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We present a systematic quantitative description of the magnetoconductance of split-gate quantum wires
focusing on formation and evolution of the odd (spin-resolved) conductance plateaus. We start from the case of
spinless electrons where the calculated magnetoconductance in the Hartree approximation shows the plateaus
quantized in units of 2¢?/h separated by transition regions, whose width grows as the magnetic field is
increased. We show that the transition regions are related to the formation of the compressible strips in the
middle of the wire occupied by electrons belonging to the highest (spin-degenerate) subband. Accounting for
the exchange and correlation interactions within the spin density functional theory (DFT) leads to the lifting of
the spin degeneracy and formation of the spin-resolved plateaus at odd values of e2/h. The most striking
feature of the magnetoconductance is that the width of the odd conductance steps in the spin DFT calculations
is equal to the width of the transition intervals between the conductance steps in the Hartree calculations. A
detailed analysis of the evolution of the Hartree and the spin DFT subband structure provides an explanation
of this finding. Our calculations also reveal the effect of the collapse of the odd conductance plateaus for lower
fields. We attribute this effect to the reduced screening efficiency in the confined (wire) geometry when the
width of the compressible strip in the center becomes much smaller than the extent of the wave function. A
detailed comparison to the experimental data demonstrates that the spin DFT calculations reproduce not only
qualitatively but also quantitatively all the features observed in the experiment. This includes the dependence
of the width of the odd and even plateaus on the magnetic field as well as the estimation of the subband index

corresponding to the last resolved odd plateau in the magnetoconductance.
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I. INTRODUCTION

The quantized conductance of a two-dimensional electron
gas (2DEG) in the quantum Hall regime has generated a
tremendous attention since its discovery in 1980 (Ref. 1). For
a theoretical description of the integer quantum Hall (IQH)
effect, the concept of edge states combined with the
Landauer-Buttiker formalism is widely used.>> This ap-
proach is proven to be especially appealing for the descrip-
tion of electron transport in the quantum Hall regime in con-
fined geometries such as quantum wires or quantum point
contacts (QPCs) (Refs. 3 and 4).

Some aspects of the quantized conductance in the con-
fined geometries in the IQH regime can be understood in a
one-electron picture. This includes, for example, magnetic
depopulation of the subbands in a quantum wire’ and selec-
tive population and detection of edge channels by QPCs re-
sulting in the observation of anomalous IQH effect.>* In the
one-electron picture, the two-terminal magnetoconductance
G of a quantum wire or a QPC exhibits quantized plateaus in
units of 2¢/h (for spinless electrons) separated by transition
regions of an essentially zero width. The experiments, how-
ever, show that the extent of these transition regions can be
comparable to the width of the plateaus.’*%7 This indicates
that an accurate description of the magnetoconductance in
the IQH regime—even without accounting for spin effects—
requires approaches that go beyond a simple one-electron
picture of noninteracting electrons. A quantitative electro-
static theory of interacting electrons in quantum wires was
proposed by Chklovskii et al.® They demonstrated that in a
strong magnetic field, alternating strips of compressible and
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incompressible liquids are formed in the center of the wire.
They also evaluated the two-terminal magnetoconductance
of the wire. In contrast to the one-electron description, the
magnetoconductance of interacting electron was shown to
exhibit very narrow quantized plateaus separated by much
broader rises where the conductance was not quantized. This
conclusion (being opposite to the prediction of the one-
electron picture) is also in apparent disagreement with the
experiments. This indicates that even for spinless electrons in
the IQH regime, an accurate quantitative description of the
magnetoconductance  requires  many-body  quantum-
mechanical treatment.

At low temperature and in clean high-mobility samples,
the spin degeneracy is lifted and the additional plateaus at
odd values of e?>/h become resolved.*’ This is due to the
exchange and correlations effects leading to the strong en-
hancement of the electron g factor above its bulk value.’ The
effect of the many-body interactions on the spin splitting in
quantum wires in the IQH regime has been a subject of nu-
merous studies.'®?3 These studies have focused on various
aspects of 2DEG in confined geometries including the struc-
ture of compressible/incompressible strips, suppression or
enhancement of the g factor, subband spin splitting, spatial
spin separation, and others. We, however, have not been able
to find in the literature any systematic quantitative treatment
of the magnetoconductance of the structures at hand. Surpris-
ingly enough, even after two decades of the studies of IQH
systems in the confined geometry, the question of the funda-
mental importance addressing the formation of the odd pla-
teaus in the magnetoconductance and corresponding quanti-
tative description of the plateau widths still remains
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unanswered. As discussed above, the structure of the magne-
toconductance plateaus remains poorly understood even for
the case of spinless electrons. Recent advances in the
field such as demonstration of the Mach-Zehnder,2*
Aharonov-Bohm,” and Laughlin quasiparticle interfero-
meters?® or prospects of the topological quantum
computing®’ has led to a renewed interest in the magnetocon-
ductance in the quantum wires and related structures. Even
though many of the above systems operate in the fractional
quantum Hall regime where the correlation effects become
dominant, a detailed understanding of the magnetoconduc-
tance in the IQH regime is the necessary prerequisite for the
understanding of the magnetotransport in the fractional re-
gime.

