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The solutions of surface modes in cylindrical metallic wires and cavities are obtained within a nonlocal
dielectric formalism. We compare the results with those obtained from standard local approaches. The specular
reflection model is applied to describe the nonlocal potentials in the vicinity of the wires and cavities. The
external probe exciting the surface plasmons are fast electron beams traveling parallel to the wires and cavities,
as those commonly used in electron microscopy and cathodoluminescence. Energy-loss spectra due to surface-
plasmon excitation are calculated with use of the nonlocal formalism both for electron trajectories near a
metallic nanowire and a metallic nanocavity. When nonlocal effects are considered, the intensity of the plas-
mon excitation is reduced, and a blueshift of the energy is observed. This effect is more pronounced for very
thin wires and cavities where the cylindrical interfaces are strongly interacting. The blueshifts reported here are
important for the accurate design of the plasmon response in one-dimensional metallic nanostructures.
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I. INTRODUCTION

The role of surface plasmons is central in the interaction
of charged probes and radiation with metallic structures.
Since Ritchie1 predicted the existence of these low-energy
excitations 50 years ago, there has been a continuous effort
to characterize and engineer the plasmon response in a vari-
ety of configurations. Typically, the properties of plasmon
excitations depend on the nature of the probe or exciting
field, on the shape of the target, on its size, and on the cou-
plings established with neighboring targets and
environment.2 Experimental evidence of the excitation of
surface plasmons by charged probes dates back to the experi-
ments by Powell and Swan,3 extracted from the analysis of
electron-energy-loss spectroscopy �EELS� in metallic inter-
faces. Even though the current interest in surface plasmons is
commonly associated with nano-optics due to the broad set
of applications in spectroscopy, sensing, communications,
and biomedical applications, fast electrons can be an excel-
lent complementary probe for exciting certain modes which
are not available optically.4 In that spirit, in cathodolumines-
cence, the combination of a fast electron probe with an op-
tical detection scheme has recently made possible the spatial
mapping of surface-plasmon modes in different metallic
nanostructures.5–8 The development of the scanning trans-
mission electron microscopy �STEM� over the years, where a
well focused and highly energetic electron beam is used to
obtain high-resolution energy-loss spectra9 of valence elec-
trons, has opened EELS to the study of the collective low-
energy excitations �surface plasmons� in a variety of configu-
rations, such as in small particles,10–14 cylindrical
cavities,15,16 nanowires,17–20 fullerenes,21–27 and carbon
nanotubes.28–31 In many of these works, the inelastic interac-
tion between the fast electrons and the target has been de-
scribed in the framework of the classical dielectric
theory.1,32–45 Within this approach, the collective excitations

of a bulk material are described by a local dielectric function
���� �usually measured optically�, providing a detailed de-
scription of the valence electron energy-loss spectra �bulk
modes of a few eV in energy�. The consideration of the geo-
metrical boundaries in an inhomogeneous dielectric configu-
ration accounts for the presence of surface modes, giving rise
to surface losses.

In this work we focus on the plasmon excitation by an
electron beam in metallic nanowires and nanocavities, as
schematically shown in Fig. 1. After the calculations of the
stopping power of fast probes in a particle accelerator,46 the
first works on the interaction between charged probes and
cylindrical interfaces were motivated by the ability of elec-
trons in STEM to drill holes on films, creating cylindrical
cavities15,16 �see Fig. 1�. The application of EELS to study
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FIG. 1. �a� Schematics of a cylindrical metallic nanowire of
radius a characterized by a nonlocal dielectric function ��k ,�� with
an electron e− passing parallel to the wire axis at an impact param-
eter �0 in an external trajectory ��0�a�. Internal trajectories ��0

�a� are also considered. �b� Cylindrical cavity in the same material
with an electron passing along the cavity in an internal trajectory
��0�a�. External trajectories ��0�a� are also considered.
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nanowires led to theoretical descriptions of energy losses ex-
perienced by electron probes in the proximity of more com-
plex cylindrical structures and nanotubes.47–51 Aspects such
as anisotropy in the response can also be considered within
the dielectric approach and have been applied to describe, for
example, energy losses in multishell fullerenes and carbon
nanotubes.52,53 Retardation in the interaction has also been
considered,16,54 resulting in a small effect for thin metallic
wires. The ability of the electron beam to produce Cherenkov
radiation in cylindrical cavities, an event occurring when the
electron travels with velocity v larger than the velocity of
light in the surrounding medium, c /��, gives extra contribu-
tions to the loss spectrum55 and has provided further infor-
mation about the target structure.56

The k dependence of the nonlocal dielectric function
��k ,��, which is energy �� and also momentum k depen-
dent, arises from the spatial correlation between the induced
charge density, an effect which prevents the pilling up of
electrons at short distances. In electron microscopy, there can
be situations where the momentum transfer is considerable,
and a local dielectric response is not enough to accurately
describe the interaction between electron beam and sample.
This is the case, for example, where two interfaces interact in
very close proximity, or when large scattering angles of the
incident beam are used, requiring higher values of the trans-
ferred momentum. In such a situation, one needs to consider
a dispersive dielectric function to describe the medium. This
situation can be also present in nano-optics, with the targets
excited by light, in cases where the distances between inter-
faces are smaller that the electron spill-out distance. In that
case, nonlocal corrections of the response should produce a
difference between the surface mode positions and excitation
strengths. Nonlocal effects have been largely studied in the
planar geometry, for example, where different features of
spatial dispersion have been considered to obtain the image
potential outside a metallic semi-infinite planar
interface.57–60 In the context of the interaction with electron
beams, previous works42,61 concluded that dispersive effects
are important in the planar case when the electron beam trav-
els closer than 0.5 nm to the interface. In the case of nano-
particles or nanowires, where the induced charge density is
always limited into very small regions and therefore strongly
interacting, this correlation is expected to be stronger. There-
fore nonlocal effects are likely to be more relevant.

The consideration of nonlocality requires the use of addi-
tional boundary conditions for the surface charge densities.
Here we present a study of nonlocality in a cylindrical ge-
ometry within the specular reflection model �SRM�,57 also
known as semiclassical infinite-barrier �SCIB� model.62 The
most important feature of this model is that the electrons in a
metal are assumed to form a uniform positive background
�jellium� which terminates at the surface. The electron den-
sity is constant inside the metal and drops suddenly to zero
outside the surface. The SRM has been used, for example, to
describe nonlocality in spherical geometries.63–65 The SRM
neglects an important feature of the surface of a metal: the
electron density does not terminate suddenly at the edge of
the jellium but spills out into the vacuum. For very small
particles, if one takes the electron spillout into account, it is
possible to find energies of the surface modes different from

