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Theory of quantum noise detectors based on resonant tunneling
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We propose to use the phenomenon of resonant tunneling for the detection of noise. The main idea of this
method relies on the effect of homogeneous broadening of the resonant tunneling peak induced by the emission
and absorption of collective charge excitations in the measurement circuit. In thermal equilibrium, the signal-
to-noise ratio of the detector as a function of the detector bandwidth (the detector function) is given by the
universal hyperbolic tangent, which is the statement of the fluctuation-dissipation theorem. The universality
breaks down if nonequilibrium processes take place in the measurement circuit. We propose a theory of this
phenomenon and make predictions for the detector function in the case when nonequilibrium noise is created
by a mesoscopic conductor. We investigate measurement circuit effects and prove the universality of the
classical noise detection. Finally, we evaluate the contribution of the third cumulant of current and make

suggestions of how it can be measured.
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I. INTRODUCTION

Universalities play an important role in physics because
they point to fundamental laws and properties such as sym-
metries, topology, scaling behavior, and others. Moreover,
when broken, they open a door to new physics. Here we wish
to consider one example that is important in the context of
this paper. Recently, following the suggestion of Kane and
Fisher,! experiments on shot noise in quantum Hall
systems?>3 directly measured fractional charge of Laughlin
quasiparticles. The interpretation of these experiments in-
vokes a simple argument that weak quasiparticle tunneling is
an uncorrelated Poisson process, which is described by the
Schottky formula S=g(I), where (I) is the average tunneling
current, S is the zero-frequency noise power of the tunneling
current, and ¢ is the fractional charge of quasiparticles.

More rigorously, the Schottky formula follows from the
fluctuation-dissipation theorem (FDT), which states that
when a tunnel junction weakly connects two metallic reser-
voirs, the following relation generally holds:*>

q{I)/S = tanh(Au/2kgT), (1)

where Au is the electrochemical potential difference applied
to the barrier. This relation is a generalization of the well-
known Callen-Welton FDT, which connects the noise power
and the linear-response coefficient® and follows from the ar-
gument similar to the one used in the linear response theory.
This implies the universality of the relation (1), i.e., it holds
independently of the character of the interaction, spectrum of
quasiparticles, the geometry of a tunnel junction, etc. It is
easy to see that the Callen-Welton theorem and the Schottky
formula are the two limits of the relation (1).

Here we present a simplified derivation of Eq. (1) based
on the “golden rule.”® Quantum mechanical transition rate
between the energy states E, and E,, is given by W,,
=27w8(E,~E,)|A,.,|*, where A,,=(E,|A|E,) is the matrix
element of the tunneling amplitude A. Then the average cur-
rent can be evaluated as (I)=¢=,,,W,..(0,—p.), Where p,
=(E,|p|E,) is the diagonal matrix element of the density
operator, i.e., the probability to find the system in the state
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E,. When tunneling is weak, forward and backward tunnel-
ing transitions are independent Poisson processes with the
dispersions of fluctuations equal to mean currents. Therefore,
the total noise power is equal to S=¢>=,,, W,u(Pu+ Pom)-

In equilibrium p,*exp(-E,/kgT), so that p,=p,, and the
current vanishes. If the potential difference Au is applied
between the leads, which are locally at equilibrium, then the
density matrix acquires the grand canonical form p(Aw)
=p(0)exp(AuN/kgT), where N is the number of electrons in
one of the leads. Since the tunneling amplitude changes the
number of particles in this lead by one, then obviously one
can write p,,=exp(Au/kgT)p,, which immediately gives the
relation (1).

From the derivation of the FDT it is obvious that nonequi-
librium processes in reservoirs play a special role, since they
may lead to a deviation from the universal relation (1). The
goal of this paper is to investigate this phenomenon in the
case when nonequilibrium processes take place in the elec-
trical (measurement) circuit to which the tunnel junction is
attached. In Fig. 1 we draw its simplified version that con-
tains essential parts; the mesoscopic system which creates
nonequilibrium noise and has the conductance G, the de-
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FIG. 1. The measurement circuit contains a mesoscopic system,
which creates nonequilibrium noise and has the conductance G,
the detector consisting of a tunnel junction shunted by the load
resistor G, and the capacitor C. The voltage biases V,, and V), are
applied to the system and to the tunnel junction, respectively. Fluc-
tuating current through a mesoscopic system is accumulated on the
capacitor and creates the fluctuating potential 6V across the tunnel-
ing barrier.
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tector consisting of a tunnel junction shunted by the load
resistor G, and the capacitor C. One of the important results
of this paper is that the FDT breaks down in a minimal way
so that some properties of the current-to-noise ratio, which
contain an important information about nonequilibrium pro-
cesses in the leads, retain their universality. This leads to the
idea of using tunnel junctions as on-chip detectors of non-
equilibrium noise, which we investigate below in details.

The measurement circuit has been proven to play an im-
portant role in the physics of the noise detection with the
standard measurement technique!®'> and with the help of
on-chip noise detectors.!31¢ It has been established!®-!>16
that in the long-time (Markovian) limit, the backaction of the
measurement circuit on the system leads to “cascade correc-
tions” to statistics of noise.!”!® In order to quantify the cir-
cuit effects, one solves the Kirhgoff (the current conserva-
tion) law for the fluctuations of the current through the
mesoscopic system Ol and through the load resistor &I,
and the voltage fluctuations 6V on the capacitor,

V() = Z(w)[ly(w) + Ol (w)]. ()
The circuit impedance is given by
Z(w)=R/(1 —iwTy), (3)

where R=1/(Gy+G,) is the differential circuit resistance
and 7.=RC is the circuit response time. Equation (2) de-
scribes the effect of the system current fluctuations via the
circuit on the tunnel junction, which directly detects potential
fluctuations. The normalized circuit resistance R=G\R,
where Gy=e?/27 is the conductance quantum and we set #
=1, plays a role of the dimensionless coupling constant,
which parametrizes the strength of the circuit effects. In this
paper, we assume that coupling is weak, R <1.

