only in the
antiparallel magnetization configuration, because only in that
case the ratios of the tunnel-in and tunnel-out resistances of
the spin-up and the spin-down electrons are different. A nec-
essary condition for spin accumulation is that the electron
spin be conserved during the sequential transport process.

There are several compelling reasons to study tunnel mag-
netoresistance �TMR� in nanometer-scale particles at tem-
peratures where discrete energy levels can be resolved. One
is the magneto-Coulomb effect16,23 which can give a strong
TMR signal even without spin accumulation in the nanopar-
ticle. In the regime of well-resolved energy levels the contri-
bution arising from spin-polarized current and spin accumu-

lation can be separated from the contribution arising from the
chemical potential shifts.6 In particular, if the leads’ chemical
potentials vary in a range that corresponds to a nanoparticle
energy range that is in between two successive discrete en-
ergy levels, then electron current through the nanoparticle
will be insensitive to changes in the chemical potentials. In
terms of the I-V curve, which exhibits steplike increases at
bias voltages corresponding to discrete energy levels, TMR
must be measured between the current steps, at voltages
where the current as a function of bias voltage is constant.

Another reason is that nanoparticles of this size exhibit
extraordinarily weak spin-orbit coupling compared to bulk.
In this regime, the stationary electron wave functions are
slightly perturbed spinors.24,25 As a result, the spins of elec-
trons injected from a ferromagnet into the nanoparticle have
exceptionally long lifetimes. This remarkable regime of spin-
polarized electron transport via metallic nanoparticles has
hardly been explored experimentally.5,6 By contrast, most
measurements of electron-spin injection and accumulation in
metals3,4 were obtained in the regime of strong spin-orbit
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FIG. 1. �A� Sketch of sample cross section in the antiparallel
magnetization configuration of the leads. �B� Scanning electron mi-
crograph of a typical device. The tunneling junction with embedded
nanoparticles is located inside the overlap of two Py leads.

PHYSICAL REVIEW B 78, 035435 �2008�

1098-0121/2008/78�3�/035435�15� ©2008 The American Physical Society035435-1

http://dx.doi.org/10.1103/PhysRevB.78.035435


scattering, where any nonequilibrium spin population exhib-
its exponential time decay.

The main result of the prior report6 was that the spin-
polarized current through the nanoparticle saturates quickly
as a function of bias voltage, for tunnel resistances in the G�
range. In that case the saturation is reached typically around
the second or third energy level of the nanoparticle.

The saturation effect was explained by a rapid increase
in the spin-relaxation time with the nanoparticle excitation
energy. By this interpretation, the spin-polarized current
through the nanoparticle is carried only via the ground state
and the few lowest energy excited states of the nanoparticle,
while highly excited spin-polarized states relax faster than
the average sequential electron tunnel process. We conjec-
tured that at the saturation voltage, the relaxation time of the
highest singly occupied energy level of the nanoparticle is
comparable to the electron tunnel rate. The corresponding
spin-relaxation time is in the microsecond range. In compari-
son, the spin-relaxation time in aluminum thin films with a
similar mean-free path would be 5 orders of magnitude
shorter.

Our measurement of the spin-relaxation time was some-
what indirect, because theoretical literature prior to our work
had not predicted any saturation of the spin-polarized current
with bias voltage.7–22 Consequently our explanation of the
saturation was qualitative. The goal of this paper is to obtain
a model of spin-polarized electron transport through a metal-
lic nanoparticle to explain our observations. We use a
method for calculating current via energy levels of the nano-
particle based on rate equations, following Ref. 26. The tun-
neling regime in our devices is different from that used in the
theoretical studies, because the tunnel resistances in our
junctions are highly asymmetric and the spin-relaxation rate
has strong energy dependence.7–22

Other experimental work on arrays and single nanopar-
ticles did not find any saturation of the spin-polarized current
with bias voltage.5,27–31 These experiments do not measure
TMR in the regime of well-resolved energy levels; we be-
lieve that this is a critical measurement to separate the con-
tributions to TMR from the chemical potential shifts. The
analysis of TMR experiments in Ref. 1 uses an energy inde-
pendent spin-relaxation time. It is possible, however, that the
energy dependence of the spin-relaxation rate can be quite
strong.32 We show in this paper that the effect of the energy
dependence on spin-polarized current is significant.

Our model is valid within a specific experimental regime,
outlined in Sec. IV, but it is an easily analyzable and experi-
mentally relevant regime that merits consideration as a large
number of samples fall under this parameter range.

In Sec. II we review the effects of spin-orbit scattering in
metallic nanoparticles, in the context of spin injection and
detection. In Sec. III we discuss various energy-relaxation
rates in the nanoparticle. The criteria of the model validity
are listed on Sec. IV. We then calculate the probability dis-
tribution of the many-electron states in the nanoparticle in
Sec. V and use this to calculate a TMR versus bias voltage
curve that can be fit to experimental data in Sec. III.

II. EFFECTS OF SPIN-ORBIT INTERACTION
ON SPIN-POLARIZED CURRENT

THROUGH A NANOPARTICLE

In a metallic nanoparticle, the stationary electronic wave
functions in zero applied magnetic field are twofold degen-
erate and form Kramers doublets:

�↑�� = u�r���↑� + v�r���↓� ,

�↓�� = u��r���↓� − v��r���↑� .

The mixing between the spin-up and the spin-down compo-
nents is caused by the spin-orbit interaction. In a magnetic
field, the degeneracy is lifted by the Zeeman effect. If the
field is applied in a direction corresponding to �↑ �, the
g-factor is g=2−4�d3r��v�2�2.

The effects of the spin-orbit interactions on the wave
functions are described by a dimensionless parameter �,

� =���	SO



, �1�

where 	SO is the spin-orbit scattering rate and 
 is the aver-
age spacing between successive Kramers doublets in the
particle.24,25,33 The effects of spin-orbit scattering are weak if
��1. In that case, v�r���0, u�r�� is real, and the wave func-
tions �↑ �� and �↓ �� have well-defined spins. In the opposite
limit, ��1, the spin-orbit scattering is strong. In that case,
�d3r��u�2��d3r��v�2�1 /2 and the wave functions have uncer-
tain spin.

Consider an electron with spin up injected by tunneling
from a ferromagnet into the nanoparticle. If the tunnel pro-
cess is instantaneous, the electron will have a well-defined
spin �↑ � immediately after tunneling. In the regime of weak
spin-orbit scattering, where v�0, the initial state has a much
larger overlap with a wave function �↑ �� than with the cor-
responding wave function �↓ ��. As a result, the spin of the
added electron will remain well defined, in principle indefi-
nitely long, barring any coupling between the nanoparticle
and the environment. In that case, the detection of the in-
jected spin can be performed at any time after the injection.

By contrast, in the regime of strong spin-orbit scattering,
the initial state overlaps with both �↑ �� and �↓ ��, nearly
equally. In that regime, the spin of the added electron be-
comes uncertain after a time �SO=1 /	SO, so there is a time
limit �SO for spin detection.

In normal metals, there is a scaling between the spin-
conserving electron-scattering rate and the corresponding
spin-flip electron-scattering rate,32,34

	SO��� = �	��� . �2�

This is known as the Elliot-Yafet relation. � is the energy
difference between the initial and final states. For elastic
scattering, �=0 and 	SO�0�=	SO. The scaling parameter �
depends on the spin-orbit scattering and the band structure.
In aluminum, ��10−4 is larger than anticipated from the
spin-orbit interaction, because of the hot spots for spin scat-
tering in the band structure.35,36

The Elliot-Yafet relation was confirmed in bulk metals
by the conduction-electron-spin-resonance experiments
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�CESR�. In particular, the temperature dependence of the
width of the spin-resonance line, which is proportional to
	SO�kBT�, follows the temperature dependence of the resis-
tivity, which is proportional to the momentum relaxation
rate, in agreement with Eq. �2�. The relation has also been
confirmed more recently in mesoscopic metallic samples, by
the spin-injection and detection experiments.4,37,38 Both
CESR and spin-injection and detection experiments measure
the time decay of a nonequilibrium spin population in the
regime of strong spin-orbit scattering.