those presented here.66 This inadequacy of the SRM occurs
mainly in the range where quantum size effects become im-
portant, i.e., for particles smaller than �1 nm. In this case,
the detailed results of the absorption peaks and the energy
shifts will depend on the electron wave functions and the
electron density near the surface.67–70 Nevertheless, the SRM
includes the main effect of nonlocality for particles larger
than �1 nm and will allow us to study the effect of the
nonlocal response in the dispersion of cylindrical modes in
nanowires and nanocavities �Sec. II�. In the limit of thin
wires, the nonlocal modes obtained here can be related to the
dispersion relation of a quasi-one-dimensional electron
gas.71,72 We also analyze the excitation of these modes by an
electron beam when traveling in the proximity of both nano-
wires �Sec. III� and cavities �Sec. IV� to understand the en-
ergy shifts derived from the consideration of nonlocal ef-
fects. Dispersive effects in cylindrical nanostructures have
been also studied by other authors in terms of the band struc-
ture of the cylinder.50,73,74 An attempt to extend the existing
classical dielectric approach has been made75 by partially
considering momentum transfer along the wire axis but not
considering momentum transfer perpendicular to the wire,
therefore missing the effects related to the electron density
correlation. More sophisticated methods based on a self-
consistent solution of the electronic density within the time-
dependent density-functional theory �TDDFT� can give full
account of nonlocal effects in the response. These methods
are usually developed for standard geometries,68,76–80 but the
computational requirements allow the tackling of only small
systems with a limited number of electrons involved. Com-
plex ab initio calculations, fully accounting for the exchange
and correlation of the electron density, can also address the
existence of interactions between bulk and surface states that
give rise to low-energy acoustic plasmons in two-
dimensional systems.81,82

Expressions for the nonlocal potentials within the SRM
are derived in Appendix A for wires and in Appendix B for
cavities. In the analytical expressions, atomic units have
been used throughout, whereas in the analysis of the loss
spectra we have favored the use of electron volts �eV� and
nanometers �nm�.

II. MODES OF CYLINDRICAL NANOSTRUCTURES

In an electrostatic approach, the surface modes in a me-
tallic system are the set of frequencies for which Laplace
equation features nontrivial solutions. In the visible range,
these solutions represent collective excitation of the electron
gas. In a nonbounded medium, the bulk-plasmon frequency
presents a dispersion �p�k�, where �p is the plasma fre-
quency of the metal, which depends on the electron density

n, charge e, and mass m, as �p=�4�ne2

m . The energy of the
bulk plasmon contains the wavelength dependence of the
response of the electron gas, as a consequence of correlation
effects in the induced charge density. In bounded systems, in
addition to this k dependence, there is another source of dis-
persion in the spectrum of modes, due to the coupling of the
induced charge density at the surfaces of the system. These
solutions are the so-called surface plasmons1,83 and can be
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detected, for example, in the energy-loss spectra of fast
charged particles10,84 or in optical spectroscopy.2 Neglecting
the k dependence of the dielectric function, the modes of
highly symmetric systems �planar interfaces, films, spheres,
cylindrical tubes or cavities, coupled spheres, and spheroids�
can be easily calculated by assuming a local dielectric func-
tion ���� to characterize the bulk response of the material
and by imposing the standard continuity conditions of the
potential and of the normal component of the displacement at
the interface. In the case of a momentum-dependent response
function ��k ,��, one needs an additional boundary condition
at the interface. As mentioned above, here we will use the
SRM,57 applied in a cylindrical geometry to treat both nano-
wires and nanocavities �see the schematics in Fig. 1�. The
details of the nonlocal potentials for both wires and cavities
are presented in Appendixes A and B, respectively.

To describe the k dependence of the dielectric response,
we will assume a dielectric function given by the plasmon
pole approximation �PPA�,85 which accounts for the free-
electron oscillations and partially for the electron-hole pair
generation in the material:

��k,�� = 1 −
�p

2

��� + i	� − 
2k2 − 1
4k4

, �1�

where �p is the plasma frequency, 
=�3 /5vF, vF is the
Fermi velocity of the electron gas, and 	 is the damping,
which represents the inverse of the plasmon lifetime. Equa-
tion �1� is a useful approximation of the random-phase ap-
proximation �RPA�: In the small k limit it reproduces the
bulk-plasmon dispersion relation, while in the large k limit it
tends to the energy-momentum relationship of a single elec-
tron, �=k2 /2. This approximation has been used in three-
and two-dimensional systems, with good agreement with
more sophisticated treatment and experimental results. In the
study of the excitations produced by fast electrons, where the
momentum transfer is small, the results of this model do not
differ significantly from results obtained with use of another
nonlocal dielectric function, based on another assumption for
the nonlocal dependence, such as the hydrodynamic model,
for example. Nonlocal effects in materials commonly used in
plasmonics such as gold and silver can also be addressed
within this model with the use of an appropriate nonlocal
response function.

A. Nonlocal modes of a nanowire

Let us consider an infinite metallic wire of radius a with
the axis oriented along the z axis. The surface modes are the
values of �, which are solutions of potentials when there is
no external field. They correspond to the zeros of the de-
nominator of the nonlocal potentials �see Eqs. �A17� and
�A20� in Appendix A�:

�̃m�a,qz,��Km
2 �qza�Im� �qza� − Km� �qza� = 0, �2�

where Im�x� and Km�x� are the modified Bessel functions of
order m.86 f��x� stands for the derivative of the function f ,
and qz is the z component of the wave vector k. The function
�̃m�� ,qz ,�� is defined for a given radial cylindrical compo-
nent � of the vector position as

1

�̃m��,qz,��
= �

0

� Jm�Q��Jm�Qa�
�Q2 + qz

2���k,��
QdQ , �3�

where Jm�x� stands for the Bessel functions of first kind.86

The momentum k in the dielectric function is k=�Q2+qz
2,

with Q as the radial component of the wave vector k.
In the case of a local response, where �=����, the inte-

gral in Eq. �3� can be analytically solved,87 obtaining

�̃m��,qz,�� = �
����

Im�qz��Km�qza�
if � � a

����
Km�qz��Im�qza�

if � � a .	 �4�

In this case, Eq. �2� reduces to the local expression of the
modes of a cylinder:47,88