Quantum noise detectors—the main operating principle of
which is based on the resonant tunneling in a two-level
system—were investigated experimentally and theoretically
in a number of previous works.!°->* Here we consider two
different detectors of this type. The first one, the double-dot
(DD) detector of quantum noise that is theoretically analyzed
by Aguado and Kouwenhoven?® is shown in Fig. 2. It con-
sists of two quantum dots, which are strongly coupled to
leads and weakly coupled to each other. To the lowest order
in interdot coupling, the electron transport in the DD detector
occurs via inelastic transitions between nearest energy levels
of two dots. These transitions are assisted by the emission
(absorption) of the energy & to (from) the circuit, where € is
the interdot level distance. Away from the resonance, the
average current through the DD detector is given by (/)
~ Sy (€)/€* (Ref. 20), where Sy,() is the spectral density of
the nonsymmetrized correlator of the system current. It is
easy to see that the parameter ¢ plays a role of the bandwidth
of the detector.

The operating principle of the second detector, based on
the telegraph process (TP detector, see Fig. 3), is slightly
different. It contains two weakly coupled quantum dots,
which are electrically isolated from the circuit but capaci-
tively coupled to it. Fluctuations of the potential on the ca-
pacitor, caused by the current noise in the mesoscopic sys-
tem, lead to rare electron transitions between two dots, which
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FIG. 2. (Color online) The DD detector operates as shown on
the upper panel. The absorption of the quantum of the collective
charge excitation of the circuit leads to the inelastic electron tran-
sition between two weakly connected quantum dots. Because dots
are strongly connected to two metallic reservoirs, multiple random
transitions generate current through the detector and the current
noise. Lower panel shows the energy diagram of the detector and its
most important parameters.

change the electrical charge of, say, the left dot randomly in
time. When the left dot interacts with a nearby quantum
point contact (QPC), it randomly switches the QPC current
between two levels, /; and [,, leading to the telegraph pro-
cess. The average QPC (detector) current {/},) is a monotonic
function of the interdot level distance &, which changes from
one current level to the other depending on the average oc-
cupation of the left dot. Thus the QPC acts as a sensitive
electrometer of the occupation of the quantum dot—the prin-
ciple demonstrated in an early work? and subsequently
elaborated in recent experiments—where the real time detec-
tion of single-electron tunneling,?6-3! the measurement of
counting statistics,*734 and the information backaction of a
detector® were also shown.

We denote with D(g,A) the current-to-noise ratio for the
DD detector and call it the detector function. Although D
depends on the bias voltage Vj, we choose to represent it as
a function of the energy A=eVj,—¢e of the electron-hole pair
created in the leads by the elementary tunneling event. This
energy parametrizes the asymmetry of the detector because
in the case A=0, or equivalently e=¢eV), there is no differ-

ph I
LULERENY

L 10

~

~T

= =l

[}
QPC d ) >
FIG. 3. (Color online) The TP detector consists of a double-dot
system, which is capacitively coupled to a QPC. When one of the
dots is charged, it pinches off the QPC and thus changes the current
through it from the upper level I, to the lower level /;,, Random
interdot transitions, caused by the emission and absorption of the
collective charge excitations of the circuit, lead to random switch-
ing of the QPC current. The resulting telegraph process is shown on
the upper right panel. The average current through the QPC, shown
on the lower right panel, develops a smooth crossover between two
current levels as a function of the DD level distance €.
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ence between the left and the right dot of the DD system.
Below we prove an important fact that the average current
through the QPC of the TP detector, after a proper normal-
ization [see Egs. (26) and (27)], is given by the symmetric
detector function D(e,0). When the circuit is at thermal
equilibrium, D(e,0)=tanh(e/2kzT) according to the FDT.

The physics of quantum noise detection is quite rich,
thanks to a number of energy scales that determine the dy-
namics of entire system. While these energy scales are not
important in the case of equilibrium circuit because the FDT
holds and leads to the universality, they start to play an im-
portant role away from equilibrium. First of all, it is an ef-
fective temperature of the noise source ), which is formally
defined by Eq. (18). It has a meaning of the energy provided
by the system and the load. Alternatively, one can think of
the correlation time 1/} of the noise source. Second impor-
tant parameter is the detector bandwidth &, which is intro-
duced earlier. Third, the circuit itself is characterized by the
response time 7. and corresponding energy scale 1/7.. Fi-
nally, the asymmetry of the DD detector is characterized by
the energy A.

In the weak-coupling limit, which we consider throughout
the paper, where the dimensionless circuit impedance R is
small, the detector operates at the Gaussian point, i.e., the
contribution of high-order cumulants (irreducible moments
of noise) is small. The physical reason for this is that in the
limit R < 1, the detector only weakly interacts with the noise
source; therefore, it has to operate for a relatively long time
interval of the order of 1/R() in order to accumulate suffi-
cient information about the noise. During this time interval,
many fluctuations contribute to the detector signal so that by
virtue of the central limit theorem, the resulting noise be-
comes Gaussian. In Sec. VII we show how the third cumu-
lant, which is the simplest characteristics of the non-
Gaussianity, nevertheless can be extracted from the detector
output signal.