In our previous publications, we provided a systematic
quantitative description of the structure and spin polarization
of edge states and magnetosubband evolution in the quantum
wire based on the self-consistent Green’s function techniques
combined with the spin density functional theory (DFT)
(Refs. 19-21) or Hartree-Fock approach.?® The main aim of
this paper is to present a systematic quantitative description
of the two-terminal magnetoconductance of the quantum
wire with the focus on the formation and evolution of the
exchange-induced odd conductance plateaus. The motivation
for the present paper is the recent experimental studies of the
spin-resolved magnetoconductance of the narrow channels in
the IQH regime.” One of the remarkable findings of this ex-
periment is the collapse of the spin splitting in the confined
geometries for lower field. The spin DFT magnetotransport
calculations presented in this paper not only capture essential
features observed in the experiment, but also demonstrate
rather good quantitative agreement with the calculated and
observed magnetoconductances. This includes the width and
the position of the magnetoconductance plateaus (both odd
and even), as well as predictions for the critical magnetic
field where the odd plateaus disappear in the magnetocon-
ductance. We, therefore, conclude that the spin DFT ap-
proach represents the powerful tool to study large realistic
quantum Hall systems containing hundreds or thousands of
electrons, providing detailed and reliable microscopic infor-
mation on wave functions and electron densities and currents
as well as on conductance.

II. BASICS

We consider an infinitely long wire in a perpendicular
magnetic field B (see Fig. 1). The bare electrostatic confine-
ment (due to the split gates, donor layer, and Schottky bar-
rier) can be approximated by a parabolic potential,

Vconf(y) = VO + m?m(w()y)zv (1)

where V|, is the bottom of the potential, w, defines the po-
tential slope, and m*=0.067m, is the electron effective mass
in GaAs. [The comparison of the model parabolic potential
with the calculated potential in a realistic split-gate wire is
shown in Fig. 1(b).] By varying V,, and w,, we can change
the wire width and the electron density; in our calculations
we set the Fermi energy E=0.
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FIG. 1. (a) Schematic of a split-gate quantum wire. (b) The bare
electrostatic parabolic confining potential V,,¢(y) [Eq. (1)] with
Vo=-0.4 eV and hwy=3.8 meV (solid lines). Dashed line shows
the calculated electrostatic confinement for a realistic split-gate
quantum wires depicted in (a) with the distance between the gates
a=500 nm, the gate voltage V,=-2 V, and &-donor concentration
ny=6X 10> m3; the donor and electron distance to the surface are
100 and 200 nm, respectively, and the Schottky barrier Vsepouky
=0.8 eV The potentials from the gates and the donors are calcu-
lated on the basis of Egs. (2) and (3) of Ref. 19.

In order to calculate the magnetoconductance of the quan-
tum wire, its subband structure, and the wave functions, we
use the Green’s function technique!®?® where the electron
interaction and the spin effects are included self-consistently
within the framework of the Kohn-Sham density function
theory in the local spin density approximation.?® (The reli-
ability of the spin density functional theory for electronic
structure and magnetotransport calculations in quantum
wires, dots, and related structures is discussed in detail in
Refs. 23 and 29.)

We start from the Hamiltonian H=X [ Hy+V?(y)], where
H, is the kinetic energy in the Landau gauge,

H,= ﬁz[(i —eiBy)2+i] )
O omt\ox 4 ay? |’

and the total confining potential V7(y),

VU()’) = Vconf(y) + VH(y) + VZ()’) + Vg’ (3)

includes the bare electrostatic confinement V,.,{y) [given by
Eq. (1)], the Hartree potential Vy(y), the exchange-
correlation potential Vy.(y), and the Zeeman term V5
=gu,Bo, where o= * % describes the spin-up and spin-down
states, T |; u,=ef/2m, is the Bohr magneton and the bulk g
factor of GaAs is g=-0.44. The Hartree potential Vy(y) due
to the electron density n(y)=2,(y) (including the mirror
charges) reads!”
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Vu(y)=- (4)

with b being the distance from the electron gas to the surface
(we choose b=200 nm). The exchange and correlation po-
tential V,.(y) in the local spin density approximation is given
by the functional derivative

VL) = 2 nedn 200l )

_n! . . o
where {(y)= Zuiﬂ is the local spin polarization. In the present

paper, we use the parameterization of the exchange and cor-
relation energy €,. given by Tanatar and Ceperly (TC) (Ref.
30). Note that we also performed calculations on the basis of
the parametrization recently provided by Attaccalite et al.’!
and found only marginal difference with the results based on
the TC functional.