����Im� �qza�Km�qza� − Im�qza�Km� �qza� = 0. �5�

In a general case, the dispersion equation of modes �Eq.
�2�� has to be numerically solved. Solutions of Eq. �2� are in
general complex. The real part provides the energy of the
mode, while its imaginary part stands for the inverse of the
lifetime of the excitation. Here we have considered a real
��k ,�� function by taking 	=0 in Eq. �1�. The energy of the
mth nonlocal mode depends on both the variables a and qz;
i.e., ��m�a ,qz� is not a function of the product qza as in the
local case. Figures 2�a� and 2�b� show the dependence of the
dispersion of the m=0 and m=1 wire modes as a function of
the parallel momentum qz for three different values of the
cylinder radius �a=1, 3, and 10 nm�. Results are displayed as
solid lines for the modes obtained with use of a nonlocal
dielectric function, whereas those obtained with use of a lo-
cal response are displayed as dashed lines. Both modes show
a blueshift �larger energy� of the nonlocal results with respect
to their respective local results. The m=0 mode in Fig. 2�a�
tends to zero for small values of qz, consistent with experi-
mental results of the dispersion of plasmon wires in atomic
metallic chains.19 For large wires �a=10 nm, green lines�,
the blueshift of the nonlocal approach is noticeable only for
large values of parallel momentum, whereas for smaller
wires �a=1 nm, blue lines� the blueshift is already notice-
able for small momentum values. The linear dispersion of the
planar surface plasmon �black solid line� is recovered for
large momentum components and large wire sizes.57 In Fig.
2�b� the m=1 modes are shown for the same sizes as in �a�.
Similar tendencies are found for the blueshifts in this case.
Larger shifts occur for large momentum components and
smaller wires. The limit of this mode for a→0 is the planar
surface plasmon at �p /�2 �solid line�. In Figs. 2�c� and 2�d�
we show contour plots of the difference in energy �eV� be-
tween the modes in the nonlocal and local approaches for a
set of wire sizes and parallel momentum components. As
expected from Figs. 2�a� and 2�b�, significant differences be-
tween the local and nonlocal responses appear for large mo-
mentum qz and for small values of the radius a because the
transversal component of the momentum associated with the
mth mode depends on the parameter m /a. This explains the
fact that the local limit is recovered for low m modes only
for small values of qz and large radii. In all the cases, when
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the radius becomes extremely small �a→0�, the spectrum of
modes for a nanowire when nonlocality is considered differs
largely from that obtained in the local approach. For m�0,
the frequencies of the nonlocal modes can exceed the bulk-
plasmon frequency �p, while in the local approach, these
modes gather together around the surface-plasmon frequency
�p /�2. This difference is more noticeable in the m=0 mode,
where the energy of the nonlocal mode diverges as a→0
�red area showing an increased difference in Fig. 2�c��, while
the energy of the local mode tends to the static limit �0=0.
This result is in agreement with the nonlocal response within
the RPA of a one-dimensional electron gas, which shows the
dependence of the frequency of the plasmon � as �
�qz ln�qza�.71 This result is convergent for small qz values
but diverges for small a. Consideration of retardation in the
response lifts this divergence for small radius.72 The blue-
shifts obtained here for the wire plasmon modes are relevant
and valid in most physical situations dealing with wire radius
of nanometers or even angstroms. However, for subangstrom
wires, the divergent result for a→0 should be considered not
physical since the one-dimensional response is constructed
based on a three-dimensional bulk response, which obvi-
ously cannot describe the response in the transversal direc-
tion correctly and therefore the one-dimensional nature of
the wire with a=0.

To illustrate nonlocal effects in standard situations in plas-
monics, we present in Fig. 3 the results for the wire modes as

a function of the size of the wire �radius a� for the particular
case of the modes m=0 �Fig. 3�a�� and m=1 �Fig. 3�b��. The
m=0 mode shown in �a� is typically excited by an electron
probe traveling in a central trajectory with velocity v. The
relevant momentum component qz in this case is given by
qz=� /v. As the size of the wires becomes smaller, the non-
local �blue line� and the local �red line� approaches depart
from each other, with the energy difference larger than 1 eV
for wires smaller than 4 nm. The m=1 mode in a wire �Fig.
3�b�� can be excited by an electron beam traveling at a cer-
tain distance from the wire �solid lines� and also by an opti-
cal probe traveling parallel to the wire axis with wave vector
k=qz given by qz=� /c �dashed lines�. Local �red lines� and
nonlocal modes �blue lines� are displayed. Similar to the m
=0 mode, the results show a clear blueshift in the response
�difference between blue and red lines� for thin enough
wires, which can be of up to several tenths of eV for wires as
large as 10 nm wide. Therefore, the influence of nonlocal
effects in the description of an accurate plasmon response
has enormous implications in metallic nanosystems with
highly interacting interfaces, as it is the case in thin wires.
The dependence on nonlocal effects obtained here for wires
is consistent with that presented for other highly interacting
interfaces, such as thin films,1 small spheres,63 close
dimers,64 or nanoshells,65 reporting an overall blueshift of
the plasmon modes.
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FIG. 2. �Color online� Energy �in eV� of the plasmon modes in three different wires of radii a=1 nm �blue lines�, a=3 nm �red lines�,
and a=10 nm �green lines� for azimuthal number �a� m=0 and �b� m=1 as a function of the parallel momentum component qz. The modes
within a nonlocal approach are displayed �solid lines� and compared to those within a local approach �dashed lines�. The nonlocal dielectric
function is given by the PPA in Eq. �1� for a metal with parameter rs=2.117 a.u., giving a plasma frequency �p=15.3 eV and 

=0.7 a.u. Zero damping is assumed in these calculations. The limit of the nonlocal planar surface plasmon is displayed as a solid black line.
��c� and �d�� Contour plots of the energy difference �in eV� between the nonlocal and the local wire plasmon mode solutions for different
radii a and momentum components qz for azimuthal numbers m=0 and m=1, respectively.
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B. Nonlocal modes of a cavity

The modes of a cylindrical cavity of radius a drilled in a
metallic medium characterized by the nonlocal dielectric
function ��k ,�� are given by the solutions of the following
equation �zeros of the denominators of the potentials in Eqs.
�B2� and �B3� in Appendix B�:

�̃m�a,qz,��Im
2 �qza�Km� �qza� − Im� �qza� = 0. �6�

In the local case, this expression reproduces the equation
for the local modes:

����Im�qza�Km� �qza� − Im� �qza�Km�qza� = 0. �7�

In Figs. 4�a� and 4�b�, we plot the energy of the m=0 and
m=1 modes as a function of the parallel momentum compo-
nent qz for three different cavities with the radii as in Figs.
2�a� and 2�b�. Contour plots showing the difference in energy
between the nonlocal and local approaches are shown in Fig.

4�c� �m=0� and Fig. 4�d� �m=1�. The departure of the non-
local modes from the local mode is qualitatively similar to
that found for wires. The energies of the nonlocal approach
�solid lines in Figs. 4�a� and 4�b�� are similar to the local
ones �dashed lines� only for very small values of qz and for
wide cylinders �blue areas in the contour plots of Figs. 4�c�
and 4�d��. In the case of small momentum qz→0 and large
cavity size a10 nm, the modes tend to the value of the
bulk-plasmon energy ��p for m=0 and to energies close to
the planar surface-plasmon energy ��p /�2 for m=1.