The new energy scale I'g arises in the weak-coupling
limit due to the effect of homogeneous level broadening.
Close to the resonance, € — 0, the interaction of the detector
with the circuit becomes effectively strong and inelastic tran-
sitions in the detector are assisted by multiple photon absorp-
tion and emission processes. As a result, the detector signal
at this point acquires a peak as a function of & of the width
' < Q). The shape of the peak depends on the circuit details.
We distinguish two limiting cases depending on the circuit
response time 7c. In the “fast” circuit limit RQ7-<1, the
peak has a Lorentzian shape and the width I'(=27RQ [see
Eq. (21)]. In the “slow” circuit limit RQ7->1, the peak
acquires the Gaussian shape (23) with the width T
=2VE), where E-=¢%/2C is the Coulomb charging energy
of the circuit.

Depending on energy scales, the following regimes can be
distinguished. In the quantum noise detection regime, &
~ (), the detector signal is due to the inelastic tunneling with
the absorption or emission of a single photon of the energy e.
The probability of this process is given by Eq. (16). In the
case when the circuit is driven away from equilibrium by a
coherent mesoscopic conductor, the symmetric detector func-
tion is given by Eq. (31). For a low circuit impedance,
GyR <1, this expression simplifies and we obtain the result
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FIG. 4. (Color online) The symmetric detector function D(e,0)
is plotted versus the normalized level spacing &/ for different
values of the parameter FGyR. Typically, D is concave function of
g, although for a super-Poissonian noise, F>1, it may become
convex. Note that in the limit 7GR <1, the detector function has
a power-law behavior as compared to the exponential behavior of
the equilibrium D=tanh(g/2Q)) (shown by the dashed line).

(32). The results are summarized in Fig. 4. In the case of
strongly asymmetric detector, A>(), the detector function
takes the equilibrium tangent form (33), which is however
shifted by the energy E,, given by Eq. (34), which can be
viewed as the noise rectification effect.

In the classical noise detection regime, & <(), the detector
function is simply linear in & [see Eq. (35)], with the slope
determined by the effective noise temperature (). Thanks to
this universality, there is no need to specify the mesoscopic
system that is measured. Close to the resonance, € ~ 1", the
inelastic tunneling becomes nonperturbative despite the
small parameter R, and the P(E) function acquires a peak of
the width T'. The shape of the peak depends on the circuit
details [see Eqs. (21) and (23)]. Nevertheless, the detector
function retains its universal form (35), so it can be used to
extract the noise temperature.

We evaluate the small contribution of the third cumulant
of the system current in the classical (Markovian) limit and
find that it slightly shifts the zero of the detector function
(43) by the energy E;, which is proportional to the third
cumulant. The coefficient depends on the circuit response
time 7. and is evaluated in the case of fast and slow circuit
[see Egs. (46) and (49)]. The total third cumulant of the
system current contains cascade corrections, which depend
on the circuit response time. In the case of fast circuit, the
cascade corrections are given by Eq. (45), i.e., they are those
introduced by Nagaev in Ref. 17. In the slow circuit case, the
detector measures equal-time fluctuations of the potential on
the capacitor, and the cascade corrections in this case are
given by Eq. (48) as predicted in Ref. 16 and measured in
Ref. 12. We finally note that the third cumulant of current
may be extracted from the shift of the detector function using
the technique recently introduced in experiments*®>7 on the
mesoscopic threshold detectors.!®33% The universality of the
detector function in the classical noise detection regime,
proven in Sec. IV, may become crucial for the success of this
procedure.
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The rest of the paper is organized as follows. After re-
viewing the P(E) theory of tunneling in Sec. II, we focus on
the Gaussian noise case in Sec. III and classify the measure-
ment circuit effects according to the circuit response time. In
Sec. IV we analyze quantum noise detectors based on the
resonant tunneling effect and connect the detector function
D(e,A) to the current-to-noise relation for tunnel junctions.
We use the results of the P(E) theory in Sec. V to calculate
the detector function in quantum and classical noise detec-
tion regimes. In Sec. VI we prove that the detector function
is universal in the classical noise detection regime, i.e., it is
independent of the measurement circuit details. Finally, in
Sec. VII we investigate the third cuamulant contribution to the
detector function including the circuit cascade corrections.
The Sec. VIII outlines further directions of research.

II. REMINDER ON P(E) THEORY OF TUNNELING

The purpose of this section is to remind the essential steps
of the P(E) theory of photon-assisted tunneling.*>*!' In addi-
tion, we extend the theory in order to take into account the
weak non-Gaussian effects in noise. The tunnel junction, at-
tached to two metallic leads, is described by the Hamiltonian

H= 2 sk(chk + a’,tdk) + Hy, (4)
k

where ¢, and d;, are the electron operators in the left and right
lead, respectively, and Hy is the tunneling Hamiltonian. It
can be written as*’

Hr=A+A", A=e"> Tdicy, (5)
pk

where the amplitude A transfers the electron from left to
right and the phase factor ¢’ changes the charge on the
capacitor by —e. The last fact follows from the charge quan-
tization [¢,Q]=ei. Then the charge Hamiltonian H,
=(Q?/2C generates the equation of motion for the phase op-
erator ¢p=edV. We thus assume that the interaction of elec-
trons with the collective charge excitations in the electrical
circuit is generated solely via tunneling.

