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We report a systematic theoretical study of the collective �-electronic excitations in boron nitride double-
walled nanotubes �BN-DWNTs�. For simplicity, it is assumed that both shells �inner and outer� of such tubes
have a zigzag achiral structure. Taking into account intershell Coulomb coupling and neglecting intershell
electron tunneling, we introduce the effective dynamic-dielectric-response function of the BN-DWNTs, which
depends on frequency �, wave number q, and angular momentum L. An explicit expression for this function
is derived within the random-phase approximation using standard many-body techniques based on the Green’s
function method. Numerical results are presented for the wave-number dispersion and damping of the
�-plasmon modes with different L’s, demonstrating a unified picture of the �-plasmon-energy variation with q
for the BN-DWNTs of different diameters. According to this picture, the spectrum of the � plasmons, which
are shown to be long lived and hence well-defined collective electronic excitations in the BN-DWNTs, consists
of a set of nonintersecting upward-dispersed branches, which are well separated in their energies at small
values of q, but which tend to merge with increasing q. Each of the branches corresponds to one and only one
value of the angular momentum L=0,1 ,2 , . . . and none of the branches starts from q=0. The present calcu-
lations also show that the � plasmons in the BN-DWNTs can exist even at those q values at which the
�-plasmon modes are not supported by either of the nanotube shells alone. It is found that the threshold value
of the wavelength, at which the L=0 �-plasmon dispersion curve in the BN-DWNTs makes its start, is
redshifted as compared to that in the inner and outer nanotube shells if they are considered separately. The most
important features of our calculated results seem to be consistent, more or less reasonable, with those derived
from the recent electron-energy-loss-spectroscopy experiment of Fuentes et al. �Phys. Rev. B 67, 035429
�2003�� on a macroscopic assembly of BN multiwalled nanotubes of different diameters and chiralities, thus
suggesting a universality of the properties of � plasmons in double-walled and multiwalled BN nanotubes.
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I. INTRODUCTION

Initiated by the pioneering work of Rubio et al.1 in 1994,
boron nitride nanotubes �BN-NTs� have been the subject of
intense theoretical and experimental investigations during
the past decade. In particular, there have been a few research
work devoted to the study of BN-NTs by means of high-
resolution electron-energy-loss spectroscopy �EELS�.2–6

These EELS experiments have been carried out on both BN
multiwalled nanotubes �BN-MWNTs� �Refs. 2–6� and BN
single-walled nanotubes �BN-SWNTs�.6 For the latter ones,
we have recently developed a theory that allows one to treat
collective �-electronic excitations,7 which are directly
probed by EELS. The theory given in Ref. 7 is based
on the well-known Ehrenreich-Cohen self-consistent-field
approach8 and explicitly takes into account the electronic
band structure of the nanotubes, which we have calculated
within a two-band tight-binding model using the zone-
folding approximation, generalizing previous calculations
performed for single-walled carbon nanotubes �CNTs�.9 The
model employed in Ref. 7, though rather approximate, has
the advantage of being conceptually and mathematically
simple, enabling the basic properties of the collective plas-
mon modes in BN-SWNTs to be easily analyzed. We are
unaware, however, of any theoretical studies of such proper-
ties relevant to BN-MWNTs. Meanwhile, at present there

exist experimental data regarding those properties, obtained
by Fuentes et al.5 using momentum-resolved EELS. In the
low-loss region �from 2 to 14 eV�, the spectra measured in
Ref. 5 exhibit a pronounced peak structure, which clearly
results from excitation of �-plasmon modes. The position
of the energy-loss peak was found to be shifted from 7.7 to
9.3 eV with increasing momentum transfer q from 0.1 to
0.6 Å−1, thus suggesting a rather strong spatial dispersion of
the �-plasmon modes excited in the experiment.

At this point we should emphasize that, although the es-
sential physics involved in the problem under discussion is
generally quite clear, a full theoretical analysis of the experi-
mental data obtained in Ref. 5 is still lacking. A difficulty
associated with this task is that the experiment5 has been
performed on a macroscopic assembly of BN-MWNTs of
different diameters and chiralities, which have not, however,
been characterized individually. Besides, the area probed by
the primary electron beam was as large as 1 mm2 so that an
average signal from a great number of the nanotubes was
measured in the experiment. As to the isolated BN-MWNTs,
to the best of our knowledge, no momentum-resolved EELS
experiments on such tubes have been carried out so far.
Therefore, it may be worthwhile to present theoretical infor-
mation on the properties of collective electronic excitations
in individual BN-MWNTs, which might turn out to be useful
as a guideline for future experimental studies. It should be
noted, however, that, though it is in principle possible to
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develop a corresponding theory for BN-MWNTs containing
an arbitrary number of coaxial tubules �or shells�, such a
theory would inevitably be rather complicated, and, as a re-
sult, the underlying physics of the problem might be some-
what hidden. Therefore, as a first step toward a full theory, it
seems to be reasonable to consider a simple special case,
enabling a more transparent analytic treatment to be devel-
oped. Following this line, we focus our attention here on
the simplest BN-MWNTs realization—namely, on BN
double-walled nanotubes �BN-DWNTs�. Note that a direct
synthesis of such tubes is now available using arc-discharge
techniques10 �for a brief review of the subject, see, e.g.,
Ref. 11�.

It is the main objective of the present paper to provide
what we believe to be the first theoretical treatment of the
collective �-electronic excitations in individual BN-DWNTs.
The approach we are developing here is based on a standard
field-theoretical formalism,12,13 which is best suited for treat-
ing collective excitations of many-particle systems. All the
calculations are carried out within the framework of the well-
known Bohm-Pines random-phase approximation �RPA�.14

The formalism allows the effective dynamic-dielectric-
response function of BN-DWNTs to be introduced in a natu-
ral way, and an explicit analytic expression, derived for this
function, is then used to find the wave-number dispersion
and damping of the �-plasmon modes in those systems by
numerical means. Based on our calculations we conclude
that a BN-DWNT can support the collective �-electronic
excitations even at those values of the wave number q at
which the �-plasmon modes do not exist in either of the
shells �inner and outer� of the nanotube if they are taken
separately. We also find that our theoretical results for the
�-plasmon dispersion in BN-DWNTs appear to account sat-
isfactorily for its main features observed in the experiment of
Fuentes et al.,5 thus suggesting that our findings are relevant
not only to individual BN-DWNTs, which we are concerned
with here, but, to some extent, to an assembly of BN-
MWNTs as well. The reasons for such a rather surprising
�but not quite unexpected� result, indicating a universality of
the properties of � plasmons in double-walled and multi-
walled BN nanotubes, deserve attention to be paid to and
will be discussed further below.