Both in cavities and in wires, the relevance of the nonlo-
cal corrections to the energy-loss spectrum in electron mi-
croscopy depends not only on the radius of the structure but
also on the range of the qz values involved in the excitation
spectrum, strongly dependent on the electron beam trajec-
tory. In the case of a fast electron beam with velocity v
parallel to the cylinder axis, the value qz involved in the
excitation spectrum is qz=� /v, typically 
0.01 Å−1. There-
fore in this situation, for realistically small cylinders �a

2–5 nm�, where the main contribution to the inelastic
scattering arises from the coupling to the first m modes, the
nonlocal corrections to the position of the energy of the plas-
mon peaks in EELS are expected to be small. The nonlocal
correction is likely to be large in the case of trajectories
nonparallel to the axis, a situation more suitable experimen-
tally in the study of nanowires. Zabala et al.49 showed that in
the local approach for a nanowire of radius a=2 nm, the
surface peak arising from the m�1 modes has a non-
negligible contribution to the loss spectrum of values of qz
up to 0.18 Å−1. The result of the nonlocal modes in Figs. 2
and 4 suggest that in this case the surface-plasmon peaks
could be strongly blueshifted.

III. ELECTRON ENERGY LOSS IN A WIRE

We study now the energy losses due to plasmon excitation
experienced by an electron traveling with velocity v in the
proximity of a metallic wire characterized by a nonlocal re-
sponse function ��k ,��, as depicted in Fig. 1�a�. The prob-
ability of losing energy �� per unit path length ���� is given
by the action of the induced field Vind�r , t� produced by the
electron itself evaluated along the particle trajectory ��
=�0 ,�=�0 ,z=vt�:

− � �Vind�r,t�
�z

�
traj

= �
0

�

d������ , �8�

where Vind�r , t� is calculated from the � ,k component of the
induced nonlocal potential driven by the traveling electron,
obtained from Eqs. �A1� and �A17� in Appendix A. We iden-
tify terms at both sides of equality �8� and obtain the expres-
sion for the energy-loss probability per unit path length:

���� =
1

2�2v
Im�Vind��0,qz = �v−1,��� , �9�

with Im�x� as the imaginary part of x and Vind��0 ,qz
=�v−1 ,�� as the Fourier component of the induced potential
evaluated at qz=�v−1. Thus, for an electron traveling outside
a metallic wire ��0�a�, the probability of losing energy ��
per unit length in this case is

FIG. 3. �Color online� Energy of the wire plasmons as a function
of the size of the wires for two typical situations of plasmon exci-
tation. �a� m=0 mode as a function of wire radius a. This mode is
commonly excited by an electron traveling parallel to the wire axis
in a central trajectory. The relevant momentum component in this
case is given by qz=� /v. A 100 keV electron beam corresponds to
a velocity v of 76 a.u. The blue line denotes the nonlocal correction,
whereas the red line stands for the local approach. �b� m=1 mode
commonly excited �i� by an optical plane wave with wave vector k
and polarization transversal to the axis wire �dashed lines� or �ii� by
an electron beam traveling outside the wire at a certain distance
�solid lines�. The momentum component of the incident plane wave
in the optical excitation is given by k=qz=� /c. The dielectric re-
sponse is considered as in Fig. 2 and nonlocal �blue lines� and local
�red lines� approaches are compared. Nonlocal effects produce a
blueshift of several tenths of eV for wires with radius smaller than
4 nm.
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������0�a� =
2

�v2 
m=−�

+�

Km
2 ���0

v
�Im� ��a

v
�

� Im� �̃m�a, �
v ,��Im��a

v �Km��a
v � − 1

�̃m�a, �
v ,��Km

2 ��a
v �Im� ��a

v � − Km� ��a
v �� .

�10�

If we neglect the k dependence in the dielectric function
���k ,��=�����, the local limit for the expression of the

energy-loss probability is recovered.16 For such an external
trajectory, all the energy loss comes from the surface scatter-
ing.

Applying the same algebra, for trajectories inside the wire
��0�a� with the electron moving parallel to the wire axis,
we substitute the expression of the nonlocal potential
Vind�r , t� inside the wire obtained from Eqs. �A19� and �A20�
into Eq. �9�. We obtain the following energy-loss probability
per unit length:

������0�a� =
2

�v2�
0

� QdQ

Q2 + ��
v �2 Im� − 1

��k,��� +
2

�v2 
m=−�

�

Km� ��a

v
�Im� �̃m�a, �

v ,��
�̃m

2 ��0, �
v ,��

�̃m��0, �
v ,��Im���o

v �Km��a
v � − 1

�̃m�a, �
v ,��Km

2 ��a
v �Im� ��a

v � − Km� ��a
v �� .

�11�

The first term in Eq. �11� is given by the direct bulk term
and corresponds to the losses produced by bulk plasmons in
an infinite medium. Therefore this term does not depend on
the geometry of the cylinder-probe system since it is the
energy-loss probability experienced by the probe in a non-
bounded medium. The second term in Eq. �11� contains the
contribution to the losses from the excitation of surface
modes, plus a correction to the bulk term, arising from the
presence of the boundaries �begrenzung�. By making use of
Eq. �4�, it is straightforward to see that the surface contribu-
tion in both Eqs. �10� and �11� reduce to the expressions
obtained with the use of a local dielectric function.

It should be noted that, in contrast to the results based on
a local theory, in the limit of trajectories close to the interface
��0→a�, expression �10�, outside the wire, and expression
�11�, inside the wire, lead to a finite value which varies con-
tinuously as the electron probe scans through the interface.
In the local theory, the divergence of the surface contribution
to the loss probability when ��0→a� is a consequence of the
unphysically large induced charge density on the interface,
which leads to an image potential which diverges logarith-
mically with the impact parameter relative to the surface. In
the case of a cylindrical target, this divergence is expressed
through the lack of convergence of the sum of the
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FIG. 4. �Color online� Plas-
mon mode energy �in eV� corre-
sponding to cylindrical cavities of
radii a=1 nm �blue lines�, a
=3 nm �red lines�, and a
=10 nm �green lines� for azi-
muthal numbers �a� m=0 and �b�
m=1 as a function of parallel mo-
mentum component qz. Same val-
ues as in Fig. 2 are used to char-
acterize the nonlocal dielectric
function of the metallic surround-
ing medium. ��c� and �d�� Contour
plots showing the energy differ-
ence �in eV� between the nonlocal
and local approaches for m=0 and
m=1, respectively. A blueshift is
observed in all cases.
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contributions of the mth multipolar terms.16 The use of a
nonlocal dielectric function implies that only the first m
modes contribute effectively to the sum in Eqs. �10� and
�11�. This is a consequence of the smaller localization of the
image charge in the nonlocal approach. Mathematically, the
different contribution of the modes emerges as a conse-
quence that the modified Bessel functions Jm�Qa� involved
in the definition of �̃m�� ,qz ,�� in Eq. �3� take significant
values only when Q�m /a. The contribution of large mth
terms to the energy loss naturally vanishes in Eqs. �10� and
�11� because �̃m�a ,qz ,�� becomes real, therefore not contrib-
uting to the losses. The continuity of the loss probability at
the interface is a general feature of the dielectric formalism,
and it occurs because of the continuity of the induced poten-
tial. This continuity is also present in the case of a local
approach, when one needs to consider a momentum cutoff to
prevent the divergence arising from large momentum contri-
butions. This statement can be proven in the case of planar
interfaces. In the general case of nonplanar targets, different
cut-off procedures are used to evaluate the bulk and surface
contributions. For the bulk term, a cut-off value qc is com-
monly used to mimic the effect of a circular collecting semi-
angle aperture �c=qc /v, whereas the surface term is regular-
ized by truncating the multipolar series at a given term. The
intrinsic differences in both procedures lead to a noncontinu-
ous energy-loss probability at the interface. As mentioned
above, in the case of a nonlocal approach, the momentum
dependence of the dielectric function naturally guarantees
that the contribution of large momentum values is discarded.
Therefore no cutoff is needed.