In metallic nanoparticles, the validity of the Elliot-Yafet
relation was confirmed experimentally by energy-level spec-
troscopy, in the regimes of weak and moderate spin-orbit
scattering.39 	SO can be measured directly from the
magnetic-field dependence of the energy levels.33 Petta et
al.39 found that in Cu, Ag, and Au nanoparticles, 	SO
��vF /D, where vF is the Fermi velocity, D is the nanopar-
ticle diameter, and � is close to the bulk value, within an
order of magnitude. This confirms the Elliot-Yafet relation
because vF /D is equal to the elastic-scattering rate, assuming
a ballistic nanoparticle. More recently, the Elliot-Yafet rela-
tion was confirmed in Al nanoparticles as well.6

Substituting the level spacing and the Elliot-Yafet relation
into Eq. �1�, we find that there is a characteristic nanoparticle
size,

D� = �F/�� . �3�

Spin-orbit scattering will be weak if D�D� and spin-orbit
scattering will be strong if D�D�. D� is a material depen-
dent microscopic parameter.40 In aluminum, D��102�F
�10 nm.

It follows that both mesoscopic and macroscopic metallic
samples are in the regime of strong spin-orbit scattering.
Only if the nanoparticle diameter is less than about 10 nm
the spin-orbit scattering becomes weak. In samples much
larger than D�, measuring the discrete electron energy levels
and the electron-spin polarization are incompatible, and the
spin-polarized current via resolved energy levels must be
negligibly small. We are not aware of any theory that explic-
itly takes into account the effect of spin mixing in the Kram-
ers doublets on TMR of ferromagnetic single-electron tran-
sistors, e.g., that calculates TMR versus �. Such a theory
would be important because it would set the limits of observ-
ability of spin-polarized current through single-electron tran-
sistors.

In samples much larger than D�, one can still study the
time decay of injected electron spins at a time scale much
shorter than the time necessary to resolve discrete energy
levels �the Heisenberg time � /
�, as demonstrated by the
CESR experiments and spin injection and detection in meso-
scopic metals. In further discussion, we assume D�D�. In
that case, the spin-up band in the ferromagnet is tunnel
coupled to the nanoparticle wave functions with spin up only.

III. ENERGY RELAXATION IN METALLIC
NANOPARTICLES

In this work we study spin-polarized electron current via
discrete energy levels of metallic nanoparticles, in a regime

where the tunnel rate is much smaller than the spin-
conserving energy relaxation rate. The tunnel rate can still be
larger than the spin-flip relaxation rate, so electrons in the
nanoparticle are not in equilibrium.

Consider a nanoparticle with an electron added at energy
�=
, as shown in Fig. 2. The nanoparticle is in an excited
state and it can relax its energy internally. It was shown
that the dominant relaxation process is electron-phonon
interaction.41 One possible path for this relaxation is spin
conserving, as shown in Fig. 2�A�. The spin-conserving re-
laxation rate via phonon emission has been estimated by
Agam et al.,41

	e-ph��� = 	2

3
EF
2 �3e


2��5vs
5 , �4�

where EF=11.7 eV is the Fermi energy, � is the energy
difference between the initial and final states, e is the
elastic-scattering relaxation time, �=2.7 g /cm3 is the ion-
mass density, and vs=6420 m /s is the sound velocity. This
formula is equivalent to

�	e-ph��� �
1

g
EF	 �

�D

3

,

within a prefactor of order 1, where �D is the Debye energy
and g is the dimensionless conductance of the nanoparticle,
g=ETh /
, and ETh=�vF /D is the Thouless energy. This rela-
tion is similar to the formula for bulk electron-phonon scat-
tering rate, except that there is a prefactor 1 /g,41 which origi-
nates from the chaotic nature of the electron wave functions.

We estimate 	e-ph�
��GHz in a nanoparticle with diam-
eter 5 nm, in agreement with experiment.42 All our samples
have tunnel rates significantly smaller than this relaxation
rate, so the nanoparticle can be considered to be relaxed
toward the lowest energy state accessible via spin-conserving
transitions.

The nanoparticle can also relax through a transition de-
picted in Fig. 2�B�, with some rate 	SF���, �=
. This spin-
flip transition involves coupling between electrons and the
environment, which may be the phonon bath or the bath of
nuclear spins. In zero applied magnetic field, the electron
transitions shown in Figs. 2�A� and 2�B� have the same en-
ergy difference between the initial and the final states. We
expect that the transition rate for the spin-flip relaxation pro-
cess is much smaller than the corresponding spin-conserving

A B C

FIG. 2. �A� Spin-conserving energy relaxation process. �B�
Spin-flip energy relaxation process. �C� Electronic state with the
relaxation time equal to the spin-flip relaxation time.
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relaxation rate, because in the spin-flip process there must be
a transfer of angular momentum into the environment.

For example, if the environment is the ion lattice, then the
transfer is governed by the spin-orbit interaction, which is
much smaller than the electrostatic interaction that governs
the spin-conserving transitions. Thus the spin-flip probability
caused by the spin-orbit interaction during a phonon emis-
sion process is very small. It is reasonable to expect that the
Elliot-Yafet scaling is valid for the transitions between cha-
otic wave functions, so that 	SF���=�	e-ph���, but we are
not aware of any theoretical calculation of the spin-
relaxation rate in metallic nanoparticles.

Spin-flip electron transition rates between discrete levels
were obtained theoretically for semiconducting quantum
dots.43,44 The theoretical calculations were in good agree-
ment with the experimental results in GaAs quantum dots.45

The theory of spin relaxation in semiconducting quantum
dots is of no use for metallic nanoparticles, because the
mechanisms of spin-orbit interaction in metals and semicon-
ductors are very different.46

It would be very difficult to measure the transition rate
depicted in Fig. 2�B�, because the relaxation process in Fig.
2�A� competes with that in Fig. 2�B�. We are able to deter-
mine the spin-relaxation rates in tunneling measurements be-
cause it is possible to trap the nanoparticle into a state shown
in Fig. 2�C�. In that case the spin-conserving energy relax-
ation is forbidden by the Pauli principle and the relaxation
rate is equal to the spin-relaxation rate.

IV. REGION OF MODEL VALIDITY

In this paper the tunnel current via discrete energy levels
of a metallic nanoparticle is calculated using the methods
outlined in Ref. 26. We consider spin-polarized tunneling in
the regime closest to our experiments. The following condi-
tions define that regime:

�1� We assume that the tunnel junctions in our samples are
highly asymmetric in resistance. The asymmetry arises be-
cause the tunnel junctions are fabricated using conventional
lithography and evaporation. A weak nonuniformity in the
tunnel junction thickness leads to large asymmetry in the
tunnel resistance.6

In these asymmetric samples, the current through the
nanoparticle is limited by the tunnel rate through the high
resistance junction. The resistance of the low resistance junc-
tions is less directly related to the current and it can be ob-
tained by comparing the amplitudes of Zeeman split energy
levels at positive and negative bias voltage. That procedure
has been described in detail in some special cases in Ref. 26.
Even though our regime is quite different from those special
cases, they are still indicative of the procedure to determine
the resistance ratio. Applying the general formalism of Ref.
26 to our regime we estimate the resistance ratio to be about
25 in sample 1. The results of our model do not depend on
the resistance ratio, as long as the electron discharge rate is
much larger than the electron tunnel-in rate.

�2� We calculate the current in the regime when the first
tunnel step is across the high resistance junction. This step is
followed by an electron discharge via the low resistance

junction. This regime is relatively easy to analyze because
electron discharge is fast and so the charging effects do not
influence the current significantly.26,47 In this case, the nano-
particle spends most of the time waiting for an electron to
tunnel in.

�3� We assume EC�
, where EC is the charging energy.
This assumption is generally valid in metallic nano-
particles.42

�4� We assume that the Coulomb gap in the I-V curve is
much larger than the level spacing; this requires not only that
condition 3 is met, but that the background charge q0 is not
too close to �n+1 /2�e, where n is an integer. In that case the
number of energy levels participating in electron transport is
always �1. Even if an electron tunnels into the lowest un-
occupied single-electron energy level of the nanoparticle,
there will still be a large number of occupied single-electron
energy levels of the nanoparticle that can discharge an elec-
tron.

�5� We assume that the number of electrons on the nano-
particle before tunneling in is even. The calculation for the
odd case is very similar to that for the even case and will not
be discussed here.