The rest of the paper is arranged as follows. In Sec. II, we
first formulate the model we use and present the formalism
that forms the basis of the model calculations of the
�-plasmon dispersion in BN-DWNTs. The results of those
calculations and their discussion are given in Sec. III. In that
section, our theoretical �-plasmon dispersion curves are also
compared with the experimental data of Fuentes et al.5 Fi-
nally, we give a summary of our main conclusions in Sec. IV.

II. MODEL AND THEORETICAL FORMALISM

In order to describe the collective electronic excitations in
an individual BN-DWNT consisting of two coaxial BN-
SWNTs, some knowledge of the geometrical structure of the
latter is necessary. The geometry of BN-SWNTs is conven-
tionally specified by the integer-valued dual index �l1 , l2�,
which characterizes the way of rolling up a two-dimensional

hexagonal BN sheet to form a cylinder. In terms of this pair
of integers, the nanotube circumference vector C is defined
as

C = l1a1 + l2a2, �1�

where a1 and a2 are the primitive lattice translation vectors
of the above-mentioned BN sheet, making an angle of 120°
and having the length equal to the lattice constant a0=�3d
�where d=1.45 Å is the length of the B-N bond�. With the
preceding notation, the indices �l ,0�, �2l , l�, and �l1 , l2� with
l1� l2�0 correspond �in sequential order� to zigzag, arm-
chair, and chiral BN-SWNTs. It was reported that BN-
SWNTs, synthesized by means of different techniques,2,15,16

exhibit a chirality preference in having a zigzag structure.
The situation is, however, much less clear for BN-DWNTs.
In particular, to the best of our knowledge, no study has been
reported so far on the chiral indices of two shells �inner and
outer� of such tubes fabricated by using a plasma-arc
method,10 which yields macroscopic amounts of pure BN-
DWNTs. Obviously, further experimental investigations are
required to clarify this issue. On the other hand, theoretical
band-structure calculations17–21 predict that, unlike CNTs, all
BN-NTs are semiconductors with a nearly constant band-gap
energy of about 5.5 eV �except possibly the thinnest stable
nanotubes, which can have a smaller band gap�, independent
of their radius and helicity and of whether the nanotubes are
single-walled or multiwalled. It seems therefore reasonable
to assume that representative results for characteristics of the
collective electronic excitations in BN-DWNTs can be ob-
tained by considering the simplest possible model in which
two coaxial zigzag BN-SWNTs with the chiral indices �l1 ,0�
and �l2 ,0� form a BN-DWNT �l1 ,0�@ �l2 ,0� with the inner-
most radius R1= l1a0 /2� and the outermost radius R2
= l2a0 /2�. In what follows, we focus our attention on just
this system, shown schematically in Fig. 1. Generalization, if
needed, to BN-DWNTs composed of coaxial tubule pairs
with another helical structure is straightforward within the
scheme we develop here, but it is beyond the scope of the
present paper. Certainly, without a detailed theoretical analy-
sis, one can only speculate about the effect of chirality on the
basic properties of plasmons in BN-DWNTs. However, we
guess its impact is minor. The reason for this is that the
intertube electron transfer in BN-DWNTs is negligible �see
further below� so that the plasmon behavior in those tubes
should be affected mainly by the electronic structure of the
constituent BN-SWNTs, which was shown to be actually in-
dependent of their chirality.17–21

To conclude the specification of the model just described,
it should be noted that the distance between the inner shell
and the outer one in BN-DWNTs is estimated to be equal to
approximately 3.6 Å.10 Because of this relatively large sepa-
ration, which is much larger than the distance between
nearest-neighboring atoms in each of the shells, the intershell
electron transfer is expected to be small and can be safely
ignored in treating the collective �-electronic modes �� plas-
mons� in those tubes since it can scarcely generate qualita-
tively new physics in the energy scale ��7–10 eV� typical
of the � plasmons. In this energy range, no drastic modifi-
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cation of the �-band electronic structure of the tubes can also
be expected on account of the weak van der Waals interac-
tion between the atoms of one shell and those of the other in
the same tubule. It follows from the above considerations
that in the problem at hand, both the shells can be viewed as
being coupled with one another only via long-range Cou-
lomb interaction between the � electrons, which keep in
their original shells after two-particle scattering events. An
interesting question that arises here is how this interaction
manifests itself in the properties of the �-plasmon excita-
tions supported by the whole double-walled tubule system
under consideration; in particular, one may inquire if their
characteristics are distinctly different from those of � plas-
mons in either of the constituent BN-SWNTs. Our results,
which will be presented in detail below, show that the answer
is clearly affirmative.

These details can be quantified by developing a system-
atic and analytic approach, which would allow us to charac-
terize the � plasmons in the BN-DWNTs �l1 ,0�@ �l2 ,0� in
terms of the band-structure parameters of the constituent zig-
zag BN-SWNTs. With this end in view, it seems to be appro-
priate to rely on an analytic model of the electronic structure
of the BN-SWNTs, developed in our previous paper7 on the
basis of the nearest-neighboring tight-binding approximation
by using the zone-folding method. Details of the model are
given in Ref. 7 and need not be repeated here. In this paper,
we present only the main outcome of the model—namely,
the expression for the �-electron-energy dispersion in a BN-
SWNT �l ,0�, which is given by

Em��k� = � ��2 + t0
2�1 + 4 cos2	�m

l

��

+ ��4 cos	�m

l

cos	3kd

2

��1/2

. �2�

Hereafter the upper �lower� sign refers to the conduction �va-
lence� band, m=0, �1, �2, . . . , � �l−1� is the azimuthal
quantum number labeling the size-quantized energy sub-
bands, and k is the one-dimensional wave vector along the
tube axis, which takes values within the one-dimensional
Brillouin zone of the nanotube, i.e., k� �−kBZ,kBZ�, where
kBZ=� /3d. The energy � bands of Eq. �2� are parametrized
by the difference 2� of energies of � electrons localized on
the B and N sites and by the transfer integral t0 between �
orbitals of nearest-neighboring B and N atoms.