The spin-resolved electron density in the wire can be ex-
pressed via the Green’s function G“(y,y,E)

na(y) == 71_71111[] dE Ga-(y’y’E)fFD(E - EF) s (6)

—00

where frp(E-Ey) is the Fermi-Dirac distribution function.
The Green’s function, the Bloch states, and the electron and
current densities are calculated self-consistently using the
technique described in detail in Ref. 19. Knowledge of the
wave vectors ko for different Bloch states a allows us to
recover the subband structure, i.e., to calculate an overage
position y? of the wave functions for different modes « for
the given energy E (Ref. 32),

_ fikg
" eB’

Ve (7)

We calculate the spin-resolved conductance of the wire on
the basis of the linear-response Landauer formula,

.5 [ aﬂE—Eﬁ]
o= h%ng dE[_ 0E | ®

where summation is performed over all propagating modes «
for the spin o, with Ef , being the propagation threshold for
the ath mode. The current density for a mode « is calculated

asl9

jﬂ%E{_dﬂE—Eﬁ}’ ©)

2
I =Sv J dE
@ h T JE

3

with v? and j%(y,E) being, respectively, the group velocity
and the quantum-mechanical particle current density for the
state « at the energy E, and V being the applied voltage. All
the calculations presented in this paper are performed for the
temperature 7=100 mK. In order to speed up the calcula-
tion, we use the modified Broyden method that allows one
to reduce the number of iterations needed to achieve a self-
consistent solution from ~2000 to only ~50.

PHYSICAL REVIEW B 78, 035340 (2008)

III. RESULTS AND DISCUSSIONS

A. Hartree and spin DFT approximations

We start our analysis of the magnetoconductance and the
magnetosubband structure in quantum wires from the case of
the Hartree approximation when the exchange and correla-
tion interactions are not included in the effective potential
[i.e., when V2 (y) is set to zero in Eq. (3)]. Note that the total
potential V?(y) also includes the Zeeman term leading to the
spin splitting even in the Hartree case. The effect of the
Zeeman term, however, is negligibly small in the considered
field intervals. We will thus refer to the Hartree case as for
the case of spinless electrons. The results obtained in the
Hartree approximation will provide a basis for understanding
the effect of the exchange and correlation within the spin
DFT approximation.

Figures 2(a) and 2(b) show the magnetoconductance of a
representative wire with the effective width w=350 nm and
the electron density in the center of the wire n(0)=3.2
X 10'> m=2 calculated within the Hartree and the spin DFT
approximations. The Hartree magnetoconductance shows the
plateaus quantized in units of 2¢?/h separated by transition
regions whose width grows as the magnetic field is in-
creased. For large fields, the width of the transition regions is
comparable or can even exceed the width of the neighboring
plateaus. For low fields, B= B, the width of the transition
regions practically shrinks to zero; for the quantum wire at
hand, this critical field is B.;~0.6 T, corresponding to the
subband index N= 17 [see Fig. 2(a)]. Note that in a standard
one-electron picture of edge states, the magnetoconductance
of a clean wire (without impurities) is strictly quantized in
units of 2¢*/h (for spinless electrons) with vanishing width
of the transition regions. Formation of the transition region
between the plateaus is shown to be related to development
of the compressible strip in the middle of the wire.®

Let us now turn to the spin-resolved magnetoconductance
calculated by the spin DFT. The most striking feature of the
wire magnetoconductance is that the width of the odd con-
ductance steps in the spin DFT calculations is equal to the
width of the transition intervals between the conductance
steps in the Hartree calculations [see Fig. 2(a)]. We will
demonstrate below that the characteristic features in the spin-
resolved conductance of the quantum wires calculated on the
basis of the spin DFT (including the dependence of the width
of the odd plateaus on the magnetic field and collapse of the
odd plateaus at lower fields B < B.;) can be understood from
the analysis of the compressible strip structure for spinless
electrons and from the corresponding magnetoconductance
and magnetosubband structure evolution in the Hartree ap-
proximation.