We apply now expressions �10� and �11� to calculate the
energy-loss spectra corresponding to a 100 keV electron
traveling along an aluminum cylinder of radius a=3 nm
characterized by a plasma energy ��p=15.3 eV. In Fig. 5
we present the loss spectra in the range of energies of the
planar surface and bulk plasmons. External �a� and internal
�b� trajectories are considered at 0.1 nm from the surface
��0=3.1 nm and �0=2.9 nm, respectively�. In Fig. 5�a� we
show the loss spectra for an external trajectory, where the
losses are produced by the excitation of wire surface plas-
mons. The spectrum consists of an energy-loss peak at
�11 eV. We compare the spectra obtained within a local
description of the dielectric response of the wire �red dashed
line� and the nonlocal description �blue solid line�. The non-
local peak is shifted 0.3 eV up in energy �blueshifted� with
respect to the local result, with a broader distribution. The
slight blueshift is consistent with the change in the dispersion
relation of the modes in a metallic wire, shown previously in
Fig. 2. The intensity of the surface-plasmon peak is lower in
the nonlocal case due to the reduction in the momentum
values which effectively contribute to the plasmon excita-
tion. In the case of trajectories inside the wire ��0�a�
through the metallic material, the energy-loss spectrum con-
sists of the direct bulk contribution �first term in Eq. �11��
and a surface term �second term in Eq. �11��. In Fig. 5�b� we
show the surface terms �nonlocal as blue dotted-dashed line
and local as red dashed line�, as well as the sum of both
terms in the nonlocal approach �black solid line�. The result-
ing spectrum is similar to that in Fig. 5�a�, and it consists of
a surface peak at around 11 eV. The bulk-plasmon peak,

expected at �p, is canceled almost exactly for this trajectory
near the interface by the surface contribution, which be-
comes negative around �p. This bulk-loss correcting effect
by the induced potential is referred to as begrenzung and has
been widely studied within the local approach.1,16,34,35,39,41,47

We can observe that the begrenzung effect is directly associ-
ated with the continuity of the energy-loss probability along
the interface, which requires that the bulk peak vanishes in-
side the medium as the probe gets closer to the interface.

In Fig. 6 we analyze the dependence of the spectrum on
the impact parameter �0 for the same wire as in Fig. 5. For
axial trajectories, due to the azimuthal symmetry of the sur-
face charge density induced, only the m=0 mode contributes
to the surface losses. The mode distribution in Fig. 3�a� in-
dicates that for such a small wire, the energy of the m=0
mode lies approximately at 1 eV, a range not shown in Fig.
6�a�. Therefore the loss spectrum consists exclusively of a
peak centered at the bulk-plasmon energy for this central
trajectory. Note that the probability of exciting bulk plas-
mons decays very fast around the interface. For penetrating
trajectories, a few bumpy peaks above the bulk-plasmon
peak can be observed. The origin of these peaks is connected

FIG. 5. �Color online� Energy-loss probability per unit length
experienced by a 100 keV electron traveling parallel to the axis of a
cylinder with radius of 3 nm. �a� corresponds to trajectories outside
the wire, �0=3.1 nm. Nonlocal �blue solid line� and local �red
dashed line� results are displayed. �b� Total energy-loss probability
per unit length �black solid line� corresponding to an internal tra-
jectory, �0=2.9 nm. Surface contributions are also shown as red
line �local� and blue line �nonlocal�. The parameters of the dielectric
response function are �p=15.3 eV and 	=1 eV.

NONLOCAL EFFECTS IN THE PLASMONS OF… PHYSICAL REVIEW B 78, 035404 �2008�

035404-7



with the discretization of the transverse Q vector of the ex-
citations imposed by the boundaries of the cylindrical cavity.
The dispersion of the bulk plasmon ��2�k���p

2 +
2k2� to-
gether with this discretization �which selects particular Q
vectors� produces peaks at a set of energies above the bulk
plasmon. These peaks are part of the begrenzung correction
and tend to zero in the limit of a trajectory along the inter-
face. The intensity and energy position of both surface and
bulk losses can be traced in Figs. 6�b� and 6�c�. As men-
tioned above, as the impact parameter increases when getting
closer to the interface, modes with m�1 are increasingly
excited at energies close to the planar surface–plasmon en-
ergy ��s=��p /�2�10.8 eV. Simultaneously and consis-
tently with sum rules, the begrenzung correction also in-
creases for trajectories closer to the interface �red dashed line
in Fig. 6�a��, making smaller the intensity of the bulk-
plasmon peak �blue solid line in Fig. 6�b��. At the interface
and outside the wire, the bulk-plasmon peak vanishes, while
the surface peak presents a maximum at the interface trajec-
tory �o=a �red dashed line in Fig. 6�b��. The energies of both
peaks present a blueshift as the beam comes close to the

interface ��0→a in Fig. 6�c��. This shift is a consequence of
a larger localization of the induced charge density in the
proximity of the probe, which requires an increasingly larger
number of mth terms to correctly describe the induced po-
tential, therefore increasing the energies of both bulk and
surface modes.

It has been proven in the local approach that for very thin
wires or for axial trajectories, the main contribution to the
loss spectra comes from the m=0 term.49 The dispersion
shown in Fig. 2�a� suggests that for a thin wire of radius a
�a�v�−1�, the energy of the m=0 mode can be much
smaller than the energy of the planar surface plasmon ���s
=��p /�2�. This is shown in Fig. 7�a�, where we plot a series
of very low–energy–loss spectra for different scanning im-
pact parameters �0. We observe that the shape of the loss
peak in this region hardly changes when the probe is com-
pletely inside the wire �orange, green, and blue lines�. The
intensity of this peak is smaller than those found around �p
in Fig. 6 but is still significant and therefore measurable.
However, the intensity of this low-energy peak decreases
very fast when the probe position is close to the interface. In

FIG. 6. �Color online� �a� Series of energy-loss spectra for dif-
ferent impact parameters �0 ranging from �0=0 �orange dotted line�
to �0=3.6 nm �black solid line�. The wire is the same as in Fig. 5
�a=3 nm�. The spectra have been vertically shifted to improve
clarity. �b� Impact parameter dependence of the intensity of each
peak. The surface-loss peak is displayed as a red dotted-dashed line
and the bulk-loss peak is displayed as a blue solid line. �c� Disper-
sion of both bulk �blue solid line� and surface �dotted-dashed line�
peak energies as a function of the impact parameter. The energies of
the peaks have been scaled to the bulk-plasmon frequency ��p� and
planar surface–plasmon frequency ��s=�p /�2�, respectively.