Following Ref. 7, the periodic part of the Bloch function
for those bands can be approximately expressed as

umk��r� = Cmk�
�1� UK

�1��r� + Cmk�
�2� UK

�2��r� , �3�

where the superscripts 1 and 2 denote the two sublattices
occupied by B and N atoms, respectively,

Cmk�
�1� = −

t0�eikd + 2 cos��m/l�e−ikd�
�2Em+�k��Em+�k� � ��

, �4�

Cmk�
�2� = ��Em+�k� � �

2Em+�k�
, �5�

UK
�1��r� =

1
�N


n

��r − Rn�exp�− iK�r − Rn�� , �6�

UK
�2��r� =

1
�N


n

��r − Rn − d�exp�− iK�r − Rn − d�� .

�7�

Here K= �2� /3d��1 /�3,1� is the wave vector for the K point
of the two-dimensional hexagonal Brillouin zone of the BN
sheet, Rn stands for the position vector of the nth unit cell, d
denotes the vector connecting the two atoms within a unit
cell, ��r−Rn� is the wave function of a normalized � orbital
for an atom located at Rn, and N is the total number of the
sites occupied by B and N atoms, which is given by

N =
4Al

3d
, �8�

where A is the normalized length of the nanotube. Note that
the zone-folding-derived �-electronic states of the zigzag
BN-SWNTs �Eq. �3�� are double valley-degenerate due to the
presence of the states associated with the valley centered at
the K� point �with the wave vector K�= �2� /3d��2 /�3,0�� of
the original Brillouin zone of the BN sheet.

We next turn to the description of the Coulomb interaction
among the � electrons of a BN-DWNT in the geometry il-
lustrated in Fig. 1. As we remarked earlier, without elec-
tron tunneling between two shells of the nanotube, only the
two-particle scattering processes, in which the electrons keep

x
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А

-e

-e

R1

R2

φ/

φ

1r

/
2r

2 1−/r r

FIG. 1. Schematic illustration of the BN-DWNT with length A,
the innermost radius R1, and the outermost radius R2. The vectors r1

and r2� specify the positions of two � electrons �marked with heavy
dots� localized on shells 1 and 2 of the nanotube, respectively. The
angles 	 and 	� of the cylindrical coordinate system are also
shown.
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in their original shells, should be taken into account.
Since each of the shells possesses translational symmetry
along the tubule axis and rotational symmetry around it,
the transferred momentum q and the angular momentum
L=0, �1, �2, . . . corresponding to those symmetries must
be conserved in the process of the scattering. It is therefore
advantageous to introduce a Fourier representation of the
Coulomb interaction in the variables q and L. In the cylin-
drical coordinates �R ,	 ,y� shown in Fig. 1, the Fourier-
series expansion of the Coulomb potential V�ri−r j�� between
two electrons at point ri and r j� is given by

V�ri − r j�� = 
L=−






q

Vij�q,L�eiL�	−	��eiq�y−y��, �9�

with the associated Fourier coefficients

Vij�q,L� =
2e2

�bA
��ijIL�qRi�KL�qRi��

+ ��1 − �ij�IL�qR1�KL�qR2��, R1  R2, �10�

where the two subscripts i=1,2 and j=1,2 label the shells of
the nanotube, �b is a background dielectric constant describ-
ing the screening effect of the interaction due to the polar-
ization of core electrons, �ij is the Kronecker delta symbol,

and IL�qRi� and KL�qRi� are the Lth-order modified Bessel
functions of the first and second kinds, respectively.

Due to the symmetry properties mentioned above, the col-
lective �-electronic modes of the system under consideration
may also be specified by the angular-momentum quantum
number L and the component of the wave vector q along the
tube axis. The frequencies �L�q� of those modes can be cal-
culated by using standard many-body techniques based on
the Green’s function method.12,13 Within this field-theoretical
approach, the �-plasmon frequencies are defined as poles of
the effective screened Coulomb interaction Vij between the
� electrons, which depends only on �, q, and L. To obtain
the basic equation that serves for determining the poles, it
is sufficient to consider two functions V11�� ,q ,L� and
V21�� ,q ,L�. Within the RPA, both the functions can be ob-
tained by solving a pair of the coupled algebraic equations
shown diagrammatically in Fig. 2�i�,

V11��,q,L� = V11�q,L� + V11�q,L��1��,q,L�V11��,q,L�

+ V12�q,L��2��,q,L�V21��,q,L� , �11�

V21��,q,L� = V21�q,L� + V21�q,L��1��,q,L�V11��,q,L�

+ V22�q,L��2��,q,L�V21��,q,L� . �12�

i j

i j
( )(a) , ,ij q Lω =V

i j

ji
( )(b) ,ijV q L =

,mk ω±

j j
( )(c) jmkG ω± = ( )(d) , , ,j k q m L−+Λ =

( )(e) , , ,j k q m L∗
−+Λ = ( )(f) , , ,j k q m L+−Λ =

( )(g) , , ,j k q m L∗
+−Λ =

j j

j j

jj

/, , ,m L k q ω ω+ + + +

/,mk ω−

j j

jj

/, , ,m L k q ω ω+ + − +

/,mk ω+

jj
( ) ( ), , , ,j jP q L P q Lω ω−+ +−= +( )(h) , ,j q LωΠ =

= +

1 1 1 1

11

1

1

1

1

1 1

111 1

=(i) +

1

1

1

1

2 2

22

+

2 1 2 1

12

2

2

1

1

1 1

112 1

= +
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2
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1

2 2

22

+

FIG. 2. �a�–�h� define the basic graphical vo-
cabulary, i.e., the Feynman diagrams representing
the basic quantities Vij, Vij, Gjmk�, � j−+�+−�,
� j−+�+−�

� , and � j of the problem. The indices i and
j denote the shells of the nanotube, Vij is the ef-
fective screened interaction, Vij is the “bare”
Coulomb interaction, Gjmk� is the Green’s func-
tion of the noninteracting � electrons, � j−+�+−�
and � j−+�+−�

� are the vertices at which Coulomb
lines join fermion lines, and � j is a generalized
irreducible interband polarization function. �i�
Diagrammatic representation of a pair of coupled
equations for the effective interactions V11 and
V21 in the RPA.
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Here � j�� ,q ,L� is a generalized interband polarization func-
tion represented by “bubble” diagram �h� in Fig. 2 and in-
volving two terms,