Before we proceed to the analysis of the evolution of the
magnetosubband structure, it is instrumental to outline how
the exchange interaction induces the spin splitting (see, for
details, Refs. 19 and 20). The spin splitting is most pro-
nounced in the compressible strips. Indeed, the Hartree com-
pressible strips are formed for partially occupied states in the
vicinity of Er when the Fermi-Dirac occupation frp<1 (i.e.,
in the window |E—E | <2kT). When the states are partially
occupied, the system behaves like a metal, where the elec-
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FIG. 2. (Color online) (a) Conductance of the quantum wire calculated within the spin DFT and in the Hartree approximation (the latter
is shifted by —2¢?/h for clarity). The vertical lines are drawn to emphasize that the width of the odd conductance steps in the spin DFT
calculations is equal to the width of the transition intervals between the conductance steps in the Hartree calculations. (b) Comparison
between the Hartree magnetoconductance and the magnetoconductance calculated according to the Chklovskii et al. conjecture Gy
= 2TFZV(O). (c) Evolution of the magnetosubband structure in the interval 6e?/h <G <8e?/h (second and third row). Fat solid lines indicate the
total confining potential. The first row shows the electron-density profiles (local filling factors) v(y)=n(y)/nz (ng=eB/h). Two lower rows
show the current densities for the last two subbands (N=7 and 8). Parameters of the wire are the same as in Fig. 1 and T=100 mK.
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trons can easily readjust their density to screen the external
potential. It is important to stress that the compressible strips,
being partially occupied, allow for different population of the
spin-up and spin-down states. In the DFT calculations, this
population difference (triggered by the Zeeman splitting) is
strongly enhanced by the exchange interaction. This leads to
the lifting of the subband degeneracy and to the spatial sepa-
ration between the spin-up and spin-down states.

B. Magnetosubband structure and the magnetoconductance

In order to get insight into evolution of the odd conduc-
tance plateaus, let us inspect the Hartree and the spin DFT
magnetosubband structures. Let us, for example, concentrate
at the field region where 6e2/h<G<8¢2/h, i.e., when the
magnetoconductance clearly shows the spin splitting. The
magnetosubband structure for several representative fields in
this region is shown in Fig. 2(c). In all subsequent discus-
sions, we will focus on the two highest subbands (in this
case, N=8 and 7), because the depopulation of these two
subbands determines the features in the conductance steps
(note that all the remaining subbands are fully filled). At B
=1.62 T the subbands N=7 and 8 are fully occupied and,
thus, the total conductance G=8¢2/h. The Hartree calcula-
tions for spinless electrons show the presence of a narrow
compressible strip of the width wg,mp [see Fig. 2(c)A]. When
the exchange interaction is included, the subbands split,
which leads to the spatial separation between the spin-up and
spin-down states. (The spatial spin separation due to the sup-
pression of the Hartree compressible strips was discussed in
detail in Ref. 20.)

When the magnetic field is increased the subbands are
pushed up in energy [see Fig. 2(c)B; B=1.7 T]. The com-
pressible strip in the Hartree calculations becomes wider (be-
cause the confinement is smoother in the wire center) and it
moves closer to the center of the wire. The exchange inter-
action quenches the compressible strip causing the splitting
of the spin-up and spin-down subbands. However, despite
the lifting of the spin degeneracy, the subband bottoms are
still below Ej at the wire center. Because of this, the two
spin split subbands N=7 and 8 remain fully (and equally)
popglated and the conductance remains on the plateau G
=8e”/h.

When the magnetic field is increased to B=1.78 T [Fig.
2(c)C], the Hartree compressible strip reaches the middle of
the wire. This means that the subbands become partially oc-
cupied because their bottoms are now within the window
|E—Ep| <2mkT (where frp<1). As a result, the conductance
of the spinless Hartree electrons starts to decrease and the
transition region between the plateaus starts to form. With
further increase in the magnetic field the Hartree compress-
ible strip in the middle of the wire shrinks, and at B
~2.05 T the subbands depopulate completely as they are
pushed above the window |E—Eg|=2mkT. We conclude the
discussion of the evolution of the Hartree subbands by re-
emphasizing the fact that the transition between the conduc-
tance steps starts when the compressible strip reaches the
center of the wire and it ends when the compressible strip
disappears and two highest (spin-degenerate) magnetosub-
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band are pushed above Er. Note that even though this dis-
cussion was focused on the transition between G=8¢?/h and
6e2/h plateaus in the Hartree conductance, the same scenario
of the Hartree subband depopulation holds for all other sub-
bands.