�6� We assume that the tunnel rates between the single-
electron states i in the nanoparticle and the leads are much
smaller than the spin-conserving energy relaxation rates,
which are �GHz. In the sample selected for this paper, the
tunnel rate across the high resistance junction is in the MHz
range.

If the spin-relaxation process is taking place and there is a
large asymmetry in junction resistances, an important ques-
tion is which one of the two tunnel rates limits the TMR. We
will assume that the left junction has higher resistance. It
may be tempting to assume that TMR will be highly asym-
metric with bias voltage if �L�	SF�����R, where �L and
�R are the electron tunnel rates between the energy levels of
the nanoparticle and the left and the right leads, respectively,
because, if a spin-polarized electron tunnels in via the high
resistance junction, it will tunnel out via the low resistance
junction before the spin-relaxation process takes place, and,
if the direction of the current is reversed, the order of tun-
neling will be reversed and the spin relaxation will take place
before tunneling out. A similar situation is found in measure-
ments of the energy spectra in samples where �L�	e-ph���
��R, where 	e-ph��� is the spin-conserving energy relax-
ation rate. In that case, electron transport is much closer to
equilibrium in one direction of current than in another direc-
tion of the current, resulting in asymmetric energy-level
spectra.42

It turns out that in spin injection and detection in the
regime defined in this section, TMR is symmetric even if
�L�	SF�����R. The reason is that the spin-polarized cur-
rent is mediated by spin accumulation, which takes place
after a large number of tunnel-in and tunnel-out steps.

Assume that an electron first tunnels in via the low resis-
tance junction and then an electron tunnels out via the high
resistance junction. In that case, it is clear that in order to
observe spin-polarized current, it is necessary that the spin-
relaxation time in the nanoparticle be longer than the tunnel-
out time.

If the bias voltage is reversed, an electron first tunnels in
via the high resistance junction and then an electron tunnels
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out via the low resistance junction. In our regime, it is highly
improbable that the same electron tunnels in and out, be-
cause the number of occupied electron states available for
discharge is �1. To obtain a spin-polarized current in this
case, the spin accumulation in the nanoparticle is necessary,
which takes place after many tunnel-in and tunnel-out steps
and makes it necessary that the spin of the nanoparticle be
conserved during the time that the nanoparticle waits before
an electron tunnels in. Overall, the spin-polarized current and
TMR are comparable in magnitude for the two current direc-
tions, in agreement with our measurements.

V. CALCULATION OF THE SPIN PROBABILITY
DISTRIBUTION IN THE NANOPARTICLE

In this section we obtain the probability distribution
among various many-electron states ��� generated by elec-
tron tunneling via the nanoparticle. The many-electron states
are the Slater determinants of varying single-electron states
of the nanoparticle. In further discussion, the many-electron
states will be referred to simply as states.

The number of electrons and the total spin can vary
among the states. The time dependence of the occupational
probability Q� is given by the masterss equation,47,48

dQ�

dt
= �

���

���→�Q� − ��→�Q�� , �5�

where ��→� is the transition rate from state ��� to state ���.
The steady-state solutions are obtained from the masters

equation using
dQ�

dt =0. The masters equations then mutually
relate the occupational probabilities of various states. In ad-
dition, the occupational probabilities are normalized, that is,
the sum of all occupational probabilities is equal to one. The
masters equation in the steady state and the normalization
condition are sufficient to determine the occupational prob-
abilities. The current through the left barrier is obtained as

IL = �e��
�

�
�

��→�
L Q�, �6�

where ��→�
L is the contribution of the left lead to the transi-

tion rate ��→�, taken with a positive or negative sign de-
pending on whether the transition gives a positive or nega-
tive contribution to the current, respectively.26,47,48

Because the tunnel density of states in the ferromagnets is
spin dependent, Q� will depend on the relative magnetic ori-
entations of the leads. We set the magnetization of the left
ferromagnetic lead to be always up. The magnetization of the
right ferromagnetic lead can be up or down, corresponding to
values of parameter �: If �=1 the magnetizations are paral-
lel, and if �=−1 the magnetizations are antiparallel.

The tunnel densities of states at the Fermi level of spin-up
and spin-down electrons in the left lead are N↑=Nav�1+ P�
and N↓=Nav�1− P�, respectively, where Nav is the average
tunnel density of states at the Fermi level per spin band, and
P is the spin polarization of the ferromagnet. Similarly, the
tunnel densities of states at the Fermi level in the right lead
are N↑=Nav�1+�P� and N↓=Nav�1−�P� for spin-up and
spin-down electrons, respectively.

We assume that electron spin is conserved in the tunnel
process across a single tunnel junction. This assumption is
justified by the fact that samples without nanoparticles have
a large and weakly voltage dependent TMR.6 In that case, the
spin-up �-down� bands in the leads are tunnel coupled only to
the discrete levels in the nanoparticle with spin up �down�.
This is also valid because the single-electron states in the
nanoparticle have well-defined spin, since the spin-orbit cou-
pling in the nanoparticle is weak, as discussed earlier.

The tunnel rate between the leads and a discrete level i is
proportional to the tunnel density of states in the leads and
can be written as �i�1+ P� for spin-up electrons and �i�1
− P� for spin-down electrons, where �i is referred to here as
the bare tunnel rate.

Next we use the masters equation to obtain the current in
the regime defined in Sec. IV. To summarize, at zero-bias
voltage the number of electrons on the nanoparticle is even.
We investigate the region of the I-V curve where only one
extra electron can be added to the nanoparticle, within the
first step of the Coulomb staircase. This is the bias-voltage
region where the saturation of the spin-polarized current with
bias voltage is observed. We consider highly asymmetric
junctions in resistance, RL�RR. A positive bias voltage is
applied on lead R relative to lead L, so first an electron
tunnels into the nanoparticle from the left lead, across the
high resistance junction, and after that the nanoparticle dis-
charges one electron into the right lead via the low resistance
junction. Finally, the internal spin-conserving relaxation rates
are much larger than both tunnel rates, 	�����R��L.

In this regime, it is convenient to divide the states into
four groups. Group 1 contains the states which do not have
an added electron and which are fully relaxed with respect to
spin-conserving transitions. We describe these states in detail
before discussing other groups.

Consider the states which do not have an added extra
electron displayed in Fig. 3. The internal relaxation of the
states in the figure must involve a spin-flip process. So the
states are fully relaxed with respect to spin-conserving tran-
sitions, thus they are in group 1. In the figure, the charging
energy has been added to the single-electron energy levels of
the nanoparticle, to make it clear which unoccupied single-
electron energy levels are accessible for tunneling in from
the left lead. As seen in the figure, the states from group 1
can be labeled �i�, where i=−N ,−N+1, . . . ,N−1,N, where
N=4 for the example shown in the figure.

N is the number of unoccupied single-electron states
above the Fermi level of the nanoparticle into which an elec-
tron can tunnel in from the left lead. It is related to the bias
voltage. If the level spacing 
 is constant, then N

=e
CR

CL+CR
�V−VCB� /
,6 where CL and CR are the capacitances

of the left and the right tunnel junctions, respectively, and
VCB is the Coulomb blockade threshold voltage.49

N, the number of single-electron states that are accessible
for tunneling in, is different from the number of single-
electron states that can discharge an electron �M�. For ex-
ample, if the nanoparticle is in state �0�, then an electron
from the left lead can tunnel only into one of the unoccupied
single-electron levels labeled 1 ,2 , . . . ,N with either spin. Af-
ter an electron tunnels in, the nanoparticle can discharge ei-
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ther the added electron or any other spin-up or spin-down
electron from one of the doubly occupied single-electron
states labeled 0 ,−1,−2, . . . ,−M �M =12 in the figure�, con-
sistent with Coulomb blockade.47,48 If the level spacing is
constant, then M =eVCB /
.

Group 2 contains states which do not have an added elec-
tron and which can internally relax by spin-conserving tran-
sitions. Group 3 contains states with an added extra electron
and which are fully relaxed with respect to spin-conserving
transitions. Finally, group 4 contains the states with an added
extra electron and which can internally relax by spin-
conserving transitions.

The next task is to determine the steady-state occupational
probabilities. Using 	�����R�max(�L ,	SF���), several
approximations can be made in the masters equation.