FIG. 7. �Color online� �a� Series of energy-loss spectra in a wire
of radius a=3 nm for different impact parameters �0 ranging from
�0=0 �orange solid line� to �o=3.15 nm �black dotted-dashed line�.
The wire has the same dimensions as in Fig. 5 �a=3 nm�. The local
result for a central trajectory �0=0 is also shown as a red solid line.
�b� Impact parameter dependence of the intensity of the loss peaks
shown in �a�. Nonlocal �blue line� and local �red line� approaches
are displayed. �c� Spectral shift of loss peaks presented in �a�. The
nonlocal case �blue line� presents an abrupt change in both intensity
and spectral position compared to the local approach �red line�.
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Fig. 7�b� we present the dependence of the peak intensity on
the impact parameter, with the energy-loss spectrum as a
continuous function of the impact parameter �0, This loss
function presents a sudden change as the trajectory gets
closer to the interface, �0
a �brown and black lines in Fig.
7�a��. Also, the energy of this mode, shown in Fig. 7�c�,
features a similar change around the interface position. Two
aspects of these results are noticeable. On one hand, the non-
local peak �orange line in Fig. 7�a�� is significantly more
intense than the local one �red line�, a result that apparently
contradicts the reduction in momentum space contributing to
the plasmon excitation. On the other hand, the abrupt change
in the peak intensity profile in Fig. 7�b� does not follow the
smooth impact parameter dependence of typical surface ex-
citations. This latter result has been experimentally tested in
targets of different shapes but with larger dimensions than
the targets considered here ��10 nm�.13 The abrupt change
in the energy-loss peak shown in Fig. 7�c� rather resembles
the features of bulk plasmons near an interface, suggesting
the bulk nature of such one-dimensional �1D� plasmons in
thin nanowires.

The dispersion in the dielectric response implies that the
induced charge density is spread in a region of few atomic
units near the interface. Therefore for very thin wires, the
m=0 mode would consist of coherent oscillations of the elec-
tron gas in almost the full section of the wire, i.e., an exci-
tation somehow similar to a bulk plasmon in one-
dimensional system. The connection of this anomalous effect
with the 1D character of the wire is studied in Fig. 8. In the
top graph �Fig. 8�a��, we present the energy-loss spectrum in
the low-energy range for wires of two different sizes �a
=1.5 nm and a=10 nm� in the case of axial trajectories
��0=0�. We observe that the differences in the intensity be-
tween the local �red lines� and nonlocal �blue lines� ap-
proaches become relevant only for small radii. For radius
larger than 10 nm, the effect of dispersion is negligible. In
Fig. 8�b�, we show the intensity of this low-energy mode as
a function of the reduced impact parameter �0 /a for the same
wires studied in �a�. For a 20-nm-thick �a=10 nm� wire
�dashed lines�, the anomaly on the peak height at each side
of the interface is not present, with both approaches �local in
red and nonlocal in blue� giving similar values. However, for
thin wires �solid lines�, we observe an abrupt change in the
intensity of the loss peak at the interface in the nonlocal
approach, similar to the results presented for a wire with
radius a=3 nm in Fig. 7�b�.

As pointed out previously in the discussion of the modes
for very thin wires, we must note that the use of an isotropic
dielectric function for such thin wires fails to reproduce the
response of the electron bands in the transversal direction of
the wire. However, this aspect would be relevant for ex-
tremely thin wires �1D electron gas� and would affect the
induced charge density only in the wire cross section and not
in the propagation direction along the wire axis, where the
continuum of states assumed by the dielectric function is
senseful. Even if the use of a more sophisticated description
of the wire response in the transversal direction could shift
the final energy of the modes, the results presented here
showing a considerable blueshift of the plasmon response in
such 1D structures remain valid and could be tested with

EELS experiments in monoatomic metallic chains.19

IV. ELECTRON ENERGY LOSS IN A CAVITY

As pointed out in Sec. I, an electron beam has the ability
to drill cylindrical cavities when going through a material.
As the cylindrical hole surrounding the passing electron can
be of very narrow dimension, we can expect that nonlocal
effects might have a big impact in the characteristics of the
surface plasmons excited by the electron beam in a nanocav-
ity. Let us assume an electron moving near a cylindrical cav-
ity of radius a drilled in a metallic medium of dielectric
function ��k ,��. We will assume that the electron travels
parallel to the Z axis of the hole, with velocity v and impact
parameter relative to the center of the cavity �0, as depicted
in Fig. 1�b�.

Proceeding in the same way as in Sec. III and with use of
the expressions for the nonlocal potential derived from Eqs.
�B1� and �B2� in Appendix B, we obtain the following ex-

FIG. 8. �Color online� Energy-loss spectra for wires with radii
a=1.5 nm �solid lines� and a=10 nm �dashed lines� in the range of
0−7 eV. The energy of the electron beam is 100 keV. �a� Spectra
for axial trajectories of the electron ��0=0�. Results with local �red
lines� and nonlocal �blue lines� descriptions of the dielectric re-
sponse are compared. Larger differences arise for small wires. �b�
Impact parameter dependence of the energy-loss intensity corre-
sponding to the peaks presented in �a�. The labeling scheme stands
for both �a� and �b�. The large wire with a loss peak at around 5 eV
shows similar dependency for the local and the nonlocal descrip-
tions, whereas the thin wire with the loss peak at around 1 eV
shows strong differences. An abrupt change in intensity is observed
at the interface.
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pression for the energy-loss probability per unit length ����
for the case of the probe traveling through the cavity ��0
�a�:

������0�a� =
2

�v2 
m=−�

+�

Im
2 ���0

v
�Km� ��a

v
�

�Im� �̃m�a, �
v ,��Im��a

v �Km��a
v � − 1

�̃m�a, �
v ,��Im

2 ��a
v �Km� ��a

v � − Im� ��a
v �� .

�12�

The function �̃m�� ,qz ,�� for a particular radial coordinate
�, parallel momentum qz, and energy �� has been defined in
Eq. �3�. For trajectories inside the cavity, the only contribu-
tion to the losses arises from the surface excitations, given by
the poles of expression �12�.

In the case of electron trajectories through the surround-
ing metal, outside the cavity ��0�a�, we use the expression
for the nonlocal potential derived from Eq. �A19� with the
coefficients from Eq. �B3� in Appendix B. In this case, we
obtain the following the energy-loss probability per unit
length:

������0�a� =
2

�v2�
0

� QdQ

Q2 + qz
2 Im� − 1

��k,��� +
2

�v2 
m=−�

�

Im� ��a

v
�Im� �̃m�a, �

v ,��
�̃m��0, �

v ,��2

�̃m��0, �
v ,��Km���0

v �Im��a
v � − 1

�̃m�a, �
v ,��Im

2 ��a
v �Km� ��a

v � − Im� ��a
v �� .