Let us now examine how the exchange interaction affects
the transition region between the Hartree plateaus G=8¢*/h
and 6¢%/h. Similarly to the cases of lower fields discussed
above [Fig. 2(c)A and Fig. 2(c)B], the exchange interaction
causes the subband repulsion and the spatial spin separation
of the wave functions [the latter being equal to the width of
the Hartree compressible strips, see the lower panel of Fig.
2(c)]. For B=1.78 T, the Hartree compressible strip covers
the central part of the wire. As a result, the bottom of the
higher-energy (spin-down N=8) subband is situated within
the window |E—Ep|<2mkT (and thus this subband is only
partially populated), whereas N=7 (spin-down) subband is
pushed below Ep and thus remains fully populated [Fig.
2(c)C, spin DFT calculations]. Thus, at B=1.78 T the tran-
sition to the odd plateau G=7¢?/h starts to form. The ex-
change interaction keeps the eighth and seventh subbands
separated such that with further increase in the magnetic-
field, the eighth subband becomes quickly depopulated while
the seventh subband remains fully occupied with its bottom
being below Ej [see Fig. 2(c)D and Fig. 2(c)E] (B=1.84 and
2.02 T). The above field interval (i.e., 1.84<B<2.02 T)
corresponds to the odd step in the magnetoconductance. Fi-
nally, at B=2.02 T (i.e., at the same field when the corre-
sponding Hartree subbands depopulate), the bottom of the
seventh subband is pushed above E (to be more precise,
above Ep+27kT) and the seventh plateau in the conductance
disappears.

To summarize the discussion presented in this section, the
formation of the odd magnetoconductance plateaus due to
the exchange interaction can be traced to the formation of the
compressible strips in the center of the wire in the case of the
spinless electrons. The exchange interaction lifts the spin de-
generacy such that the bottom of the highest (even) subband
remains pinned to Er, whereas the bottom of the highest odd
subband remains below E. As a result, the odd plateaus
(whose width is equal to the width of the transition regions
between the Hartree plateaus) develop in the magnetocon-
ductance.

Note that the analytical solution to the electrostatic prob-
lem of the electron-density distribution in a quantum wire for
spinless electrons has been obtained by Chklovskii et al.® for
the high magnetic-field regime (when only a few lower Lan-
dau levels are occupied, N=2~4). (A good agreement with
the analytical results of Chklovskii et al. has been reported
by Oh and Gerhardts** within the self-consistent Thomas-
Fermi calculations.) Chklovskii et al.® have also discussed
the magnetoconductance of the quantum wire. They found
that in a realistic quantum wire the conductance plateaus are
practically absent, i.e., the conductance is not quantized (see
Fig. 5 in Ref. 8). This conclusion is in obvious disagreement
with the experimental results, showing pronounced plateaus
in the two-terminal magnetoconductance at integer values of
e?/h (Refs. 3, 6, and 7). They attributed this discrepancy to
the presence of disorder in the channel. We, however, have
demonstrated above that even in an ideal clean channel
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FIG. 3. (Color online) Solid line: The width of the transition
regions between the Hartree plateaus (which is equal to the width of
the odd plateaus in the spin DFT calculations) as a function of 1/N
with N being the subband number (indicated in the plot). Thin line:
The subband splitting in the wire center AE=E (the definition of
AE is illustrated in Fig. 4). Parameters of the wire are the same as
in Fig. 1 and T=100 mK.

(without disorder), the conductance shows the pronounced
quantization with wide plateaus and sharp rises. The reason
of the discrepancy we instead attribute to the conjecture used
by Chklovskii et al.® that the ballistic conductance is given

by the filling factor in the middle of the wire, GCh=2762v(0).
Our quantum-mechanical calculations show that this conjec-
ture is not justified (see also Ref. 35 for a related discussion).
Indeed, Chklovskii et al. used a semiclassical approach to
calculate »(0) and identified plateaus in the conductance with
the situation when there is an incompressible strip in the
center of the channel (i.e., where v is integer). Suzuki and
Ando3¢ have, however, demonstrated that the Chklovskii et
al. predictions concerning the size and positions of
compressible/incompressible strips are justified only when
the extent of the wave functions does not exceed the width of
the strips. This condition is certainly violated for the large
subband indices N. This is clearly seen in Fig. 2(c)A and Fig.
2(c)B when the wave function corresponding to the com-
pressible strip of the last subband is much wider than this
strip and significantly extends into the central incompressible
strip. As a result, »(0) is not an integer any longer and, thus,
the quantum-mechanical calculation based on the Chklovskii
et al.’s conjecture® for the conductance does not show a pla-
teaulike behavior.

Our results thus indicate that while electrostatic and
Thomas-Fermi-type approaches can be very successful in the
description of the electron density and the structure of the
compressible and incompressible strips for the spinless elec-
trons, an accurate description of the magnetoconductance re-
quires detailed quantum-mechanical information for the
wave functions and the currents densities.