Next we evaluate the average tunneling current (I,) and
the zero-frequency noise power Sp,=[d{SI(t)SIp(0)). We
define the tunneling current operator as Ip,=edN,/dt=ie(A
—AT), where N, L=Ekack is the number of electrons in the left
lead. To leading order in the tunneling Hamiltonian (5), we
can write,

(Ip)=e J d([A(),AT(0)]), (6a)

Sp=e’ J dr{A(1),AT(0)}). (6b)

Substituting A from Eq. (5) to Egs. (6) and tracing out elec-
tronic operators, we finally obtain,

(Ip)= 2776[] dE dE" vi(E)v,(E")[PR(E—E' +€V)p)

Xf(L=f") = Pri(E" = E=eVp)f' (1= ], (7a)
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Sp=2me? f f dE dE' vi(E)v (E")[Pr(E—E' +¢eV))

Xf(1=f") + Pr(E" = E=eVp)f'(1-f)], (7b)

where f=fp(E) and f'=fp(E’) are the equilibrium distribu-
tions in the leads and v; and vy are the electronic densities of
states. Here P;x(E) and P, (E) are the probability distribu-
tions of the emission (absorption) of a collective charge ex-
citation of energy E caused by inelastic tunneling of an elec-
tron from the right to the left lead and vice versa.

1 . . .
PLR(E) — ;j dtelEl<el¢(t)€_l¢(0)>, (8a)

1 . . )
PRL(E) = ;Tj dte’El<e_l¢([)e’¢(0)>. (8b)

In general, the phase correlation functions in Egs. (8a)
and (8b) can be expanded in terms of the noise cumulants.
However, every cumulant comes with an extra coupling con-
stant R < 1. Therefore, we keep only the first two nonvan-
ishing cumulants

HO=SF 0 - 26080+ £0),  ©)

1
J3(1) = g<¢3(t) =3¢%(1)(0) +3¢(1) ¢*(0) - $(0)),

(10)
and write
1 . ‘
Pi(E) =7~ f dte =050, (11a)
I . .
Pru(E) =7~ f dtet =00, (11b)

We postpone the discussion of the third cumulant effect
until Sec. VII and for a moment assume that the noise is
Gaussian.

III. GAUSSIAN NOISE

We now set J3=0 and write P;p=Pp; =P, where

1 .
P(E)="— f dte'®=0, (12)

Note that in Eq. (9) each term of the form {¢?) contains a
classical contribution, which in the long-time limit is propor-
tional to time.** This is a consequence of the Brownian mo-
tion of the phase “pushed” by a fluctuating potential. How-
ever, these potentially dangerous terms cancel and Eq. (9)
can be rewritten in the form

Jr= %((A¢)2> + %([dﬂfb]), Ag = ¢(1) - ¢(0), (13)

so that it does not contain divergences. In this equation the
first term can be interpreted as a classical contribution, which
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is proportional to time in the long-time limit, and the second
term is pure quantum. Using Eq. (2), we obtain

dwS(w) ) o
Jy(1) = Gof m|2(m)| (1-e),
where S(w)=S)/(w)+S;(w) is the power of the total noise
created in the circuit, and S); and S; are the nonsymmetrized
correlators of the mesoscopic system and of the load resistor,

7—0, (14)

Sy(w) = f dte™(81,(1) 81,,(0)), (15a)

Si(w) = f dte'( 51, (1) 81,(0)). (15b)

Next we note that in the weak-interaction case R=GyR
<1 considered here, J,(¢) is usually small. For instance, in
equilibrium RS(w)=2kgT so that for 1~ 1/kgT, the correlator
given by Eq. (14) can be roughly estimated as J, ~R. There-
fore, we expand the exponential on the right-hand side of Eq.
(12) and obtain,

P(E) = PyS(E) + Gy|Z(E)|*S(E)/E?, (16)

where P is the probability of the elastic process, fixed by the
normalization [dE P(E)=1. The probability of the inelastic
process is proportional to the nonsymmetrized correlator
S(E) (Refs. 20 and 43-45) and at relatively large energies, it
is sensitive to quantum fluctuations.

Special care, however, has to be taken about the long-time
limit in Eq. (14) since growing with time classical contribu-
tion to J, may compensate smallness of R. The Fourier in-
tegral cuts off a small region around w=0, where the noise is
classical, and the noise power can be approximately replaced
with S(0). The important note is in order; quantum effects,
which lead to the interaction-induced suppression of tunnel-
ing (i.e., to the so-called dynamical Coulomb blockade
effect)*®4% are not neglected. They are fully taken into ac-
count in Eq. (16) and, subsequently, in Sec. V. However, at
the energy scale of interest here, their contribution to the
long-time asymptotic is small. We now focus on the long-
time limit and consider the cases of fast and slow circuit,
depending on the circuit response time 7.

A. Fast circuit

We first assume that the relevant time scale is longer than
7c and, therefore, set Z(w)=R. From Eq. (14) we find,

Jo(1) =27RA[|t] +id,,5(0)/S(0)sign()], (17)
where the energy scale () is the circuit noise temperature,
QO = (1/2)RS(0). (18)
Note that although the interaction is weak, R<<1, in the
long-time limit |¢| ~ 1/}, the exponential in Eq. (8) cannot
be expanded. We then use the result (17) and obtain,

P(E) = )2[1 +E3,5(0)/S(0)], (19)

E?+ (27RO

which is consistent with the result (16) in the limit E>R().
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Thus we find that in the limit |¢|{Q~ 1/R > 1, the multiple
photon processes lead to the broadening of the 6 function in
Eq. (16), so that it is replaced with the Lorentzian peak with
the width I'=27R{). One can now use Eq. (3) to check that
the assumption Z(w)=R is justified if RQ7-<< 1. This means
that the response of the circuit to current fluctuations is in-
stantaneous, and the phase fluctuations are Markovian on the
time scale of interest.