� j��,q,L� = Pj−+��,q,L� + Pj+−��,q,L� , �13�

with

Pj−+��,q,L� = 
m=−�lj−1�

lj−1

4A�
−kBZ

kBZ dk

2�
�� j−+�k,q,m,L��2i

�� d��

2�
Gjm+L,k+q+��� + ��Gjmk−���� ,

�14�

and with Pj+−�� ,q ,L� of the same form as in Eq. �14�, but
with the subscript + replaced by − and vice versa. The factor
4 in front of the integral over k in the above equation is due
to the spin and the valley degeneracies of the �-electronic
states in each of the nanotube shells �for details, see Ref. 7�.
The two other quantities entering Eq. �14� are the vertex
function � j−+�k ,q ,m ,L� �diagram �d� in Fig. 2� and the
Green’s function Gjmk���� of the noninteracting � electrons
�diagram �c� in Fig. 2�. The former is defined as the follow-
ing matrix element for the transitions between the valence
band and the conduction one,

� j−+�k,q,m,L� =� umk−
� �r�um+L,k+q+�r�dr , �15�

where the integration extends over a unit cell. Similarly, we
define the interaction vertex � j+−�k ,q ,m ,L�, represented by
diagram �f� in Fig. 2, as the above expression with the sub-
scripts + and − interchanged. As to the Green’s function
Gjmk����, it can be written in a standard form with the as-
sumption of no importance of temperature effects,

Gjmk���� = ��� − Ejm��k� + i� · sign ��−1, �16�

where �→0.
With the definition of the vertex function given above and

using Eqs. �3�–�8�, it can be easily shown that the vertex
factor �� j−+�2 in Eq. �14� is expressed as

�� j−+�k,q,m,L��2 = �� j+−�k,q,m,L��2

=
1

2
�1 −

�2 + t0
2Fj�k,q,m,L�

Ejm+�k�Ejm+L+�k + q�� , �17�

with

Fj�k,q,m,L� = cos�qd� + 4 cos	�m

lj

cos���m + L�

lj
�

�cos	qd

2

 + 2 cos	�m

lj

cos�	3

2
k + q
d�

+ 2 cos���m + L�
lj

�cos��3k + q�
d

2
� . �18�

Using the Green’s function, defined by Eq. �16�, to evalu-
ate the integral over �� in Eq. �14�, we arrive at the follow-
ing expression for the “fermion loop” in the standard zero-
temperature-diagram technique,12,13

i� d��

2�
Gjm+L,k+q+��� + ��Gjmk−����

=
− 1

Ejm+L+�k + q� − Ejm−�k� − �� − i��
. �19�

In obtaining this formula, we have replaced the infinitesimal
positive � by a phenomenological level broadening param-
eter � in order to take into account the fact that in real
physical systems of interest there always exist single-particle
scattering processes having a smoothing effect on the singu-
larity inherent in Eq. �19� in the limit �→0.

Before going back to Eqs. �11� and �12�, it is worth no-
ticing that neither the summation over m nor the integration
over k in Eq. �14� can be performed analytically because of
the complexity of both the �-electron-energy dispersion �Eq.
�2�� and the whole integrand in Eq. �14�. However, with the
explicit expressions obtained above �Eqs. �17�–�19��, the re-
maining summation and integration in Eq. �14� are easy to
implement by numerical means, and this is the way that we
will follow further below in our theoretical study �see Sec.
III�.

If we restrict our attention to �-plasmon energies, we
have to find the poles of V21 or, which is the same, V11, i.e.,
the solutions of the following equation, which represent the
condition for the pair of the linear inhomogenous Eqs. �11�
and �12� to have a null secular determinant,

�1 − V11�q,L��1��,q,L���1 − V22�q,L��2��,q,L��

− V12
2 �q,L��1��,q,L��2��,q,L� = 0. �20�

As is well known, the self-sustaining collective modes of an
interacting electron system can be identified with the zeros of
the dynamic-dielectric-response function ��� ,q� of the
system.14 This allows us to interpret the left-hand side of Eq.
�20� as an effective dynamic-dielectric-response function
�eff�� ,q ,L� of the composite system of the two tubules,
which we are concerned with here. The “dressed” Coulomb
interaction V21 is then given by

V21�q,L� =
V21�q,L�

�eff��,q,L�
, �21�

defining an analytical framework for treating collective exci-
tations in BN-DWNTs. To avoid ambiguity, one comment is
in place with regard to this equation. The �eff, defined in such
a way, by itself is not a physically relevant quantity if we
would like to use it to determine the electron-energy-loss
function S�� ,q�=−Im�1 /��� ,q�� since it does not, in gen-
eral, meet the usual analyticity requirements22 �in particular,
its imaginary part is not always positive over the whole fre-
quency region ��0, which might give rise to false “nega-
tive electron-energy-losses”�. It is evident, therefore, that the
�eff introduced above is merely a convenient abbreviation
notation of the left-hand side of Eq. �20� and does not make
any sense beyond the problem at hand. On the contrary, the
expressions within the first and the second square brackets in
Eq. �20� have a clear physical meaning. Indeed, up to the
factor �b, they represent, respectively, the true dynamic-
dielectric-response functions �1�� ,q ,L� and �2�� ,q ,L� of
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the two constituent BN-SWNTs if the latter are considered
separately, i.e., if the Coulomb coupling between them is
neglected. The dynamic-dielectric response of such tubes,
determined by the dielectric function

� j��,q,L� = �b�1 − Vjj�q,L�� j��,q,L�� �22�

in the RPA, was studied in detail in Ref. 7, providing insight
into the physical nature of the collective excitations in BN-
SWNTs. This gives us confidence that the heuristic approach,
based on the above-mentioned dielectric function �eff of Eq.
�21�, has to be suffice to provide benchmark results for dis-
persion and damping of � plasmons in the case of BN-
DWNTs. To facilitate a comparison with the results obtained
in Ref. 7, it is convenient to express the �eff in terms of the
above-mentioned dielectric functions �1 and �2. Using Eqs.
�20� and �22�, it is easy to show that the real and imaginary
parts of �eff are given by