C. Collapse of the odd magnetoconductance plateaus
at lower fields

When the magnetic field is increased, the width of the
transition regions between the Hartree plateaus (which is
equal to the width of the odd plateaus in the spin-resolved
magnetoconductance) AB also gradually increases (see Figs.
2 and 3). We attribute this increase in AB to the effect of the
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FIG. 4. (Color online) The magnetosubband structure of a quan-
tum wire within the Hartree and the spin DFT approximation for
different numbers of occupied subbands N. Fat solid lines indicate
the total confining potential. For all cases, the magnetic field is
chosen such that the Hartree compressible strips in the middle of
the wire have a maximal width. AE shows the subband splitting in
the center of the wire. Parameters of the wire are the same as in Fig.
1 and 7=100 mK.

enhanced electron screening due to the evolution of the com-
pressible strip in the middle of the wire. Indeed, the transi-
tion regions between the Hartree plateaus are related to the
depopulation of the highest (spin-degenerate) subbands
forming the compressible strip in the center. In high mag-
netic field, each subband (representing a Landau level) ac-
commodates the same number of electrons, such that the
density of the electrons in the highest subband is propor-
tional to ~1/N. Thus, one can expect that the width of the
compressible strip in the middle of the wire wg,y, and,
hence, the width AB grow as B increases (note that B
~ 1/N). Figures 3-5 illustrating the magnetic-field depen-
dence of AB and wony, confirm this expectation. Note that
AB shows a nonlinear dependence on 1/N. That is, for low
fields B=<B,, the width AB rapidly decreases when B de-
creases, such that the odd plateaus are no longer seen in the
magnetoconductance.

Let us now concentrate on this feature of magnetoconduc-
tance in more detail. Figure 2(a) shows the spin-resolved
magnetoconductance G' and G'. It is worth stressing that the
spin degeneracy remains lifted even for fields smaller than
B, The total conductance G=G'+G', however, does not
exhibit the odd plateaus for B < B, because the strength of
the exchange splitting becomes comparable to the thermal
broadening of the plateaus. This is illustrated in Fig. 3 where
it shows the dependence of the subband splitting AE in the
center of the wire on the magnetic field and its comparison to
the energy window 47kT (where the derivative of the Fermi-
Dirac distribution function is distinct from zero). (The defi-
nition of the subband splitting AF is outlined in Fig. 4.) It is
also worth pointing out that in accordance to the previous
discussion, AE and AB exhibit similar behavior as a function
of magnetic field (see Fig. 3).
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FIG. 5. (a) The current densities for the highest occupied Har-
tree subband compared to the maximal width of the compressible
strip in the middle of the wire for different magnetic fields. N indi-
cates the subband number (see Fig. 4 for the corresponding magne-
tosubband structure). (b)The current densities for the highest occu-
pied Hartree subband (N=8) compared to the maximal width of the
compressible strip in the wires with the effective widths of w
=350 and 700 nm. Parameters of the wire are the same as in Fig. 1
and parameters of the second wire are indicated in Fig. 6; T
=100 mK.

In order to understand the nonlinear behavior of AB, lead-
ing to quenching of the odd magnetoconductance plateaus at
low field, we examine the wave functions and the current-
density distributions. Figure 5(a) shows the current density
for the Hartree subbands N=8-18 along with the maximal
width of the Hartree compressible strip wom, in the middle
of the wire. The extent of the wave function for the highest
Nth subband, ()~ VNI, (I5 is the magnetic length) gradu-
ally increases when the magnetic field is lowered.*> Note that
(hy) is larger than the width of the compressible strip weom,
already for N=8. When the extent of the wave function ex-
ceeds the width of the compressible strip, the ability of the
system to screen the external potential is greatly reduced
because the wave function can be shifted within the distance
not exceeding the width of the compressible strip weqmp.
Thus, the smaller the ratio weom,/(#y) is, the weaker the
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FIG. 6. (Color online) Comparison between the calculated mag-
netoconductance of the wire with the effective width of w
=700 nm and the experimental magnetoconductance (Ref. 7); T
=100 mK.

effect of the redistribution of the electron density required to
screen the external potential. This reduced screening effi-
ciency for lower fields (When weop,/(ty) <1) translates into
the suppressed exchange splitting and thus to disappearance
of the odd magnetoconductance plateaus.