The asymmetry of P(E) given by the second term in Eq.
(19) is weak, Ed,S/S~TR. Interestingly, the expression
3,5(0)=[dt(it/2){[1(z) ,1(0)]) coincides with the Kubo for-
mula for the differential conductance 1/R=4,{I). Therefore
we obtain ,5(0)=1/R, and alternatively,

2,50 1 o0
S(0) 20
Thus one can express the asymmetry in Eq. (19) in terms of
the noise temperature alone,

RQROQ+E)

PE) =5 27RQ)?’

RQ7-< 1. (21)

B. Slow circuit

Next we consider the opposite limit R{Q7->1, when the
circuit responds slowly to current fluctuations. In this case it
is the singularity in Z(w) that cuts off the integral in Eq. (14)
at small frequencies w~ 1/7.. Using the impedance (3) and
the relations (18) and (20), we obtain,

L) = TR(Q 7)1 + imR(1/ o)t (22)

The first term in this equation has a simple interpretation. We
note that it can also be obtained by considering the phase ¢
as classical variable and writing ¢(r) — ¢(0)=eSVt, because
the variation of the potential is slow. Then, Eq. (13) leads to
Jo(t)=(e*/2){(8V)*)?, which [together with Eq. (3)] gives
the first term in Eq. (22). Thus the phase correlator is deter-
mined by the equal-time correlator of the potential. We will
rely on this interpretation in Sec. VII.

The second term in the Eq. (22) has a quantum nature. It
slightly shifts the energy in P(E), given by Eq. (12), and
leads to the asymmetry of the distribution. This term is
small; therefore, the Fourier transform in Eq. (8) can be writ-
ten as

1+ERQ ( E?
= —exp -

P(E) =~ ) RQr->1, (23
®= - i =1, (23)

where E-=e?/2C and the resonance width is I'o=2VE-Q.
Thus we see that the dissipative properties of the circuit,
determined by the resistance R, do not enter the final result.
This is related to the fact that slow fluctuations of charge on
the capacitor obey the law of the equipartition of energy,
(1/2C){(8Q)*=Q/2, as if it were in equilibrium.

We remark that in the intermediate regime RQ 7~ 1, the
exact shape of the zero-energy peak in P(E) is more complex
and depends on details of the circuit. Nevertheless, as we
show in Sec. VI, the fluctuation-dissipation relations remain
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insensitive to these details. Finally, we also note that these
results on the asymmetry in P(E) were published in Ref. 47.
Recently the asymmetry was found in the experiment*® and
theoretically discussed in Ref. 49.

IV. QUANTUM NOISE DETECTORS

We have briefly discussed two types of quantum noise
detectors in Sec. I. Here we analyze them in details and show
that their properties are determined by the P(E) function,
obtained in Sec. III. Starting with the double-dot (DD) de-
tector, we first assume that tunneling between two dots is the
weakest process. In this simple case, the transport can be
described by lowest order in tunneling, so that the result (7)
of Sec. II fully applies. Moreover, a weak coupling of the
dots to the reservoirs leads to the broadening of the dot lev-
els, so that the densities of states acquire a Breit-Wigner
form v,=(T",/ Tr)/[(E—Ea)2+I‘i]; a=L and R.

If the noise temperature is small, so that classical contri-
bution I'g to the resonance width satisfies ' <I',, then the
elastic transport dominates the photon-assisted inelastic tran-
sitions. In this case the left and the right leads are approxi-
mately at thermal equilibrium and the fluctuation-dissipation
theorem (FDT) holds. The most efficient noise detection
takes place for a relatively strong noise in the circuit, I'q
>1",, when the homogeneous level broadening dominates
the quantum effect. In this case Breit-Wigner resonances can
be replaced by delta functions v,=8E-E,), a=L and R,
where E; and Ej are the energies of dot levels counted from
the local Fermi level in the left and the right leads (see Fig.
2). Substituting delta functions to Egs. (7) and using f’(1
—)=f(1—f")eEr-ELkT for the current-to-noise ratio, we ob-
tain the following function:

AlkgT _ p(_
@ — D(e.A) = P(g)e P(-¢) '
Sh P(g)e™ 8T + P(- )

(24)

Here the tunable level distance e = Ex—E;+eVp, is the detec-
tor bandwidth, and the energy of the electron-hole pair A
=FE,; —Ey parametrizes the asymmetry of the detector. The
detector function D(e,A) will be analyzed in details in Sec.
V. Below we show that the properties of the telegraph pro-
cess (TP) detector are determined by the symmetric variant
of this function with A=0.

We evaluate the average current through the quantum
point contact (QPC) that is capacitively coupled to the DD
(see Fig. 3). Switching of the DD from one state to another
changes the current I, through the QPC from the low level I,
to the high level 7,,. The probabilities of finding the DD in the
lower and upper states are given by P;=vy,/(v,+7,) and
P,=v,/(v,+7v,), where v, and v, are the switching rates.
Then the average current is given by (Ip)=1I,P,+1,P,; and is
equal to

Yutlava

I
I)==" 25
(Ip) —— (25)

It is convenient to rewrite the detector current {(/),) in the
dimensionless form,
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2<ID> - (Iu + Id) _ Yu—Ya
Iu_Id Yut yd’

so that it acquires the maximum value Zp=1 when 7v,> vy,
and the upper level is occupied, P,=1, and Z,=-1 in the
opposite case, when mostly the lower level is occupied.