�13�

Similar to that for the wire, the first term in Eq. �13�
corresponds to the energy loss in a nonbounded medium
�bulk losses�, while the multipolar expansion contains the
surface contribution and the correction to the bulk �begren-
zung�. If a local dielectric function is used, the energy-loss
probabilities in Eqs. �12� and �13� recover the corresponding
local expressions.16

In Fig. 9 we show the energy-loss spectra corresponding
to a 100 keV electron beam traveling near the interface of a
cavity of radius a=3 nm drilled in a metal characterized by
a nonlocal dielectric response given by Eq. �1�. Both the
trajectories through the cavity �Fig. 9�a�� and through the
metal outside the cavity �Fig. 9�b�� are considered. The spec-
tra consist basically of two surface peaks, one at 11 eV, at
slightly larger energy than the planar surface plasmon, and a
second peak at 14.6 eV, near the energy of the bulk plasmon.
The latter peak is originated from the surface contribution of
the m=0 cavity mode. As expected from the cavity modes
dispersion in Figs. 4�a� and 4�b� and considering the small qz
value of this situation �qz=�v−1
0.01 Å−1�, both local �red
line� and nonlocal �blue line� m=0 modes ��14.6 eV� do
not differ in the energy position. The peak around 11 eV
arises from the remaining m�0 terms, and nonlocal effects
are more relevant for these higher-order terms, as observed
in the dispersion of modes of Figs. 4�b� and 4�d�. Therefore
a blueshift of the low-energy peak at around 11 eV is pro-
duced with respect to the local approach �red dashed line�
when nonlocal effects are considered �blue solid line�. The
reduction in the momentum values contributing to the plas-
mon excitation has also an effect in this difference. In the
case of the electron trajectories outside the cavity, through
the metal �Fig. 9�b��, we find both surface peaks at the same
positions as in Fig. 9�a� and also the cancellation of the bulk-
plasmon peak by the begrenzung correction, with some
modulation above the bulk-plasmon energy due to the dis-
persion and modulation of the nonlocal begrenzung, similar
to those in Fig. 6�a�. The spectra calculated for electron
beams traveling at both sides of the interface in Fig. 9�a�
�blue solid line� and Fig. 9�b� �black solid line� are very
similar with the use of the nonlocal approach, this being a
consequence of the natural continuity discussed in Sec. III.

FIG. 9. �Color online� Energy-loss probability per unit length
experienced by a 100 keV electron traveling parallel to the axis of a
cylindrical cavity with radius of 3 nm. �a� corresponds to trajecto-
ries inside the cavity, �0=2.9 nm, with the uses of local �red dashed
line� and nonlocal �blue solid line� approaches. �b� corresponds to a
trajectory outside the cavity, in the metal, �0=3.1 nm. The total-
energy-loss probability per unit path length is plotted as a black
solid line, whereas the surface contributions are displayed as red
dashed lines �local� and blue dotted lines �nonlocal�.
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V. CONCLUSIONS

We have developed a theoretical framework that allows
the inclusion of nonlocal effects in the excitation of plas-
mons by fast electron beams. The specular reflection model
has been used to characterize the momentum dependence of
the metallic material with use of a plasmon pole approxima-
tion to characterize the dielectric response. This response
accounts for the main features of nonlocality at the inter-
faces. Compared to a local approach, a blueshift in the en-
ergy of the plasmons is obtained, especially for very thin
wires, where the nonlocal induced charge at the walls of
wires and cavities interact more strongly. A very low–energy
mode is found for very thin wires that resembles the behav-
ior of a 1D plasmon, and it presents remarkable differences
in the position and intensity of the excitation when nonlocal
effects are consider. The excitation of surface and bulk plas-
mons are traced for different impact parameters, and a natu-
ral continuity of the spectrum of losses is found when the
nonlocal approach is applied. Considering the progressive
minimization of the size of wires in different technological
approaches and the ability of electrons to drill thin holes in
their trajectory, nonlocal effects should be considered and
included in the optical response of these metallic systems for
an accurate description of plasmons and optimal tuning of
resonant situations.
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APPENDIX A: NONLOCAL POTENTIAL IN A WIRE

We derive in this appendix the expressions for the nonlo-
cal potentials around a metallic nanowire with use of the
SRM.57 Both external and internal trajectories are consid-
ered. First we assume an electron moving with velocity v
outside a cylindrical wire of radius a parallel to the Z axis at
a radial distance �0 from the center of the wire ��0�a�, as
shown in Fig. 1�a�. We characterize the metal in the wire by
a nonlocal dielectric function ��k ,�� taken from Eq. �1�
within the plasmon pole approximation, but any other non-
local dielectric function could be used with generality.
Laplace equation can be separated in cylindrical coordinates
�� ,� ,z�, and Poisson’s equation solved through an expansion
of Green’s functions in cylindrical coordinates.89 The poten-
tial V�r� outside the wire �assumed to be the vacuum� is then
given by

V�r,�� = Vd�r,�� + Vind�r,�� =
− 1

2�
�

−�

�

dqze
iqzz

� 
m=−�

+�

4���� − qzv�eim��Im�qz�0�Km�qz��

���� − �0� + Km�qz�0�Im�qz�����0 − ���

+
1

2�
�

−�

�

dqze
iqzz 

m=−�

+�

Ameim�Km�qz�� , �A1�

where the first term Vd�r ,�� is the potential produced di-
rectly by the moving charge and the second term Vind�r ,�� is
the potential produced by the charge induced at the wire.
Im�x� and Km�x� are the modified Bessel functions of order
m,87 and ��x� is the Heaviside function. Therefore, the prob-
lem reduces to finding the Am coefficients in the induced
term of the potential.

Inside the wire ���a�, we can write

� · D = 0, �A2�

� � E = 0. �A3�

Following Ritchie and Marusak,57 we will assume an in-
finite fictitious medium in order to solve for the fields inside
the wire. This medium satisfies the following conditions: �i�
Maxwell’s equations are continued to the ��a region of the
infinite medium. �ii� The fields inside the real wire are the
same as the ones of the infinite medium with the same re-
sponse function. �iii� The normal component of the displace-
ment D� is discontinuous in �=a in this infinite system, but
the tangential components are continuous. Therefore, we in-
troduce a uniform dielectric medium with a fictitious cylin-
drical surface of charge at �=a which acts as a source for D.
Because of this, � ·D=0 �which normally holds throughout
an infinite, continuous medium� does not hold on the surface
of the wire. We introduce now the potential function VD�r�
defined by

D�r� = − �VD�r� . �A4�

We note that inside the cylindrical surface of the fictitious
medium, V�r� and VD�r� must be of the form