First, it is shown in the Appendix that the occupational
probabilities Qi of the states from the first group are larger
than the occupational probabilities of the states from the sec-
ond, third, and fourth groups, by a factor of 	���

�L , �R

�L , and 	���
�L ,

respectively. The occupational probabilities of the states
from groups 2–4 can thus be neglected in the normalization
condition, so

�
i=−N

N

Qi = 1,

with an error of order �L

�R �1, in the limit 	�����R

��L���.
Second, if 	�����R�max(�L ,	SF���), the occupational

probabilities of the states from the second, third, and fourth
groups of states can be eliminated from the masters equa-

tions in an explicit way. The elimination leads to a set of
linear equations that relate the occupational probabilities
within the space of states G1. These equations are referred to
here as the renormalized masters equation,

Qi �
m�i

�i→m
ren = �

m�i

Qm�m→i
ren , �7�

where �m→i
ren is the renormalized transfer rate from state �m�

to state �i�.
The transfer �m�→ �i� takes place either directly, via a

spin-flip transition, or indirectly via intermediate states. In
the leading order of �L

	��� ,
�L

�R , �m→i
ren is equal to �m→i �direct

transition rate from m to i� plus the sum of the rates of
transitions from state �m� into the intermediate states,
weighted by the probability of transfer from the intermediate
states into the state �i�:

�m→i
ren = �m→i + �

�

�m→���� → i� . �8�

���→ i� is the probability that the nanoparticle in interme-
diate state ��� will transfer into state �i�.

In the following, we will obtain �i→m
ren in an intuitive way.

This approach emphasizes understanding and enables one to
obtain the occupational probabilities Qi from the renormal-
ized masters equation directly, without explicitly solving the
masters equation. In the Appendix, we will derive �m→i

ren from
the masters equation and show that the intuitive approach is
accurate within controlled approximations.

FIG. 3. Many-electron states from group 1. The black-filled and white-filled circles indicate occupied and unoccupied single-electron
states, respectively. Only one electron can tunnel into the nanoparticle at a time because of the Coulomb blockade; the displayed states are
found before an electron tunnels into the nanoparticle from the left lead and after an electron tunnels out of the nanoparticle into the right
lead. The states are fully relaxed with respect to internal spin-conserving transitions.
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VI. NANOPARTICLE SPIN PROBABILITY DISTRIBUTION
IN ABSENCE OF SPIN RELAXATION

In this section we examine the regime where no spin re-
laxation takes place, 	�����R��L�	SF���. In that case,
all transfers between the states within the space of states �i�
are indirect. They involve a sequential electron tunneling
process, in which the nanoparticle goes into an intermediate
state with an extra added electron. �m→i

ren is equal to the sum
of the rates of transitions from state �m� into the various
intermediate states with an added extra electron, weighted by
the probability of transfer from these intermediate states into
the state �i�.

Consider the nanoparticle in state �i�, which has spin i�
�i�1�. After an electron tunnels into the nanoparticle, the
nanoparticle is in an intermediate state with spin �i+1 /2�� or
�i−1 /2��. Then, after an electron tunnels out, the nanopar-
ticle spin changes again by � /2 or −� /2, so the final spin
after a sequential tunneling process can be �i−1��, i�, and
�i+1��. So the renormalized transfer rate from state �i� into
states �m� is nonzero only if m= i−1 or m= i or m= i+1.

The nanoparticle will transfer from state �i� to state �i
+1� indirectly, if a spin-up electron tunnels in from the left
lead and then a spin-down electron tunnels out into the right
lead. A spin-up electron can tunnel into any of the unoccu-
pied single-electron states k with spin up, k= i+1, i+2, . . .N.
After tunneling in, the nanoparticle instantly relaxes via spin-
conserving transition. A spin-down electron can then tunnel
out from any of the occupied single-electron states j with
spin down, j=−M ,−M +1, . . . ,−i. Then, if the nanoparticle
after tunneling out is left in an excited state, it will relax
instantly into state �i+1�.

The rate for this spin-up-tunnel-in/spin-down-tunnel-out
sequential process is obtained from Eq. �8�, by summing
over all the intermediate states with an added extra electron,

�i→i+1
ren = �

k=i+1

N

�k�1 + P��i�↓� , �9�

where �i�↓� is the probability that the nanoparticle with an
added spin-up electron will discharge a spin-down electron.

The rate at which a spin-down electron discharges is
� j=−M

−i � j
R�1−�P�, where � j

R is the bare tunnel rate between
level j and the right lead. Similarly, the rate at which a
spin-up electron discharges is � j=−M

i+1 � j
R�1+�P�. The prob-

abilities �i�↑� and �i�↓� are proportional to the spin-up and
spin-down discharge rates, respectively. The total discharge
probability is one, �i�↑�+�i�↓�=1, so we obtain

�i�↓� =
�1 − �P�/2

1 +
�1 + �P�� j=−i+1

i+1
� j

R

2� j=−M

−i
� j

R

. �10�

As discussed previously, in our model the number of dis-
charging levels M �1. We make a further assumption that
M �N, which is valid not too far from the conduction thresh-
old for sequential electron tunneling through the nanopar-
ticle. In this case, the denominator in Eq. �10� is close to one,
within a factor of i /M �N /M, and we obtain

�i�↓� =
1 − �P

2
, �i�↑� =

1 + �P

2
.

The approximation N /M �1 enhances the probability to
discharge a spin-down electron at the expense of suppressing
the probability to discharge a spin-up electron. So the ap-
proximation increases the spin-accumulation efficiency. This
approximation is not essential for our model to work, but it
simplifies further calculations.

Substituting into Eq. �9�, we obtain

�i→i+1
ren = Ai+1�P� , �11�

where

Ai�P� =
�1 + P��1 − �P�

2 �
j=i

N

�i. �12�

Now we consider the indirect transfer �i�→ �i−1�. In this
transfer process, an electron with spin down tunnels in from
the left lead, followed by a discharge of an electron with spin
up into the right lead. Following an analysis similar to the
above, we find �i→i−1

ren =A−i+1�−P�. The left-hand side of Eq.
�7� becomes Qi�Ai+1�P�+A−i+1�−P�. Using Eqs. �11� and
�26�, the steady state Eq. �7� becomes

Qi�Ai+1�P� + A−i+1�− P� = Qi−1Ai�P� + Qi+1A−i�− P� ,

�13�

where i=1,2 , . . . ,N. At i=N, in Eq. �13� we must put
AN+1�P�=0 and QN+1=0.

A similar analysis to the above leads to a steady-state
equation for the states with negative nanoparticle spin �−i�,
i=1,2 , . . . ,N:

Q−i�Ai+1�− P� + A−i+1�P� = Q−i+1Ai�− P� + Q−i−1A−i�P� ,

�14�

where i=1,2 , . . . ,N. At i=N, in Eq. �14� we must put
AN+1�−P�=0 and Q−N−1=0. The final equation necessary for
finding Qi is �i=−N

N Qi=1.
We calculate the probability distribution numerically for

arbitrary N, �i, and �i, allowing for fluctuations among dif-
ferent tunnel rates �i across the left tunnel junction. Once the
probability distribution is determined, the current through the
nanoparticle is calculated from Eq. �6�, which can be shown
to be

I

�e�
= �

i=−N

N

Qi
Ii

�e�

= Q0�
j=1

N

2� j + �
i=1

N

Qi� �
j=i+1

N

2� j + �
j=−i+1

i

� j�1 − P��
+ �

i=1

N

Q−i� �
j=i+1

N

2� j + �
j=−i+1

i

� j�1 + P�� . �15�
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To illustrate these equations, we plot the nanoparticle
states along an axis, as shown in Fig. 4. We indicate various
transition rates obtained from Eqs. �11� and �26�. For sim-
plicity we assume that all bare tunnel-in rates are the same
��i=��. In that case,

�i→i+1
ren = �N − i�

�1 + P��1 − �P�
2

� , �16�

and

�i→i−1
ren = �N + i�

�1 − P��1 + �P�
2

� . �17�

The renormalized masters equation is

Qi��N − i���1 + P��1 − �P�/2 + �N + i���1 − P��1 + �P�/2

= Qi−1�N − i + 1���1 + P��1 − �P�/2

+ Qi+1��N + i + 1���1 − P��1 + �P�/2 , �18�

and the current through the nanoparticle, from Eq. �15�, be-
comes

I = �e��2N� − 2�i�P�� , �19�

where �i�=�i=−N
N iQi.