Next we assume that one of the dots is strongly coupled to
the circuit capacitor. Then with a good approximation,
switching of the DD changes the charge of the capacitor by
the value e, so that the interdot coupling is proportional to
¢'? (Ref. 50). Assuming that the interdot coupling is weak
compared to the width of levels, one can evaluate the switch-
ing rate using the golden rule approximation with the results
v, P(g) and y,;% P(-¢), where & is the DD level distance.
Therefore, using the result (26) we obtain,

P(g) - P(-¢)
P(e)+ P(-¢)

Ip= (26)

Ip(e) = =D(&,0), (27)
i.e., the normalized average current through the QPC as a
function of the tunable level distance is given by the sym-
metric variant of the detector function.

V. FLUCTUATION-DISSIPATION RELATIONS

In this section we investigate how nonequilibrium pro-
cesses in the circuit lead to a breakdown of the FDT. We first
focus on the inelastic regime &>R(), where Eq. (16) ap-
plies, and later consider the classical regime described by
Egs. (21) and (23). Substituting Eq. (16) to the definition
(24), we obtain,

S(e)e ks — §(- g)

DE-8) = S )T 1 5(—e)”

(28)

where, we remind, e=eVp—A is the interdot level distance.
Thus all the circuit details cancel from the final result, and
the exact form of the function D is determined solely by a
nonsymmetrized correlator of the current fluctuations in the
circuit.

In order to make further progress, we have to specify the
model of the current source. The load resistor may be con-
sidered as a macroscopic system that creates an equilibrium
current noise. Nonequilibrium processes are generated by the
mesoscopic system alone. An interesting and experimentally
important example of the mesoscopic system is a coherent
mesoscopic conductor, which is fully characterized by a set
of transmission eigenvalues 7, with n=1, ...,N. Using the
scattering theory,”' one obtains the following expression for
the nonsymmetrized current correlator:

Su(w) = Gy 2 {2ToF (w) + T,(1 - T,)

X[F(w+eVy)+Flo—eVy)l}, (29)
where
Flo) = . (30)

and we assumed that transmission eigenvalues 7, are energy
independent. Using F(w)—F(-w)=2w, we now check that
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indeed Sy(w)-S,/(—w)=2wG,;, where the conductance G,
=Gy2,T,. The same relation obviously holds for the macro-
scopic resistor.

In equilibrium Eq. (29) gives S=8,+S,=2(Gy
+G;)F(w), where, we remind, S,, and S; are the nonsymme-
trized correlators of the mesoscopic system and of the load
resistor, respectively. This is a well-known result for the non-
symmetrized noise power. It satisfies the detailed balance
relation S(—w)=e"“*87S(w). Substituting this relation to Eq.
(28), we arrive at the equilibrium function D
=tanh(eV,/2kgT), which is in agreement with the FDT. If
the load conductance is large, G;> G, the equilibrium
noise of the load resistor may dominate in the circuit noise.
In this case the function D may retain its equilibrium form
even if the mesoscopic conductor is biased. It is therefore
interesting to consider the strong bias regime, eV, >kgT/R,
so that the equilibrium noise contribution can be neglected.
Three important cases, which deserve special consideration,
are discussed below.

A. Symmetric detector A=0

This case is most relevant for the TP detector, which is
symmetric detector. Using the zero-temperature limit F(w)
=w in Eq. (29) and substituting the result to the Eq. (28), we
obtain an important result,

e
FGyuR(eVy —le|) + e

D(e,0) = , for |e|<eVy,

31)

and D= * 1, otherwise. Here =2X,T,(1-T,)/2,T, is the
Fano factor of the system noise. Note that the slope of D at
=0 is equal to 1/(eFGyRV))=1/(2Q), where Q, we re-
mind, is the circuit noise temperature. Interestingly, as we
show below, this slope is universal and the same for an ar-
bitrary mesoscopic conductor and arbitrary circuit.

In the case of a very low load impedance, G),R<<1, the
result (31) can be written in the dimensionless form

e/Q)

D(e,0)=————.
(&.0= 3 el

(32)
It is plotted on Fig. 4 together with the equilibrium D(g,0)
=tanh(g/2(}). The nonequilibrium D has a power-low
asymptotic at |&|— o, while the equilibrium one shows an
exponential behavior. Note also that for 7GR > 1, the de-
tector function D(g,0) is convex, which could be considered
a signature of a super-Poissonian noise.

B. Asymmetric detector

We consider a circuit far away from equilibrium, eV,
>kpT/R. We expect that it might be difficult to adjust the
DD detector precisely to cancel the asymmetry; therefore, we
first assume that the asymmetry is strong, |A|>eV,,. Then,
looking at the result (28), we expect that D=1, i.e., the noise
of the DD detector is Poissonian. In fact, more careful analy-
sis shows that the strong asymmetry simply shifts the zero of
the function D. This is because small or large value of the
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exponential ¢**s7 may be compensated by the opposite ef-

fect in S due to the activation processes.

Looking at the results (29) and (30), we find that for posi-
tive w, the dominant contribution is S,(—w)=FGy(w
—eV))e VKT que to such activation processes. The con-
tribution of the load resistor S;(—w) is small. On the other
hand, both the load resistor and the mesoscopic system con-
tribute to the term in Eq. (28), S(w)=2w/R. Neglecting the
terms eV, and eV, compared to A, we finally obtain,

Vp+ A)E
D(e.A) = tanh[w] : (33)
2kgT
where the energy shift £}, is given by

Thus we arrive at the remarkable result that the only role of
A is to fix the sign of the energy shift in Eq. (33). This fact is
easily understood when we notice that the energy shift can be
viewed as a drag or noise rectification effect, the direction of
which depends on the sign of A.

Interestingly, there is an additional contribution to E,; in
the form of the logarithm, which contains the system Fano
factor. It is exactly the same parameter that also appears in
the symmetric case (31). This additional shift may be inter-
preted as originating from high-energy excitations that create
the shot noise in mesoscopic system. Its explicit form de-
pends on the assumption we made that the system is a co-
herent mesoscopic conductor. Therefore, it would be interest-
ing to consider other examples of mesoscopic systems which
may change the results (33) and (34).