V�r� =
1

2�
�

−�

+�

dqze
iqzz 

m=−�

+�

eim�Ṽm��,qz� , �A5�

and

VD�r� =
1

2�
�

−�
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dqze
iqzz 

m=−�

+�

eim�ṼDm��,qz� . �A6�

Equations �A2� and �A3� together with Eq. �A4� reduce to

�2VD = 0. �A7�

Multiplying by e−ikr and integrating on r, we get

− k2VD�k� + a 
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with
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Cm = − �dṼDm

d�
�

�=a−
+ �dṼDm

d�
�

�=a+
. �A9�

We expand e−ikr in cylindrical coordinates by using the
relation89

e−ikr = e−iqzz 
p=−�

+�

�− i�peip��−��Jp�Q�� , �A10�

where k2=Q2+qz
2, � and � are the azimuthal angles of k and

r, respectively, and Jp�Q�� is the Bessel function of order p.
After integrating Eq. �A9� over z and �, we get
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2�aCm�− i�meim� Jm�Qa�
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where
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We come back to the space coordinate using the following
scheme for the Fourier transform:
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We obtain
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+�

Cmeim�

� �
−�

+�

dqze
iqzz�

0

+�

QdQ
Jm�Qa�Jm�Q��

Q2 + qz
2 ,

�A15�

and

V�r,�� =
a

�2��2 
m=−�

+�

Cmeim�

� �
−�

+�

dqze
iqzz�

0

+�

QdQ
Jm�Qa�Jm�Q��

�Q2 + qz
2���k,��

.

�A16�

Now we will take this potential as the one corresponding
to our real system inside the wire ���a� and apply the
boundary conditions at �=a with the potential given by Eq.
�A1�, which is valid outside the wire ���a�. D��r� is ob-
tained in both cases as the derivative of the potential VD�r�,
as D�r�=−�VD�r�, and has to be also continuous at �=a. We
solve equations of continuity for V�a+�=V�a−� and normal
component of D��a+�=D��a−� and obtain for Am

Am = 4���� − qzv�Km�qz�0�Im� �qza�

� � �̃m�a,qz,��Km�qza�Im�qza� − 1

�̃m�a,qz,��Km
2 �qza�Im� �qza� − Km� �qza�� ,

�A17�

with

1

�̃m�a,qz,��
= �

0

� Jm
2 �Qa�

�Q2 + qz
2���k,��

QdQ . �A18�

Introducing this coefficient Am into Eq. �A1�, we obtain
the expression of the nonlocal potential outside the wire. The
modes of the wire system are given by the zeros of the de-
nominator of this function, as explicitly written in Eq. �2�.

For a case where the electron is traveling parallel to the
wire axis, inside the wire, i.e., ��0�a�, the potential of in-
terest is now that inside the wire. Analogous to the case of
the external trajectory, we also apply the SRM, introducing a
cylindrical surface charge density at the wire surface. This
allows us to express the potential inside the wire as

V�r,�� = Vd�r,�� + Vind�r,��

=
− 1

2�
�

−�

�

dqze
iqzz 

m=−�

+�

4���� − qzv�eim�

��
0

�

dQQ
Jm�Q��Jm�Q�0�
�Q2 + qz

2���k,��

+
1

�2���−�

�

dqze
iqzz 

m=−�

+�

Bmeim��
0

�

dQQ

�
Jm�Qa�Jm�Q��

�Q2 + qz
2���k,��

. �A19�

The first term in Eq. �A19� is the direct Coulomb term
corresponding to the potential from the infinite bulk medium,
and the second term corresponds to the induced potential due
to the surface modes plus the correction to the bulk modes
due to the presence of the surface. After a similar algebraic
treatment as in the previous case, we obtain for a trajectory
inside the wire ��0�a� the following expression for the co-
efficient Bm

��0�a�, giving the surface contribution:

Bm
��0�a� = 4���� − qzv�Km� �qza�

�̃m�a,qz,��
�̃m��0,qz,��

� � �̃m��0,qz,��Im�qz�0�Km�qza� − 1

�̃m�a,qz,��Km
2 �qza�Im� �qza� − Km� �qza�� .

�A20�

The zeros of the denominator coincide, as it should be,
with those obtained for the external trajectory. An extra zero
corresponding to the bulk mode �̃m��0 ,qz ,��=0 shows ex-
plicitly the correction to the bulk mode by the presence of
the surface �begrenzung�.
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APPENDIX B: NONLOCAL POTENTIAL IN A
CYLINDRICAL CAVITY

We assume now an electron moving with velocity v inside
a cylindrical cavity of radius a parallel to the Z axis at a
radial distance �0 from the center of the cavity ��0�a�, as
shown in Fig. 1�b�. We characterize the metal surrounding
the cavity by a nonlocal dielectric function ��k ,�� taken
from Eq. �1�. We follow the same treatment separating
Laplace equation in cylindrical coordinates and solving Pois-
son’s equation. The potential V�r� inside the cavity �assumed
to be vacuum� is then given by

V�r,�� = Vd�r,�� + Vind�r,��

=
− 1

2�
�

−�

�

dqze
iqzz 

m=−�

+�

4���� − qzv�eim�

��Im�qz�0�Km�qz����� − �0�

+ Km�qz�0�Im�qz�����0 − ���

+
1

2�
�

−�

�

dqze
iqzz 

m=−�

+�

Emeim�Im�qz�� , �B1�

where the first term Vd�r ,�� is the potential produced di-
rectly by the moving charge in an infinite medium and the
second term Vind�r ,�� is the potential produced by the
charge induced in the material outside the cavity. The gen-
eration of the nonlocal surface charge density at the cylindri-
cal boundaries of the cavity follows strictly the same proce-
dure as in Appendix A. The continuity of the potentials and

the displacements at the boundaries lead with the use of the
same algebra to the value of the coefficient:

Em = 4���� − qzv�Im�qz�0�Km� �qza�

� � �̃m�a,qz,��Km�qza�Im�qza� − 1

�̃m�a,qz,��Im
2 �qza�Km� �qza� − Im� �qza�� , �B2�

with the expression for �̃m�a ,qz ,�� in Eq. �A18�. The non-
local modes for the cylindrical cavity are given by the zeros
of the denominator of this coefficient, as explicitly written in
Eq. �6�.

For a trajectory through the material surrounding the cav-
ity ��0�a�, the expression for the nonlocal potential is ex-
actly the same as in Eq. �A19�, since this general form of
potential corresponds to a bulk term, plus the excitation of a
cylindrical surface scatterer. When the conditions of continu-
ity are applied at the cylindrical cavity, the explicit expres-
sion for the surface coefficient Bm

��0�a� can be obtained as
follows:

Bm
��0�a� = 4���� − qzv�Im� �qza�

�̃m�a,qz,��
�̃m��0,qz,��

� � �̃m��0,qz,��Km�qz�0�Im�qza� − 1

�̃m�a,qz,��Im
2 �qza�Km� �qza� − Im� �qza�� .

�B3�

Together with the surface modes, as it happens in a pen-
etrating trajectory through the wire, in the current case of a
trajectory through the material outside the cavity a correction
to the bulk mode is also present as an extra zero in the
denominator of the coefficient Bm

��0�a�.
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