One notices from Fig. 4 that the renormalized rate of tran-
sition �i�→ �i+1� decreases as N− i, when i increases from
zero to N. Similarly, the renormalized rate of transition �i�
→ �i−1� increases as N+ i, when i increases from zero to N.
So, if i is near N, the rate of �i�→ �i−1� is much larger than
the rate of �i�→ �i+1� and in the steady state, Qi must be a
rapidly decreasing function of i when i is near N. Similarly,
Q−i must be rapidly decreasing with i when i approaches N.

In the parallel magnetization orientation ��=1� the tran-
sition rates are symmetric around i=0, as explained in Fig. 4.
In that case Qi has a maximum at i=0, indicating that there is
no spin accumulation in the nanoparticle. This is a situation
similar to spin accumulation in large systems.

In the antiparallel configuration of the leads, the rate of
transition �i�→ �i+1� is proportional to �1+ P�2 and the rate
of transition �i�→ �i−1� is proportional to �1− P�2. In that
case, transition rate �i�→ �i+1� is larger than transition rate

�i+1�→ �i� when i is close to zero, leading to spin accumu-
lation in the steady state. The spin accumulation is limited
because the rate of transition �i�→ �i+1� decreases in propor-
tion with N− i and the rate of transition �i�→ �i−1� increases
in proportion with N+ i, as discussed above.

In Secs. VI A and VII, we focus on limit N�1, where we
find the analytical solution of Qi and I. In the analytic solu-
tion we assume that the tunnel rates �i across the left tunnel
junction are independent of i, �i=�.

A. Spin-polarized current at large bias, Nš1

At the maximum of Qi �the mode�, which is found at i
= i0, the following condition is satisfied: �i0+1→i0

ren =�i0−1→i0
ren .

This leads to

i0 =
2PN

1 + P2 , �20�

in leading order of N in the antiparallel magnetic configura-
tion ��=−1�. Thus, in the most probable state of the nano-
particle, the chemical potential of spin-up electrons is shifted
up by 2i0
 relative to the chemical potential of spin-down
electrons,

�� =
4PN


1 + P2 . �21�

Next we obtain the fluctuations around the mode. We
make a conjecture that the probability distribution Qi is
sharply peaked around the maximum at i= i0, so that the
fluctuations around i0 are weak compared to N. Our numeri-
cal calculations show that rms�i���N, confirming the con-
jecture. We can write i= i0+ j and expand Qi around i= i0:
Qi=Q+Q�j+Q�j2 /2+¯. Substituting into Eq. �18�, we ob-
tain a differential equation, in leading order of �N,

N

2
	1 − P2

1 + P2
2d2Q

dj2 + j
dQ

dj
+ Q = 0. �22�

This linear differential equation can be solved analyti-
cally. Using a boundary condition Q��N��1, the normal-
ized solution is

Qi �
1 + P2

�1 − P2���N
exp�−

�i − i0�2

N	1 − P2

1 + P2
2� , �23�

which is a Gaussian distribution with fluctuation

rms�i� =�N

2

1 − P2

1 + P2 .

A similar analysis leads to the probability distribution in
the parallel magnetic configuration:

Qi =
1

��N
exp	−

i2

N

 , �24�

and I↑↑= �e�2N�, from Eq. �19�.
Figure 5 displays the electron distribution function in the

nanoparticle in the parallel and antiparallel magnetization

|0> |1> |N-2> |N-1> |N>|-N+2>|-N+1>|-N> |-1>

Γ+2Γ+ΝΓ+(Ν+1)Γ+(2Ν−1)Γ+2ΝΓ+

2ΝΓ-(2Ν−1)Γ-ΝΓ- (Ν+1)Γ-Γ- 2Γ-

ΩNΩN-1Ω1

Ω1ΩN-1ΩN

FIG. 4. Rates of tunnel and internal relaxation transitions be-
tween nanoparticle states �i� in Fig. 3 for the antiparallel magnetic
orientations. For simplicity, the bare tunnel rates to the left lead
��k=�� are assumed to be independent of single-electron energy
levels k. �+=��1+ P�2 /2, and �−=��1− P�2 /2. In the parallel
magnetization configuration, substitute �+ and �− with ��
=��1− P2� /2. The wavy line indicates spin-relaxation processes.
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configurations. The difference in chemical potentials of
spin-up and spin-down electrons in the antiparallel state is
proportional to N, the number of energy levels available for
tunneling in, according to Eq. �21�.

Spin accumulation in the nanoparticle is well defined if
the relative fluctuation,

rms�i�/i0 =
1 − P2

2P�2N
,

is smaller than 1. For example, if P=0.1, N must be �12 in
order to have a well-defined spin accumulation. If N�12,
the time dependence of the nanoparticle spin will exhibit
significant noise. In large systems where the level spacing is
negligibly small, N is typically �1 and the fluctuations are
thus negligible.

Using Eq. �19� and the results of this section, the tunnel
magnetoresistance can be shown to be

TMR =
P�i�
N

=
2P2

1 + P2 , �25�

which is the Julliere formula.50 The Julliere value is larger
than the TMR predicted theoretically.20 But this theory is
valid in a different regime from ours and our approximation
slightly enhances the spin-accumulation efficiency, as dis-
cussed earlier. Another recent numerical calculation51 in a
regime similar to our own and an assumption of infinite spin
lifetimes confirm the Julliere value as a maximum of the
TMR in a nanoparticle.

VII. NANOPARTICLE SPIN PROBABILITY
DISTRIBUTION WITH SPIN RELAXATION

If the spin-relaxation rate is not negligible, then the nano-
particle in state �i� can undergo a spin-flip transition into state
�i−1�. The nanoparticle spin changes by � in a spin-flip tran-
sition, hence there are no other final states in the space of
states G1 after a spin-flip transition. The renormalized trans-
fer rate is

�i→i−1
ren = A−i+1�− P� + �i, �26�

where �i is the total transfer rate from �i� to �i−1� that in-
cludes an internal spin-flip transition. This transfer can take

place directly or via intermediate states. Starting from a state
�i� in Fig. 3, an electron occupying the highest single-
electron energy level i with spin up can make a transition
into the lowest unoccupied single-electron energy level −i
+1 with spin down. In this process the energy difference is
�2i−1�
 and the rate is 	SF��2i−1�
. This is a direct transi-
tion.

Alternatively, starting from the same state �i�, an electron
occupying the highest single-electron energy level i with
spin up can make a transition into the next-to-the-lowest un-
occupied single-electron energy level −i+2 with spin down.
The nanoparticle is left in an excited state, which is an inter-
mediate state. This is followed by a spin-conserving relax-
ation transition, which is instantaneous in our model, and the
nanoparticle ends in the state �i−1�. Similarly, starting from
state �i�, an electron occupying the next-to-the-highest
single-electron energy level i−1 with spin up can make a
transition into the lowest unoccupied single-electron energy
level −i+1 with spin down, leaving a hole. This is followed
again by an instantaneous spin-conserving relaxation transi-
tion, which brings the nanoparticle into the state �i−1�. The
energy differences for the spin-flip processes are the same,
�2i−2�
, assuming equal level spacing. The total spin-flip
transition rate with this energy difference is 2	SF��2i−2�
.

Taking into account all spin-flip processes with varying
energy differences, we find the spin-relaxation rate

�i = �
j=0

2i−1

�j + 1�	SF��2i − j − 1�
 . �27�

In general, we expect 	SF��� to be rapidly increasing with
�: 	SF�����n. In that case �i increases with energy faster
than 	SF���: �i� in+2.

In this analysis we neglect higher-order spin-flip transi-
tions �i�→ �i−2�,�i�→ �i−3� , . . ., where the environment
would receive angular momentum 2�,3� , . . ., respectively.
For the low energy states of the nanoparticle, we expect the
probability of the higher-order processes to be much smaller
than the probability of the first-order processes.