Note that the extent of the wave function (i) for a given
subband number N (or for a given magnetic field) is not
particularly sensitive to the wire width w (at least in the
regime when the cyclotron radius r.<w). At the same time,
the maximum width of the compressible strip increases with
increase in the wire width. This is illustrated in Fig. 5(b)
where it shows the current-density distribution and w oy, for
two quantum wires of the width w=350 and 700 nm for the
case of N=6 occupied subbands. [Note that in the bulk limit
(i.e., for the edge of the 2DEG), the compressible strip cov-
ers the semi-infinite space, such that regardless of the sub-
band number, W,/ (ty)>1.] Therefore, for the given N
(magnetic field B), the ratio Weem,/{ty) is larger in a wider
wire and, therefore, the screening efficiency is higher. One
can therefore expect that in a wider wire, the magnetosub-
band spin splitting due to exchange interaction leading to the
appearance of the odd magnetoconductance plateaus would
manifest itself for larger subband numbers (lower fields).
Our calculations show that this is indeed the case. For ex-
ample, in a wire with w=350 nm the odd plateaus become
discernible for the subband index N=17 (B.;~0.6 T),
whereas for the wire with w=700 nm the last odd plateau is
seen for N~ 19-21 (B, ~0.4 T), c.f. Figs. 2 and 6.

IV. COMPARISON TO THE EXPERIMENT

We have performed magnetotransport calculations for
several quantum wires with effective widths in the range of
200-700 nm and the electron densities, 1.5—-3.5X 101> m™2,
All the wires exhibit the same behavior described in detail in
Sec. III.

A detailed comparison of our calculations with the experi-
mental magnetoconductance’ for some representative quan-
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tum wire is shown in Fig. 6. The width of the wire is esti-
mated to be ~680 nm, and the sheet electron density in the
bulk 7,=2.15X 10> m=2 (Ref. 7). The theoretical magneto-
conductance shown in Fig. 6 is calculated for the electro-
static confining potential with the parameters Vy=—0.4 eV
and iwy=1.91 meV (giving the effective wire width w
=700 nm and the electron density in the wire center n=2.2
X 10" m™2). In both the experimental and simulated wires,
the electrons are situated at the distance ~200 nm below the
surface. The comparison to the subband depopulation in the
experimental structure demonstrates that such a choice of the
parameters provides a satisfactory approximation for the ac-
tual confining potential. We stress here that a magnetic-field
dependence of the subband depopulation can be described by
the one-particle Schrodinger equation (for a given confining
potential),5 whereas our main focus here is the electron in-
teraction effects leading to formation of the odd steps in the
magnetoconductance due to the exchange interaction. The
comparison of the calculated and the experimental curves
demonstrates a good quantitative agreement between the
widths of the odd (as well as even) plateaus in the calculated
and the experimental magnetoconductance. The calculations
also provide a reasonably close estimation of the subband
index corresponding to the last resolved odd plateau in the
magnetoconductance, N~ 19-21, whereas the corresponding
experimental value is N=15.

It would be unreasonable to expect an exact agreement
between the theory and the experiment. There are several
factors that have not been taken into account in the theoret-
ical modeling. We list some of them below.

(a) The experiment’ is performed in the QPC geometry,
whereas our calculations are done for an infinite quantum
wire. In the edge state transport regime considered here with
N> 1, this is not expected to be a source of significant dis-
crepancy between the theoretical predictions and the experi-
ment. Nevertheless, the effect of the QPC geometry on the
magnetoconductance remains to be seen.

(b) The calculations are performed for ideal clean wires
without impurities. In a one-electron description, the transi-
tion regions between the magnetoconductance plateaus are
the step functions with a zero width. A random impurity
potential is known to lead to the smooth transition regions of
a finite width even in the one-electron picture.>” A compari-
son of the magnetoconductance traces in Fig. 6 clearly shows
that the transition regions seen in the experiment are signifi-
cantly wider than the theoretical ones. We remind that a finite
width of the transition regions in the theoretical magnetocon-
ductance is due to the formation of the compressible strips in
the middle of the wire. We attribute the difference in the
widths of the calculated and experimental transition regions
to the effect of the disorder that has not been included in the
model. Note that the experimental magnetoconductance
traces for narrower QPCs show the conductance fluctuations
in the transition regions,7 which is a clear manifestation of
the disorder potential due to impurities.>® Note that the pres-
ence of disorder can also lead to the destruction of the ex-
change enhancement of the g factor and thus to the collapse
of the spin splitting (i.e., to the suppression of the odd pla-
teaus for N>N,) (Ref. 39). This effect does not seem to be
relevant to the experiment because the spin splitting, being
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suppressed in the narrow structures (QPCs) for larger N, is
still clearly seen in the bulk Hall measurements.

(c) In our calculations, we assumed that an electron mo-
tion is confined to a two-dimensional plane, which is a good
approximation for heterostructures where the electrons are
localized on the interface between GaAs/AlGaAs. In the ex-
perimental structures,’ the electrons are confined in a quan-
tum well that is populated by donors situated on both sides
from the well. An accurate description of this geometry
might require accounting in the Schrodinger equation for the
electron motion in the direction perpendicular to the inter-
face.