Re �eff��,q,L� = �V12
2 �q,L��b�Re �1��,q,L� + Re �2��,q,L�

− �b� + �V11�q,L�V22�q,L� − V12
2 �q,L���

� ��Re �1��,q,L�Re �2��,q,L�

− Im �1��,q,L�Im �2��,q,L���

���b
2V11�q,L�V22�q,L��−1, �23�

Im �eff��,q,L� = �V12
2 �q,L��b�Im �1��,q,L� + Im �2��,q,L��

+ �V11�q,L�V22�q,L� − V12
2 �q,L���

� ��Re �1��,q,L�Im �2��,q,L�

− Re �2��,q,L�Im �1��,q,L���

���b
2V11�q,L�V22�q,L��−1. �24�

The �-plasmon frequencies �L�q� can finally be deter-
mined as the solutions �=�L�q� of the equation

Re �eff��,q,L� = 0. �25�

If simultaneously Im �eff�� ,q ,L� vanishes at those frequen-
cies, the �-plasmon modes are undamped. As we shall see
further below �Sec. III�, this is not the case for the system
under consideration, and the lifetime �L�q� of the modes is
finite so that the solution of Eq. �25� in the complex � plane
is �=�L�q�− i�L�q�. The condition for such modes to be
long-lived and hence well-defined collective excitations of
the system requires the following inequality to be satisfied:

�L�q�
�L�q�

� 1. �26�

For frequencies in the near vicinity of �L�q�, the imaginary
part of the solution can be approximated as

�L�q� = � Im �eff��,q,L�
�

��Re �eff��,q,L�
�

�=�L�q�
, �27�

which must be positive if the dielectric response we are con-
sidering is causal. The above Eqs. �26� and �27� suggest a
simple way to check whether a zero of the real part of �eff
does correspond to a weakly damped collective mode—

namely, one must first check the signs of Im �eff and
� Re �eff /��, which should be positive at �=�L�q�, and then
to check the fulfilment of the condition of Eq. �26�. Thus, the
wave-number dispersion and damping of the �-plasmon
modes may be deduced from the scans of the real and imagi-
nary parts of �eff as functions of the frequency � at different
values of q and L. It is in this manner that both the charac-
teristics of the � plasmons will be studied in Sec. III.

Before concluding this section, we would like to comment
on some of the approximations, on which the theory devel-
oped above is based, and to emphasize the limitations arising
from them. The most essential approximation used in our
theory is the RPA �“the bubble-diagram approximation”�.
Whether the RPA is valid for the description of the dielectric
response of the systems, which we are interested in here,
remains an open question. Clearly, a complete theoretical
analysis of the dielectric response, going beyond the RPA
and including exchange-correlation effects, is needed to ar-
rive at a definite conclusion on this point. Unfortunately, at
present we do not know how to formulate such a theory in a
systematic and analytically tractable manner. However, we
do not expect that the corrections due to the exchange-
correlation effects will be qualitatively significant. At this
point, we are encouraged by the recent ab initio density-
functional-theory calculations of the optical properties of
BN-SWNTs of very small radius, carried out by Park et al.23

and Wirtz et al.24 These calculations show that in the optical
�long wavelength� limit �q→0� the quasiparticle self-energy
corrections are almost compensated by the effects of
electron-hole attraction �excitonic effects�. Thus, the many-
particle corrections on the whole have a minor net effect, and
hence the RPA-plasmon results can be trusted, at least at a
qualitative level. Within the RPA plus the local-density ap-
proximation, it has previously been shown25 that the local-
field effects have no significant influence on the loss spectra
of the above-mentioned nanotubes if the transferred momen-
tum q→0 is directed along the tube axis. Recently, Perez
and Que26 arrived at the same conclusion in the case of
single-walled CNTs of fairly large diameters �more than 1.4
nm�. We believe that it is reasonable to speculate on the
validity of this conclusion for BN-DWNTs as well.

One more essential limitation of our theory is that it is
entirely based on the �-electron approximation. In conse-
quence, the theory is unable to describe the high-frequency
collective modes associated with both � and � electrons �the
so-called �+� plasmons�. Meanwhile, a clear evidence of
the excitation of such modes in BN-MWNTs has been ob-
tained in the EELS experiment of Fuentes et al.,5 where they
manifest themselves as a pronounced high-energy peak
structure in the loss spectra. An extension of the theory de-
veloped above to correctly include the � electrons remains
an open question for future theoretical work.

III. NUMERICAL RESULTS AND DISCUSSION

The material presented in this section deals with the
application of the theory developed in Sec. II to a number
of specific examples of BN-DWNTs. We consider three
zigzag-type BN-DWNTs �17,0�@�25,0�, �25,0�@�33,0�, and
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�37,0�@�45,0�, focusing our attention mainly on the first of
them since, as will become clear further, the results obtained
for that tube are representative ones for all the other tubes of
this type as well. The outer diameters of the three nanotubes,
chosen for the investigation in this study, are, respectively,
1.99, 2.63, and 3.59 nm, covering, even with something to
spare, the outer-diameter range of most currently synthesized
BN-DWNTs.10 It is also worth noting that the inner diameter
��2.95 nm� of the BN-DWNT �37,0�@�45,0� is very close
to the mean innermost diameter ��3.1 nm� of the BN-
MWNTs studied in the EELS experiment of Fuentes et al.5

The computation of the effective dynamic-dielectric-
response function �eff�� ,q ,L�, according to Eqs. �23� and
�24�, requires a knowledge of the values of a number of
parameters, which are the essential ingredients of the theory
developed above. First, we need to choose the values of the
�-electron band parameters � and t0 entering Eq. �2�. Ide-
ally, both the parameters have to be brought into contact with
actual EELS experiments relevant to BN-DWNTs. As re-
marked earlier, such experiments, which could provide
enough information to make a proper choice of � and t0
possible, are still missing at present. Under the circum-
stances, any particular choice of the parameters can hardly be
made without some ambiguity. In what follows, we fix the
parameter � at the value of 2.2 eV, which corresponds to that
adopted in our previous papers.7,27 This value lies in the
range of the reported values of �, which were obtained by
optical-absorption measurements,28 as well as by a scanning
tunneling spectroscopy study.29 As to the parameter t0, we
will treat it as a freely adjustable parameter to give the best
fit of our calculated results for the �-plasmon energies in the
BN-DWNTs to those obtained experimentally for
BN-MWNTs5 �see Fig. 6 further below�. Though beforehand
it is not quite clear to what extent our theory is applicable to
those nanotubes, it is still the best one can do at this stage.
Following this line, we have performed a number of numeri-
cal simulations to estimate the proper value of t0 and have
found that the value t0=2 eV, whose justification from first
principles is clearly lacking, is the most appropriate one for
the problem at hand.