If we assume that the spin-relaxation process is governed
by phonon emission and Elliot-Yafet scaling, then �1
=	SF�
�=�	e-ph�
�. In that case, the spin-relaxation rate in-
creases very rapidly with the excitation energy. From Eq.
�27�, we find �2=46�1, �3=371�1, �4=1596�1, and

�i � 1.6�	e-ph�
�i5 = 1.6�1i5. �28�

In the following we will show that the rapid increase in �i
with i causes the saturation behavior of the spin-polarized
current. It is coincidental that the spin-relaxation rate �i of
the nanoparticle increases with fifth-power of the excitation
energy, analogous to its temperature dependence in bulk.

Spin relaxation in the nanoparticle reduces the spin accu-
mulation. Consider again Fig. 4. The difference between
rates �+ and �− moves the distribution mode from zero to
positive i, as discussed in Sec. VI A. The spin-relaxation rate
�i is added to �−, reducing the difference between the up-
ward and downward rates. So the distribution mode moves
downward relative to the mode at �i=0.

Nδ

Mδ

N1/2δ
Nδ

Mδ

∆µ

A B

FIG. 5. �A� and �B� Probability distribution of electrons in par-
allel and antiparallel magnetization configurations, when the num-
ber of levels N and M is large.
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The distribution mode i0 is obtained from �i0+1→i0
ren

=�i0−1→i0
ren . It follows that in the antiparallel state, in leading

order of N, the mode satisfies the following equation:

N
2P

1 + P2 = i0 +
�i0

��1 + P2�
. �29�

We set the spin-relaxation rate �1 to be much smaller
than the tunneling rate �, �1��, because if �1��, the
spin-polarized current would be close to zero, contrary to our
measurements. In that case i0=N�2P / �1+ P2� for small N.

As N increases, both i0 and the spin-relaxation term in-
crease. The spin-relaxation rate �i increases with i much
more rapidly than i �as in+2�. The spin relaxation begins to
reduce the spin accumulation when the two terms become
comparable, around

i0 �
�i0

��1 + P2�
� N

P

1 + P2 .

As N increases further, the spin-relaxation term becomes
dominant, and the mode is obtained from �i0

=N�2P / �1
+ P2�. Assuming �i� in+2 it follows that at large N, which
corresponds to large bias voltage, i0�N1/�n+2�. This is a much
weaker dependence on N than N�2P / �1+ P2�. Thus there is
a crossover in spin accumulation versus N, from linear de-
pendence to a much weaker dependence. Similarly, the spin
accumulation crosses over from linear V dependence into a
much weaker V dependence at large V, because N, the num-
ber of single-electron energy levels available for tunneling
in, is linear with bias voltage V, as discussed before.

One consequence of the rapid increase in �i with i is an
asymmetric spin probability distribution. Our numerical cal-
culations show that the probability that the nanoparticle spin
is below the mode is larger than the probability that the
nanoparticle spin is above the mode. In that case, the average
nanoparticle spin is smaller than the most probable nanopar-
ticle spin, �i�� i0. Nevertheless, as long as the width of the
distribution is much smaller than the mode, one can substi-
tute i0 for �i� in Eq. �19� and the spin-polarized current I↑↑
− I↑↓=2�e�P�i���2�e�Pi0 exhibits the same crossover with
bias voltage. This explains the saturation of the spin-
polarized current with the bias voltage observed in our ex-
periments.

The crossover condition can be rewritten as �i0
=NP�.

Thus, at the crossover point, the rate of the spin-flip transi-
tion with energy difference �� �Eq. �21� corresponds to the
spin-polarized current, e.g., �������I↑↑− I↑↓� / �e�.

Now we discuss the spin-relaxation effects assuming that
the relaxation is mediated by phonon emission, in accor-
dance with the Elliot-Yafet relation �Eq. �28�. Figure 6�A�
displays the distribution function at large bias voltage, N
=50, obtained by numerical calculations for P=0.1. �1 /� is
varied from 0.25 to 0.25�10−7. Also shown is the Gaussian
distribution in Eq. �23�, which is valid in absence of any spin
relaxation. At �1=0.25�10−7 the probability distribution is
very close to the Gaussian, indicating that the spin relaxation
is negligible. As �1 /� increases, the mode shifts downward
and the distribution becomes asymmetric. At �1 /�=0.25,
the mode is located at i0=1, showing that there the spin
accumulation is very weak.

The distribution mode is now obtained from
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0.05

0.00

Q
i

20151050
i

1.5

1.0

0.5
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FIG. 6. �A� Probability distribution functions of the nanoparticle many-electron states in the antiparallel state, when the number of energy
levels available to tunnel in is N=50. �B� Spin-polarized current �I= I↑↑− I↑↓ versus N, the number of energy levels available to tunnel in.
N and bias voltage are related linearly.
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N
2P

1 + P2 = i0 +
1.6�1i0

5

��1 + P2�
. �30�

At large N, when the spin-relaxation term dominates,

i0 � 	2PN�

1.6�1

1/5

,

that is, the mode crosses over from being linear with N to
being proportional to N1/5.

Figure 6�B� displays spin-polarized current versus N ob-
tained by numerical calculations, for different �1 /�. The
crossover from linear to a much weaker dependence is evi-
dent for �1 /�=0.25 and 0.25�10−2. The crossovers in i0
and I↑↑− I↑↓ are equivalent, as discussed before, so at large N,
I↑↑− I↑↓�N1/5.

At �1 /�=0.25, the rate of spin relaxation with energy
difference 
 is small compared to the tunneling rate. But
�2 /�=11.5, so the spin-relaxation rate with an energy dif-
ference �2
 is large compared to the tunneling rate. As a
result, the spin-polarized current crosses over already at the
second single-electron energy level. In particular, we find
that the contribution from the second single-electron energy
level to the spin-polarized current is approximately a third of
the contribution from the first single-electron energy level.

VIII. FITTING

To illustrate how the model derived in this paper can be
used to interpret measurements of the spin-polarized current,
we discuss sample 1 in Ref. 6. In Fig. 7�A� we display the
I-V curve at T=0.03 K, obtained in the parallel magnetiza-
tion configuration and in the regime where the electron dis-
charge rate is much faster than the tunnel-in rate, as required
by our model �we have reversed the sign of bias voltage
compared to that in Ref. 6�. The I-V curve increases in dis-
crete steps at voltages corresponding to discrete energy lev-
els of the nanoparticle. The average tunnel-in rate is obtained
as �= �
I� /2�e�=1.5 MHz,6 where �
I� is the average current
step. The average level spacing 
=0.8 meV corresponds to a
spherical nanoparticle with diameter 6 nm. The electron

g-factors are very close to 2,6 confirming weak spin-orbit
scattering.

The spin-polarized current, �I= I↑↑− I↑↓, versus N is
shown by circles in Fig. 7�B�. At small N, energy levels are
well resolved, and N is observed directly as shown in the
figure. At large bias voltage, where energy levels are broad-
ened, we find N as ec�V−VCB� /
,6 where c is the capacitance
ratio that converts from voltage to nanoparticle energy and
VCB is the Coulomb blockade voltage threshold.

We fit �I obtained from the model versus N, using a fixed
tunnel rate �=1.5 MHz and two fit parameters, P and �1.
We assume �i�1.6i5�1, which is valid when spin relaxation
is mediated by phonons following Elliot-Yafet scaling, as
discussed earlier. The best-fit parameters are P=0.23 and
�1=1.1��1.6 MHz. This value of the spin-relaxation rate
is consistent with what we estimated based on qualitative
discussions in Ref. 6.

The best fit does not fully saturate with bias voltage, as
seen in Figs. 6�B� and 7�B�, but exhibits a crossover to a
weaker dependence with N. Nevertheless, we find the agree-
ment between the model and the data to be qualitatively
good. An outlying point at N=3 in Fig. 7�B� is attributed to
the large tunnel rate via the third energy levels as seen in Fig.
7�A�, because we use a constant tunnel-in rate in the fit. Such
a large tunnel-in rate arises from the natural statistical fluc-
tuations of the tunnel rates among different levels.