Finally, we notice that while we compared our calcula-
tions with the experimental conductance of one representa-
tive wire, our spin DFT calculations qualitatively reproduce
all the features observed in other samples. This includes the
dependence of the width of the odd plateaus AB on the mag-
netic field shown in Fig. 3. It is also worth stressing that the
theory confirms (and explains) the experimental finding that
in wider wires, the collapse of the odd plateaus occurs at
lower fields. We, however, are not in position to fit all the
experimental data. This is because this task would require a
detailed knowledge of the bare confining electrostatic poten-
tial V¢ due to the gates and the donor layers [Eq. (1)].
Indeed, the bare electrostatic confinement determines the to-
tal self-consistent confining potential V’(y), which in turn
determines the depopulation of the magnetosubbands (i.e.,
the dependence of the subband number N on B) (Refs. 3 and
5). We are not in a position to perform a systematic search
for the parameters of V¢ giving rise to the B dependence of
the subband depopulation consistent with each experimental
magnetoconductance trace. This is simply because of a com-
putation burden related to this task; each point on the mag-
netoconductance plot requires up to one hour of a processor
time. (Note that a calculation of the electrostatic confinement
and the self-consistent potential, starting from the layout of
the actual heterostructure of Ref. 7, represents a separate
task, which is outside the scope of the present study.)

V. CONCLUSION

In this paper, we provide a systematic quantitative de-
scription of the magnetoconductance of the split-gate quan-
tum wires focusing on the formation and evolution of the
odd conductance plateaus. In order to calculate the electron
density, magnetosubband structure, and the magnetoconduc-
tance, we utilize the self-consistent Green’s function tech-
nique combined with the spin density functional theory."”

We start our analysis with the case of spinless electrons in
the Hartree approximation (disregarding the exchange and
correlation interactions). The calculated Hartree magneto-
conductance shows the plateaus quantized in units of 2e2/h
separated by transition regions, whose width grows as the
magnetic field is increased. The transition regions are attrib-
uted to the formation of the compressible strips in the middle
of the wire occupied by electrons belonging to the highest
(spin-degenerate) subband. In agreement with experiments,
the width of the transition regions for large fields is compa-
rable to the width of the neighboring plateaus. This is in
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contrast to both the one-electron description, where the con-
ductance shows the steplike behavior with the rises between
the plateaus of zero width, as well as to the electrostatic
theory of Chklovskii et al. . where the magnetoconductance
exhibits narrow plateaus of negligible width separated by
much broader transition regions where the conductance is
not quantized.

Accounting for the exchange and correlation interactions
within the spin DFT leads to the lifting of the spin degen-
eracy and formation of the spin-resolved plateaus at odd val-
ues of e?/h. The most striking feature of the magnetoconduc-
tance is that the width of the odd conductance steps in the
spin DFT calculation is equal to the width of the transition
intervals between the conductance steps in the Hartree cal-
culations. This is because the transition intervals in the Har-
tree magnetoconductance correspond to the formation of the
compressible strip in the middle of the wire. At the same
time, in the compressible strip in the center of the wire, the
states are only partially occupied. As a result, the exchange
interaction enhances the difference in the spin-up and spin-
down population, which leads to the lifting of the subband
spin degeneracy and formation of the odd conductance pla-
teaus.

In agreement with the experimental results,” we find that
the width of the odd magnetoconductance plateaus gradually
decreases with decrease in the magnetic field. For lower
fields B<B,;, the odd plateaus rapidly disappear such that
the magnetoconductance shows the quantization in units of
2¢2/h. The wider the wire, the lower the critical field B e
corresponding to the disappearance of the last resolved odd
plateau. We attribute this effect to the reduced screening ef-
ficiency in the confined (wire) geometry when the width of
the compressible strip in the center becomes much smaller
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than the extent of the wave function. This, in turn, leads to
the suppressed exchange splitting and collapse of the odd
magnetoconductance steps.

A detailed comparison to the experimental data’ (see Fig.
6) demonstrates that the spin DFT calculations reproduce not
only qualitatively but also quantitatively all the features ob-
served in experiment. This includes the dependence of the
width of the odd and even plateaus on the magnetic field as
well as the estimation of the subband index corresponding to
the last resolved odd plateau in the magnetoconductance.
The experiment, however, shows wider rises between the
transitions plateaus in comparison to the calculated ones. We
attribute this difference to the effect of smooth potential due
to remote donors that has not been accounted for in our cal-
culations (performed for clean disorder-free wires). Despite
of this discrepancy, the overall good agreement between the
theory and experiment makes it possible to conclude that the
spin DFT approach represents the powerful tool to study
large realistic quantum Hall systems containing hundreds or
thousands of electrons, providing detailed and reliable mi-
croscopic information on wave functions, electron densities
and currents, as well as on conductance.
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