One more parameter, relevant to our problem and occur-
ring in Eq. �19�, is the damping factor �, which regularizes,
in a phenomenological way, the resonant divergencies of
the polarization function � j�� ,q ,L� in Eq. �13�. We are not
aware of any experimental data available at present, which
would enable an unambiguous choice of the parameter � to
be made. Therefore, in what follows, the �� value is taken,
rather arbitrary, to be equal to 0.16 eV independent of the
shell index j, the energy-subband quantum number m, and
the wave vector k. Thus, the corresponding dimensionless
broadening parameter �� / t0=0.08 is the same as that
adopted in our previous paper,7 where it was used to calcu-
late the EELS spectra of BN-SWNTs and recognized as be-
ing rather realistic. Based on our model calculation in Ref.
27, as well as on the ab initio investigations in a recent paper
by Guo et al.,30 we adopt the value of 2.5 for the dielectric
constant �b, describing the screening effect due to all excita-
tions outside the � bands. It is this value that we use as an
input in the calculation of the effective dielectric function
�eff�� ,q ,L� given by Eqs. �23� and �24�.

In Fig. 3, we display the spectra of the real and imaginary
parts of the �eff�� ,q ,L�, numerically calculated for the BN-
DWNT �17,0�@�25,0� at a fixed value of the wave number q
�equal to 0.3kBZ in this case�. Two different values of L,
namely, L=0 and L=1, have been taken in order to illustrate
the effect of the angular momentum L on the calculated spec-
tra. To stress the difference between the present results and
those in Ref. 7, we have also plotted in Fig. 3 the curves of
the real and imaginary parts of the true dynamic-dielectric-
response functions �1,2�� ,q ,L� of the two constituent BN-
SWNTs �17,0� and �25,0�, which have been calculated using
Eq. �22�.

As mentioned in Sec. II, the �-plasmon frequency �L�q�
is obtained as a solution of Eq. �25�, involving only the real
part of �eff�� ,q ,L�, with an additional restriction imposed by
the inequality of Eq. �26�, which, according to Eq. �27�, in-
volves also the imaginary part of �eff�� ,q ,L�. Figure 3 per-
mits one to find the corresponding solution by scanning the
graphs of the real and imaginary parts of �eff�� ,q ,L�. As
seen from Figs. 3�a� and 3�c�, the graph of Re �eff�� ,q ,L�
passes through zero two times. It is evident that the zero at
the lower frequency, marked with an open circle in Figs. 3�a�
and 3�c�, does not correspond to a collective mode at all
because the sign of the denominator in Eq. �27� is negative at
that frequency. Besides this, as seen from Figs. 3�b� and 3�d�,
at that point the imaginary part of �eff�� ,q ,L� is not at all
small so that the inequality of Eq. �26� cannot be fulfilled in
any case. On the contrary, the higher-frequency zero, marked
with a solid circle in Figs. 3�a� and 3�c�, may apparently be
recognized as corresponding to a well-defined collective
electronic excitations that can be supported by the system
since from Figs. 3�b� and 3�d� we conclude that the imagi-
nary part of �eff�� ,q ,L� at that frequency is very small. This
conclusion is confirmed by a more careful analysis of the
ratio �L�q� /�L�q� conducted further below �see Table I�,
which shows how small the plasmon damping is.

One more result, following from Fig. 3, is noteworthy.
Since we see that only a single “antiresonant” �dip� structure
with the two zeros of Re �eff�� ,q ,L� �one on the left side
and one on the right side� is present in all the spectra shown
in Figs. 3�a� and 3�c�, one can conclude that there exists only
one �-plasmon mode for each value of the angular momen-
tum L=0,1 and the value of q given in Fig. 3. We have
examined the other values of q, at which the �-plasmon
modes exist, and always found only a single true �-plasmon
mode for those L’s. This important feature is, in fact, com-
mon to all the zigzag BN-DWNTs considered in this paper
�see Fig. 4 further below�. Note that a similar result of no
multiple solutions to the equation � j�� ,q ,L�=0 has been ob-
tained for zigzag BN-SWNTs in our previous paper,7 where
it was commented on more extensively.

From the comparison of the graphs in Figs. 3�a� and 3�c�,
we see that the zero of the function Re �eff�� ,q ,L�, corre-
sponding to the �-plasmon mode in the BN-DWNT, suffers a
pronounced shift to higher energies with increasing L. From
those figures, we can also see that a behavior precisely the
same as just mentioned above, but only less clearly visible,
is inherent in the �-plasmon frequencies �i.e., in higher-
frequency zeros of the functions Re �1,2�� ,q ,L�� of the con-
stituent BN-SWNTs, a result we have pointed out earlier in
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Ref. 7, where it was attributed to an increase in the minimal
energy required for the � electrons to be excited from the
subbands dispersed upward in the valence band to those dis-
persed downward in the conduction band, as the angular mo-
mentum L increases. However, at this time we are unable to
offer such a qualitative account of the blue shift of the
�-plasmon energy with increasing L in the case of BN-
DWNTs. The reason for this is that, as remarked in Sec. II,
the response function �eff�� ,q ,L�, we deal with here, is not a
true dielectric function of the BN-DWNTs, and hence the
resonant and antiresonant structures, occurring in the spectra

of �eff�� ,q ,L�, do not allow the intuitive interpretation to be
given to them in terms of the single-particle interband tran-
sitions in the constituent BN-SWNTs. Besides, it should be
stressed that in any case the collective nature of the
�-plasmon modes we are considering implies that, in gen-
eral, there is no direct correlation between the �-plasmon
energies and those of the above-mentioned transitions. On
the basis of our calculations, we can only state that the trend
of the L �-plasmon energy to be the larger, the larger is the
L value, is common to all the BN-DWNTs we have exam-
ined. However, the effect becomes negligible with increasing
the wave number q so that at fairly large q values the disper-
sion curves of the � plasmons with different L’s merge with
one another, which is clearly in evidence in Fig. 6 further
below.