If we assume that the spin-relaxation rate is energy inde-
pendent, �i=�1, the spin-polarized current in our model will
have a linear dependence with N. In that case, not only does
the best fit have five times larger chi-square, but also the
best-fit parameters are unphysical, P=0.045 and �1
=0.067�. In particular, the measured spin-polarized current
via the low energy levels would be 25 times larger than the
maximum theoretical value corresponding to TMR=2P2 / �1
+ P2� at P=0.045. Consequently, an energy independent
spin-relaxation rate cannot explain our results, and the en-
ergy dependence of the spin-relaxation rate plays a critical
role in interpreting the spin-polarized current through the
nanoparticle in the regime of well-resolved energy levels and
weak spin-orbit scattering.

Our model neglects higher-order spin-relaxation pro-
cesses. We suggest that there could also be transitions where
two electrons flip their spin simultaneously, emitting a pho-
non with angular momentum 2�. The probability of such a
transition path must be much weaker relative to the probabil-
ity of the first-order process �weaker by a factor of ��. But
with increasing i, the number of transition paths behind a
second-order process would increase much faster with i than
in �i, leading to a larger exponent in the dependence of the
spin-relaxation rate on i. As a result, at high excitation ener-
gies, second-order or even higher-order spin-relaxation pro-
cesses can dominate spin relaxation, leading to another
crossover in �I versus V, weakening the V dependence fur-
ther. Thus, inclusion of the higher-order spin-relaxation pro-
cesses at high excitation energies would improve the agree-
ment between the model and measurements.

IX. CONCLUSION

In conclusion, we have derived a simple model for calcu-
lating spin accumulation and spin-polarized current via dis-
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FIG. 7. �A� I-V curve in sample 1 near the sequential tunneling
threshold. �B� Circles: Spin-polarized current �I= I↑↑− I= I↑↓ versus
N. The line is the best fit to the model.
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crete energy levels of a metallic nanoparticle in the regime of
weak spin-orbit scattering. The model is valid in a relatively
narrow range of sample parameters. However, a large per-
centage of samples fabricated by lithography have param-
eters in that range. The energy dependence of the spin-
relaxation rate causes a significant suppression of the bias
voltage dependence of the spin-polarized current at large bias
voltage. In particular, if the spin-relaxation rate increases
with excitation energy as a power of n, 	SF�����n, then the
spin-polarized current at large bias voltage V will increase
proportionally to V1/�n+2�, which is a dependence much
weaker than linear. The crossover between the linear depen-
dence at low voltage and the much weaker dependence at
large voltage occurs when the spin-polarized current/�e� is
equal to the spin-relaxation rate with the energy difference
given by the spin accumulation. The model leads to the spin-
relaxation rate 1.6 MHz in an aluminum nanoparticle of di-
ameter 6 nm, for a transition with an energy difference of
one level spacing.
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APPENDIX: MASTERS EQUATION

In the steady state the occupational probabilities are time
independent and masters Eq. �5� becomes

Q� �
���

��→� = �
���

Q���→�. �A1�

The occupational probabilities satisfy the normalization con-
dition ��Q�=1.

In this section we reduce the problem of solving Eq. �A1�
into a simpler problem. This is done by identifying a group
of states which have much larger probability than the states
outside the group and then eliminating the occupational
probabilities of the states outside the group.

We use inequalities 	�→���R�max��L ,	�→�
SF �. 	�→� is

the spin-conserving relaxation rate from state ��� to state ���
given by Eq. �4�, in which �=E�−E� is the energy differ-
ence between the initial and the final states. We calculate at
zero temperature, so 	�→�=0 if E��E�. 	�→� is nonzero
only if the initial and the final states have the same spin. In
this regime the electron transport through the nanoparticle is
in equilibrium with respect to spin-conserving relaxation.

	�→�
SF is the spin-flip relaxation rate between the states. It

can be calculated using Eq. �2�. 	�→�
SF is nonzero only if S�

z

−S�
z = ��.
In the analysis, we separate the states that are fully re-

laxed with respect to spin-conserving relaxation processes
from those that are not. The latter states decay at rate 	�→�,
whereas the former states decay at a rate max��L ,	SF� or �R,
depending on whether the number of electrons is even �be-
fore tunneling in after tunneling out� or odd �after tunneling
in before tunneling out�. From Eq. �A1� it follows that the

occupational probabilities of states that are not fully relaxed
with respect to spin-conserving transitions are strongly sup-
pressed in the limit 	�→���R�max��L ,	�→�

SF �, because the
occupational probability of those states have 	�→� in the
denominator.

We are considering only the states with one extra added
electron, as discussed in Secs. IV and V. Let Qi denote the
occupational probabilities of the states without an added ex-
tra electron that are fully relaxed by spin-conserving transi-
tions. These states are from group G1 and are shown in Fig.
3. Let Pj denote the occupational probabilities of the states
with an added extra electron that are fully relaxed by spin-
conserving transitions; these states are from group G3.

Next we consider the excited states. Q�� denotes the occu-
pational probabilities of the states without an added electron
that are not fully relaxed by spin-conserving transitions;
these are the states from group G2. Finally, P�� denotes the
occupational probabilities of the states with an added extra
electron that are not fully relaxed by spin-conserving transi-
tions; these are states from group G4.

The masters equations are next written for the states in
each group. For groups 1 and 2, the equations are

Qi��m�G1
	i→m

SF + ����G2
	i→��

SF

+ � j��G3
�i→j� + ����G4

�i→��
= �m�G1

Qm	m→i
SF + ����G2

Q��
� �	��→i + 	��→i

SF �

+ � j��G3
Pj�� j�→i + ����G4

P��
� ���→i, �A2�

Q����m�G1
�	�→m + 	�→m

SF � + ����G2
�	�→�� + 	�→��

SF �

+ � j��G3
��→j� + ����G4

��→��
= �m�G1

Qm	m→�
SF + ����G2

Q��
� �	��→� + 	��→�

SF �

+ � j��G3
Pj�� j�→� + ����G4

P��
� ���→�, �A3�

where i�G1, ��G2. Rates �i→j�, �i→��, ��→j�, and ��→��
on the left-hand sides are proportional to the tunnel-in rate
�L across the left junction. Similarly, rates � j�→i, ���→i,
��→j�, and ���→� on the right-hand sides are proportional to
the tunnel-out rate �R across the left junction.

For groups 3 and 4, the equations are

Pj��m�G1
� j→m + ����G2

� j→��

+ � j��G3
	 j→j�

SF + ����G4
	 j→��

SF 
= �m�G1

Qm�m→j + ����G2
Q��

� ���→j

+ � j��G3
Pj�	 j�→j

SF + ����G4
P��

� �	��→j + 	��→j
SF � ,

�A4�
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P����m�G1
��→m + ����G2

��→��

+ � j��G3
�	�→j� + 	�→j�

SF � + ����G4
�	�→�� + 	�→��

SF �
= �m�G1

Qm�m→� + ����G2
Q��

� ���→�

+ � j��G3
Pj�	 j�→�

SF + ����G4
P��

� �	��→� + 	��→�
SF � ,

�A5�

where j�G3, ��G4.
First we estimate the orders of magnitude of the occupa-

tional probabilities. The transition rates are assumed roughly
constant to within an order of magnitude and pulled out of
the sum, and Q, Q�, P, and P� refer to the probability of
finding the particle in a state from groups 1, 2, 3, and 4,
respectively.52 Entering the orders of magnitude of various
terms in Eq. �A3�, we obtain Q��	+	SF+�L��Q	SF+Q��	
+	SF�+ P�R+ P��R, where 	 and 	SF indicate orders of mag-
nitude of 	�→� and 	�→�

SF , respectively. In the limit 	��R

�max��L ,	SF�, one gets Q�	�Q	SF+ �P+ P���R.
Similarly, substituting orders of magnitude in Eq. �A3�,

one obtains Q�	SF+�L��Q	SF+Q��	+	SF�+ P�R+ P��R. In
the limit 	��R�max��L ,	SF�, one gets Q�	SF+�L��Q�	
+ �P+ P���R. Combining the two order of magnitude esti-
mates, we obtain

Q� � Q
	SF + �L

	
� Q

max�	SF,�L�
	

� Q . �A6�

Hence, the occupational probabilities Q�� of the excited states
from group G2 are much smaller than the occupational prob-
abilities Qi of states that are fully relaxed with respect to
spin-conserving transitions, which is an expected result.