C. Classical noise regime

So far we have discussed an essentially quantum regime
of the noise detection, where specific form of the function D
depends on the choice of the system. In the rest of the paper,
we concentrate on the classical Markovian limit, which cor-
responds to a small detector bandwidth &, and demonstrate a
number of universalities.

We note that although the function D in Egs. (31) and (32)
behaves regularly at £=0, it has been obtained in the limit
£>RA) using the result (16). If the detector bandwidth &
tends to zero, P(g) that is given by Eq. (16) diverges and has
to be replaced with the resummed version (21). The natural
question that arises is whether a considerable change in P(e),
including appearance of the peak at £=0, affects the sym-
metric detector function (31). The answer is no. We first
check this for a fast and slow circuit limit and prove the
universality in Sec. VL.

Indeed, substituting either the function (21) or the func-
tion (23) into Eq. (24) for A=0, we obtain

Ple)—P(-¢) ¢

D(e,0)= Pe)+P(—g) 20

if e<Q, (35
where, we remind, () is the circuit noise temperature (18).
This result agrees with Eq. (31) as e — 0. We stress, however,
that the result (35) is more general, since its derivation does
not relay on the scattering theory®' for a mesoscopic coher-
ent conductor.
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We are now in the position to investigate the effect of
asymmetry. Restricting ourselves to the classical regime &
<), we write that generally P(g)=Py(e)(1+&/2()), where
Py(g)=Py(—¢) is the classical contribution. Substituting this
expression to the Eq. (24), we arrive at

D(e.A) = tanh(5) + 2; P) (36)

Q cosh?*(8)’ 2T
Note that this result does not contradict the strongly asym-
metric case (33), because here we assume & <<(). It implies
that at small asymmetry, the zero of the detector function is
shifted,

8+E2

D(e,A) = o

Again, this shift is solely due to the second cumulant of
current noise, and it can be interpreted as an asymmetry-
induced noise rectification effect. This fact is important for
the discussion in Sec. VIIL.

VI. UNIVERSALITY OF CLASSICAL NOISE DETECTION
REGIME

In order to arrive at the result (35), we used Egs. (21) and
(23) for a fast and slow circuit, respectively. In general, the
shape of the peak in P(E) depends on the circuit response
time 7, and circuit details via the impedance function Z(w).
In this section we show that, surprisingly, in the classical
limit e <(), the detector function retains its forms (35) and
(36).

We return now to Egs. (12) and (14) and assume that the
circuit impedance Z(w) is arbitrary. The only requirement
that we impose is that the interaction is weak, R=GyZ(0)
<1. We focus on the long-time limit of J,(¢), so that the
integral in Eq. (14) comes from small frequencies w~ R},
where the noise power can be approximately expanded as
S(w)=S8(0)+4,5(0)w. Consequently, J,(f) acquires two con-
tributions that can be written as

Jo(t) = GyS(0)H(¢) + iG(d,S(0)d,H(1), (38)

where

H(t) = f %|Z(w)|2[l—cos(wt)]. (39)

We are interested in time scales t~ 1/(R(}), where the
first term in Eq. (38) is of the order of one, and the peak of
the function P(E) is formed. Then the second term in Eq.
(38) is of the order of R, i.e., it is always small. Therefore,
its contribution to the exponential in Eq. (12) should be ex-
panded, giving the odd part of the P(E) function. Thus we
obtain the following result:

P(E)+P(-E)= w‘lj dt exp[— GS(0)H(t) Jcos(Et),

(40a)
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P(E)-P(-E) =" f dt exp[— G,S(0)H(t)]

X God,S(0)d,H(1)sin(Er).  (40b)

It is easy to see that by the integration by parts, Eq. (40a)
can be presented in the same form as Eq. (40b). Thereby,
independent of the exact function Z(w), we arrive at the most
general result for the classical noise regime, E<<(),

P(E)-P(-E) 4,500)
P(E)+P(-E)  S(0)

(41)

Using again the result (20), we arrive at Eq. (35), which
therefore holds for an arbitrary circuit.

VII. THIRD CUMULANT CONTRIBUTION

We have shown in Sec. II that in the long-time limit, the
quantum noise contribution to the correlator J,(¢) is small.
The same remains true for the third cumulant J5(7). Since the
third cumulant contribution is small by the parameter R,
right from the beginning, we focus on its classical part and
rewrite Eq. (10) as follows:

Ja(1) = (1/6){[ (1) = H(0) ). (42)

Thus, we see that J5(—1)=—J5(¢). This breaks the symmetry
between the right and the left lead, P,y # Pg;, and the third
cumulant adds to the potential difference across the tunnel
junction. In the classical limit E<<(), where P(E) has a peak,
this additional potential simply shifts the energy by a small
amount E5 that depends on the third cumulant of current,
P r(E)=P(E-E;) and Pg;(E)=P(E+E;). Therefore, the
function of the symmetric detector (35) has to be replaced
with

Pr(e) = Pri(=¢) _e-E;

Die.0) = Prr(e) + Pgr(- &) - 20

(43)

The same shift obviously takes place in the asymmetric
case. However, there the shift £5 adds to the shift £, due to
the noise rectification effect (see the discussion in the end of
Sec. V C). Fortunately, in contrast to the rectification shift,
the energy E5 depends on the direction of current in a meso-
scopic system. Therefore, experimentally the third cumulant
contribution can be extracted by changing the direction of
the current through the mesoscopic system. This experimen-
tal technique has been recently used to measure the third
cumulant with the help of Josephson-junction threshold
detectors.>®>37 In addition, an important role in this context
plays the universality of the Gaussian noise effect on the
detector function D(e,0) that is proven in Sec. VI. In what
follows we evaluate the shift £5 for the cases of fast and slow
circuit depending on the circuit response time 7.