In Fig. 4, we show the spectra of the real and imaginary
parts of �eff�� ,q ,L� for the three selected BN-DWNTs, cal-
culated for the two different values of the angular momen-
tum L�=0,1� at the wave number q=0.3kBZ. A remarkable
fact, which follows from Figs. 4�a� and 4�c�, is that the
curves of Re �eff�� ,q ,L� for the nanotubes �25,0�@�33,0�
and �37,0�@�45,0� pass through zero at the same two points
as the curve of Re �eff�� ,q ,L� for the BN-DWNT
�17,0�@�25,0�. This, along with the overall smallness of
Im �eff�� ,q ,L� at the higher-frequency zero point of
Re �eff�� ,q ,L� for all the three nanotubes �see Figs. 4�b� and
4�d��, implies that the main characteristics of the � plasmons
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FIG. 3. The real and imaginary parts of the effective dynamic-dielectric-response function �eff�� ,q ,L� are plotted versus �� / t0 for the
BN-DWNT �17,0�@�25,0� �solid lines�. For comparison the real and imaginary parts of the true dynamic-dielectric functions �1,2�� ,q ,L� of
the two constituent BN-SWNTs �17,0� �dotted lines� and �25,0� �dashed lines� are also shown. The results for the BN-DWNT and the
BN-SWNTs are obtained using Eqs. �23� and �24� and Eq. �22�, respectively. The value of the wave number q is fixed at 0.3kBZ; the angular
momentum L is chosen to be 0 �left panels� and 1 �right panels�. The other parameters used to generate this figure are given in the text. The
sign �3 above the solid lines means that the values of the functions Re �eff�� ,q ,L� and Im �eff�� ,q ,L� are obtained from those in the figure
by multiplying them by factor 3. The open and solid circles mark the zeros of Re �eff�� ,q ,L�. The arrow on the horizontal axis indicates the
location of the �-plasmon energy.

TABLE I. The calculated values of the dimensionless damping
factor �L�q� /�L�q� for the L=0,1 ,2 �-plasmon modes in the BN-
DWNT �17,0�@�25,0� at several values of the dimensionless wave
number q /kBZ.

�L�q� /�L�q�
q /kBZ L=0 L=1 L=2

0.15 0.140 0.100 0.072

0.20 0.124 0.093 0.087

0.30 0.084 0.062 0.057

0.40 0.063 0.085 0.066

0.50 0.049 0.053 0.051

0.60 0.043 0.048 0.039

MARGULIS, MURYUMIN, AND GAIDUK PHYSICAL REVIEW B 78, 035415 �2008�

035415-8



�dispersion and damping� in the BN-DWNTs are not affected
by the radii of the constituent BN-SWNTs, at least at small
values of q and L. The result is consistent with that obtained
in our previous paper7 for individual zigzag BN-SWNTs and
possibly can explain the observation by Arenal at al.6 that
three different BN-DWNTs, studied by the nonmomentum-
resolved EELS method, appear to have had a dominant peak
structure �of presumably �-plasmonic nature� in their EELS
spectra at one and the same energy. However, because of the
shortage of the experimental data presented in Ref. 6, on the
one hand, and the limitations of the experimental method
used in that paper, on the other hand, it is probably wise to be
cautious about the above explanation.

Figure 5 shows the calculated L=0 �-plasmon spectrum
for the BN-DWNT �17,0�@�25,0�. For the sake of compari-
son, in the same figure we have also shown the almost com-
plete merged branches of the L=0 � plasmons in the con-
stituent BN-SWNTs �17,0� and �25,0�. As seen from that
figure, none of the branches start from q=0, the result that
was pointed out in our previous paper7 as being typical of
that we have obtained for the �-plasmon dispersion in
BN-SWNTs.31 Figure 5 tells us that the same prominent fea-
ture is intrinsic to the L=0 �-plasmon branch of the collec-
tive electronic excitations in BN-DWNTs. The other
branches of these excitations �with L=1,2� we have exam-
ined also start from a nonzero value of q �see Fig. 6 further
below�. However, the most important message of Fig. 5 is
that BN-DWNTs can support the collective �-electronic ex-
citations even at those values of the wave number q at which

the �-plasmon modes do not exist in either of the constituent
BN-SWNTs if the latter are considered separately, i.e., with-
out taking account of the Coulomb coupling between them.
Thus, we can conclude that an appreciable shift �toward
smaller wave numbers� of the starting point of the L=0
�-plasmon dispersion curve in the BN-DWNT with regard to
that in the constituent BN-SWNTs, observed in Fig. 5, is
controlled by the Coulomb interaction between the electrons
which are completely localized in two different shells of the
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nanotube. This interaction produces one more noticeable ef-
fect, which is clearly seen in Fig. 5: namely, at those values
of the wave number q at which the � plasmons can simulta-
neously exist in the BN-DWNT and in both the constituent
BN-SWNTs, the �-plasmon dispersion curve in the former is
significantly shifted �toward higher energies� relative to the
�-plasmon dispersion curves in both the latter ones. Whether
both the above-mentioned shifts are really measurable in
momentum-resolved EELS experiment raises an interesting
topic for future investigation.

Figure 6 shows a plot of the �-plasmon energy ��L �in
units of eV� versus the wave number q �in units of Å−1�,
calculated for the BN-DWNT �17,0�@�25,0�, chosen as a
typical example, at the three different values of the angular
momentum L�=0,1 ,2�. The grid in the q variable has been
taken to be the same as in Ref. 5, where the loss spectra of
the BN-MWNTs between 2 and 15 eV as a function of the
transferred momentum q was measured by using the EELS
method. The �-plasmon energies, derived from those spectra
and presented in Fig. 6 in the above-mentioned paper, are
also included for comparison in our Fig. 6. The calculated
values of the plasmon damping factor �L�q� /�L�q� �see Eq.
�27�� for the same grade of the q values as in Fig. 6 are given
in Table I. It is clear from this table that the damping is
small, i.e., the inequality of Eq. �26� is satisfied for all the
three branches of the �-plasmon modes shown in Fig. 6 so
that they really correspond to well-defined collective elec-
tronic excitations of the system under consideration.