Next, we substitute into Eq. �A5� the orders of magnitude
of various terms and obtain P���R+	+	SF��Q�L+Q��L

+ P	SF+ P��	+	SF�. Using 	��R�max��L ,	SF� and Eq.
�A6�, one obtains P�	�Q�L+ P	SF. Finally, Eq. �A4� leads
to order of magnitude estimate P��R+	+	SF��Q�L+Q��L

+ P	SF+ P��	+	SF�, which leads to P�R�Q�L+ P�	. Com-
bining the estimates, we obtain

P � Q
�L

�R � Q, P� � P
�R

	
� P . �A7�

Thus, the occupational probabilities of states with an
added electron and fully relaxed with respect to spin-
conserving transitions are much smaller than the occupa-
tional probabilities of states without an added electron and
fully relaxed with respect to spin-conserving transitions, as
expected from the large asymmetry in tunnel resistance. In
addition, the occupational probabilities of excited states with
an added electron are much smaller than the occupational
probabilities of states with an added electron and fully re-
laxed with respect to spin-conserving transitions.

Using the estimates in Eqs. �A6� and �A7�, the leading
order of the masters equation for groups 1 and 2 are

Qi��m�G1
	i→m

SF + ����G2
	i→��

SF

+ � j��G3
�i→j� + ����G4

�i→��
= �m�G1

Qm	m→i
SF + ����G2

Q��
� 	��→i

+ � j��G3
Pj�� j�→i, �A8�

Q����m�G1
	�→m + ����G2

	�→��
= �m�G1

Qm	m→�
SF + ����G2

Q��
� 	��→�

+ � j��G3
Pj�� j�→�, �A9�

where i�G1, ��G2. For groups 3 and 4, the equations are

Pj��m�G1
� j→m + ����G2

� j→��
= �m�G1

Qm�m→j + ����G4
P��

� 	��→j , �A10�

P���� j��G3
	�→j� + ����G4

	�→��
= �m�G1

Qm�m→� + ����G4
P��

� 	��→�, �A11�

where j�G3, ��G4. The relative errors of the terms
in these equations are smaller than the maximum of
max��L ,	SF� /	, �L /�R, 	SF /�R, and �R /	.

Now we begin the process of elimination. The first step is
to eliminate the excited states. In principle, the space of ex-
cited states is very large if the excited states include multiple
electron-hole pairs.41 These multiply excited states are gen-
erated by tunneling if the particle remains excited longer
than the time of a sequential tunneling cycle, so in our limit
the occupational probabilities of the excited states with mul-
tiple electron-hole pairs are negligibly small. In this regime,
the space of excited states G2 can be restricted to the excited
states that can undergo a direct spin-conserving transition
into a state from G1. Similarly, the space of excited states G4
can be restricted to those excited states that can undergo a
direct spin-conserving transition into a state from G3.

Consider Eq. �A11�, which represents an equilibrium con-
dition for a state ���, ��G4. For a given state �j�, j�G3, we
select a subspace within G4, such that the nanoparticle in a
state from the subspace can relax via spin-conserving transi-
tion into the state �j�. That is, for any state ��� within the
subspace, 	�→j�0, and for any state ��� outside the sub-
space, 	�→j =0. Then we sum Eq. �A11� over the subspace,
which leads to

���G4
� � j��G3

P��	�→j� + ���G4
� ����G4

P��	�→��

= �m�G1
���G4

� Qm�m→� + ���G4
� ����G4

P��
� 	��→�,

where ���G4
� sums only over the states within the subspace,

so that 	�→j�0.
In the second term on the left-hand side of this equation,

where � is restricted within the subspace, �� also becomes
restricted within the subspace, because of the spin conser-
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vation �since states ��� and �j� have the same spin, and
states ���� and ��� also have the same spin, �� must be re-
stricted within the subspace�. The second term becomes
��,���G4

� P��	�→��. Similarly, in the second term on the right-
hand side, 	��→� is nonzero only if states ���� and ��� have
the same spin as the spin in state �j�, and the term becomes
��,���G4

� P��
� 	��→�. Exchanging the indices � and ��, the

second terms on the left-hand side and the right-hand side
cancel.

Now consider the first term on the left-hand side. As
stated above, only those states ��� that can undergo a spin-
conserving transition into the state �j� are in the sum over �.
It follows that 	�→j� is nonzero only if j�= j, since varying
states �j�� from space G3 have different spin. The first term
on the left-hand side becomes ���G4

� P��	�→j. We can remove
the prime and sum instead over the entire space G4, because
	�→j automatically restricts the sum to the subspace. One
obtains

���G4
P��	�→j = �m�G1

Qm���G4
� �m→�.

The term on the left-hand side of this equation is the same
as the second term on the right-hand side of Eq. �A10� and
thus it can be eliminated, which leads to

Pj = �
m�G1

Qm

�m→j + ���G4
� �m→�

�m�G1
� j→m + ����G2

� j→��

. �A12�

Next we perform a similar elimination process using Eqs.
�A8� and �A9�. For a given i�G1, we sum Eq. �A9� over the
excited states ���, ��G2, for which 	�→i�0,

���G2
� �m�G1

Q��	�→m + ���G2
� ����G2

Q��	�→��

= ���G2
� �m�G1

Qm	m→�
SF + � j�G3

���G2
� Pj� j→�

+���G2
� ����G2

Q��
� 	��→�.

Following a similar analysis to that above, the second term
on the left-hand side is equal to the third term on the right-
hand side, and the first term is nonzero only for m= i, so one
obtains

���G2
Q��	�→i = �m�G1

Qm���G2
� 	m→�

SF

+ � j�G3
Pj���G2

� � j→�.

Substituting this equation and Eq. �A12� into Eq. �A8�,
and following several lines of algebra, one obtains the renor-

malized masters equation in the space of states G1, with the
renormalized rate

�m→i
ren = 	m→i

SF + ���G2

	�→i�0
	m→�

SF

+ � j�G3 ��m→j + ���G4

	�→j�0
�m→��

�
� j→i + ���G2

	�→i�0
� j→�

�m��G1
� j→m� + ���G2

� j→�

. �A13�

This expression is the same as that obtained intuitively in
the main text. The right-hand side in the first row is the
renormalized spin-flip rate, �m→i=	m→i

SF +���G2

	�→i�0	m→�
SF .

	m→i
SF is the direct spin-flip transition rate and the sum is

taken over the excited states that can undergo a spin-
conserving transition into the final state �i�.

In the spin-flip process the spin decreases by �, hence
	m→ı

SF �0 only if �Sz=Sz
i −Sz

m=−�, and 	m→�
SF �0 only if

�Sz=Sz
�−Sz

m=−�. It follows that �m→i�0 only if i=m−1.
In that case, one can denote �m→m−1=�m=	m→m−1

SF

+���G2

	�→m−1�0	m→�
SF . �m in this equation is the renormalized

spin-flip rate given by Eq. �27�.
Next we examine the second and third rows of Eq. �A13�.

The sum over j is taken over intermediate states with an
extra added electron. Writing the rates �x→y explicitly �which
is not shown here�, it can be seen that the rates of tunneling
in to the various unoccupied single-electron states are multi-
plied by the rates of tunneling out from the various occupied
single-electron states. The contribution to �m→i

ren is nonzero
only if i=m−1 or i=m or i=m+1, because a sequential tun-
neling process changes the spin by −1 or 0 or 1.

Consider the expression �m→m+1
ren in Eq. �A13�. In the sec-

ond row term � j�G3
��m→j +���G4

	�→j�0�m→��� �¯�, j indicates
the state obtained by adding an electron into the lowest un-
occupied single-electron level with spin up. The sum over �
is taken over the excited states that can relax via spin-
conserving transition into �j�. One obtains � j�G3

��m→j

+���G4

	�→j�0�m→��� �¯�=�k=m+1
N �k�1+ P�� �¯�, where �k is

the tunnel-in rate across the left lead into an unoccupied
single-electron energy level k. This expression is the same as
that in Eq. �9�.

The third row in Eq. �A13� can be interpreted as the prob-
ability that the nanoparticle in state j will discharge a spin-
down electron, which is the same as �i�↓� in Eq. �9�. Sub-
stituting the tunnel rates into Eq. �A13� explicitly, one finds
that the third row of Eq. �A13� is the same as Eq. �10�.

In summary, the model of electron transport from the in-
tuitive approach is derived in this appendix, using the mas-
ters equations.
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