It is instructive to compare the calculated and the experi-
mental wave-number-dispersed �-plasmon energies in Fig.
6, even though such a comparison can hardly be recognized
as being of full value. The point is that the experimental
sample contained BN-MWNTs of different diameters and
chiralities, whereas our model is formally relevant only to
individual zigzag BN-DWNTs. Besides, due to the large area
probed by the primary electron beam, the loss spectra, mea-
sured in Ref. 5, provide only average picture of plasmon

properties. Nevertheless, based only on looking briefly at
Fig. 6, it appears that our results are not in conflict with the
experimental ones, at least at a general, qualitative level. In
particular, the theory developed predicts a considerable posi-
tive wave-number dispersion of the �-plasmon modes with
different L’s, which is consistent with the experiment in Ref.
5, if we attribute the measured dispersive mode to one of an
L �-plasmon with a small L. In spite of this overall qualita-
tive agreement, one can see a systematic quantitative dis-
crepancy between the experimental and the calculated
�-plasmon energies in that figure, especially at large values
of the wave number q �Ref. 32�. It is generally not quite
surprising in view of how different are the systems studied in
this paper and in Ref. 5; one should rather be surprised that,
in spite of this difference, the measure of disagreement, re-
vealed in Fig. 6, is not so large as could be expected a priori.
Thus, we can conclude that, although our results cannot be
applied to BN-MWNTs straightforwardly, at a qualitative
level they are able to account satisfactorily for the main fea-
tures of the �-plasmon dispersion in those nanotubes. It is
not quite unexpected since the results presented above prove
that the �-plasmon energies in a special case of BN-DWNTs
are not influenced by the radii of the constituent BN-SWNTs.
This allows us to suggest, with some care, that the same is
true in a general case of BN-MWNTs with the number of
shells larger than two. If so, then the number of shells, as
well as their diameters and possibly chiralities, are not cru-
cial physical parameters that control the behavior of the �
plasmons in BN-MWNTs.33 Certainly, to make any firm de-
ductions on this point, more precise measurements on
samples of BN-MWNTs with a well-defined number of
shells and carefully control chiral structure are needed. This
seems to be an interesting and challenging experimental task.
On the theoretical side, there is also a need for considerable
further work to extend the theory, developed in this paper, to
the case of BN-MWNTs with an arbitrary number of shells.
This, along with a more sophisticated calculation going be-
yond the RPA and including the exchange-correlation effects,
would make the comparison between theory and experiment
more meaningful.34 More refined calculations are also
needed to include � electrons in the theory in order to make
it suitable for the description of the �+�-plasmon modes,
which manifest themselves as higher-energy peaks in the
EELS experiment of Fuentes et al.5 Finally, it seems to be an
important task to check the predictions made above in
momentum-resolved EELS experiments on individual BN-
DWNTs and/or on samples containing only such nanotubes.

IV. CONCLUSIONS

To summarize, in this paper we have presented a theoret-
ical treatment of the collective �-electronic excitations in
individual BN-DWNTs consisting of two coaxial zigzag BN-
SWNTs. Taking into account only the Coulomb interaction
between the shells and neglecting the intershell electron tun-
neling, the effective dynamic-dielectric-response function of
the system has been derived within the RPA using a field-
theoretical method. We have obtained an explicit expression
for this function in terms of the true dynamic-dielectric-
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FIG. 6. The calculated energies ��L of L=0,1 ,2 �-plasmon
modes in the BN-DWNT �17,0�@�25,0� at several values of the
wave number q are shown by solid squares, triangles, and circles,
respectively. The open circles show the �-plasmon energies derived
from the EELS experiment of Fuentes et al. �Ref. 5� on a sample of
BN-MWNTs and presented in Fig. 6 in Ref. 5. The transfer integral
t0 between � orbitals of nearest-neighboring B and N atoms is
chosen to be equal to 2 eV in order to give the best fit of our
calculated results to those obtained experimentally in the above-
mentioned paper. The solid lines are intended as a guide to the eye.
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response functions of two constituent BN-SWNTs. Using a
simple tight-binding model for the �-electronic band struc-
ture of the BN-SWNTs, developed in our previous paper,7 we
have numerically calculated the dispersion and damping of
the � plasmons in the BN-DWNTs of fairly large diameters.
In all the cases we have examined, the damping is small so
that the � plasmons in the BN-DWNTs represent long-lived
and hence well-defined collective electronic excitations sup-
ported by these systems.

The results, obtained for the spectrum of the � plasmons,
show that, like the BN-SWNTs considered in Ref. 7, each of
the BN-DWNTs supports only one branch of the wave-
number-dispersed �-plasmon mode for each value of the an-
gular momentum L�=0,1 ,2 , . . .�, all the dispersion curves
starting from a nonzero value of the wave number q. We
have also found that the � plasmons in the BN-DWNTs can
exist even at those q values at which the �-plasmon modes
are not supported by either of the constituent BN-SWNTs if
the latter are considered separately, i.e., without taking into
account the Coulomb coupling between them. In particular,
we have found that the threshold value of the wavelength, at
which the L=0 �-plasmon dispersion curve in the BN-
DWNTs makes its start, is redshifted as compared to that in
the constituent BN-SWNTs. Besides, at those values of the
wave number q, at which the � plasmons can simultaneously
exist in a BN-DWNT and in both the shells of the nanotube,
the L=0 �-plasmon dispersion curve in the former is appre-
ciably blueshifted relative to the �-plasmon dispersion
curves in both the latter ones. Since both the above-
mentioned shifts �in wavelength and in energy� are fairly
large, we do not see any difficulties preventing their obser-
vation in momentum-resolved EELS experiment. If it were
possible that way, it would serve as direct evidence of the

importance of the intershell Coulomb coupling in BN-
DWNTs.

Another important and experimentally testable conclu-
sion, which results from our discussion, is that the
�-plasmon energies in the BN-DWNTs are not affected by
the main geometrical parameter of the constituent BN-
SWNTs—namely, their diameter. This result implies that the
�-plasmon energies, derived from our calculations for sev-
eral selected zigzag BN-DWNTs, are not specific for only
those nanotubes but are typical of the whole class of such
tubules.

As remarked earlier, the present calculations were moti-
vated by the two recent experimental EELS studies of
BN-NTs.5,6 For the reasons mentioned in Sec. III, a quanti-
tative comparison of our theory with the experiments in
Refs. 5 and 6 is unavoidable limited so that, in our view, it
would be premature to make any firm deductions on the
adequacy of the model used in this paper. However, some of
the qualitative results obtained here are consistent with those
experiments. This agreement is very encouraging confirma-
tion of the fact that the above-mentioned model can serve as
a useful paradigm to gain an insight into the �-plasmon char-
acteristics in real BN-NT systems, suggesting a fertile theo-
retical background for future investigations. In this connec-
tion, it would be of great interest to see momentum-resolved
EELS studies of the � plasmons in such systems as explored
here. We hope that the results of the present paper will stimu-
late more vigorous experimental work in this direction.
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