A. Fast circuit

In the case of fast circuit, RQ7-<<1, the potential fluc-
tuations are Markovian, so that Eq. (42) gives

035332-8



THEORY OF QUANTUM NOISE DETECTORS BASED ON...

(1) = (/6){(V )1, (44)

where ((V?)) is the Markovian cumulant of the potential.
According to Refs. 10, 17, and 18, it is given by ((V3))
=R3{((P)), where the total third cumulant of the current is
equal to

UPYy = () + 6Q3,S(0) + 12(Q/R)*3yR.  (45)

Here ((13,,)) is the intrinsic third cumulant of the system cur-
rent and the second and third terms are the “environmental”
and nonlinear cascade corrections, respectively. They origi-
nate from the circuit backaction.

It is useful to write J5 in the form that explicitly shows the
coupling constant J5(t)=(1/6)(27R/e)>{({I*))t. We see that
indeed, such a contribution to the correlator simply shifts the
energy in the Fourier transform (11) for the probability dis-
tribution functions by the amount,

Ey=(1/6)27RIe)* (), RQr-<1. (46)

In order to estimate the relative effect of the third cumulant,
we note that the width of the peak in P(E), where the detec-
tor signal is maximum, is of the order of R(), so that D
~7R. The energy shift can be estimated as (R/e)3{((I*))
~R2GRA). Therefore, the relative contribution of the third
cumulant is of the order of RGy,/(Gy+G;)<l.

B. Slow circuit

In the case of slow circuit, RQ7-> 1, the detector “feels”
slow fluctuations of the potential. Therefore, one can ap-
proximate (1) — p(0)=eSVr according to exact calculations
in Sec. III B. Then the Eq. (42) gives

J3(1) = (16){(8V))7, (47)

where {(6V)3) is the third cumulant of equal-time fluctua-
tions of the potential V. In Refs. 12 and 16 it has been shown
that {((8V)*)=(R/3C*){{I?)), where the total current cumulant
in this case is given by

{PYy = (L)) +3Q3,8(0) + 3(Q/R)*3yR. (48)

It contains the intrinsic cumulant of the system current ((113\4»
and the cascade corrections. Note that in this case, RQ 7.
> 1, the cascade corrections are smaller compared to those
for a fast circuit [see Eq. (45)]. This fact was recently experi-
mentally verified in Ref. 12.

We now substitute the small term (47) to the definition
(11). This gives P p=[1+(e3/6)((6V)*)dL]P(E) and P,
=[1 —(e3/6)<(5V)3>3?5]P(E). Using Egs. (23) and (43) we ob-
tain,

(27R)?
- 6 Tcﬂe?)

E; (P, RQr>1. (49)
Note that this energy shift is smaller than the one for the case
of fast circuit [Eq. (46)] by the parameter 1/(RQ7-)<1.
Since the width of the distribution P(E) is of the order of
VRO / 7, the relative contribution of the third cumulant to
the function D can be estimated as RGy/[(Gy
+G)(RQ7o)V?]<1.
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VIII. OUTLOOK

We have presented the theory of quantum noise detectors
based on the resonant tunneling phenomenon. It is summa-
rized in Sec. I, which can also be used as a guide to most
important results. Here we briefly discuss related problems
which are yet to be solved. First of all, it would be interest-
ing to relax the condition of a weak coupling. In the case
‘R ~ 1, fluctuation-dissipation relations may contain an infor-
mation about the full distribution of the fluctuating potential.
Interestingly, it has been shown in Ref. 52 that the double-
dot system in the adiabatic regime, 7{I,)> 1, may serve as
a nonlinear element, which generates an instability in the
mesoscopic circuit. It then may be used as an on-chip thresh-
old detector of rare event in transport. The difficulty of this
problem is that the dynamical Coulomb blockade effect in
this case is not generally negligible.

In the case of a TP detector the excitation of an electron-
hole pair in the QPC may cause a transition in the DD sys-
tem. This competing quasiparticle process reduces the preci-
sion of the detection of collective charge excitations in the
measurement circuit. Intuitively, one should keep the current
through the QPC on a very low level. However, this will
reduce the rate of the measurement. Moreover, the quasipar-
ticle process is interesting in itself and should be investigated
theoretically.

We think that the physics of double-dot systems described
here is rather universal and should be the same in various
two-level systems of different nature. Nevertheless, it is im-
portant to consider other systems too. Moreover, it would be
interesting to generalize the present results to the case of a
quantum detector with many levels with the energies g, with
n=1,2, .... There is a hope that such system will be able to
detect high-order correlators of current at finite frequencies
equal to the energies &,

Concerning specific results presented in this paper, two
problems remain to be solved. First, we have shown that in
the classical noise detection regime, the effect of the second
cumulant of the system current is universal, i.e., it does not
depend on the circuit details. On the contrary, the third cu-
mulant contribution depends on the circuit response time and
has been found here in the limit of fast and slow circuit. An
interesting problem, which may also be experimentally very
relevant, is to find the third cumulant contribution including
cascade correction for arbitrary circuit.

Second, the most dramatic effect of a nonequilibrium sys-
tem noise on the detector function is that the exponential
behavior (1) is replaced with the power-law functions (31)
and (32). Thus the power-law behavior is a signature of non-
equilibrium processes. However, this result has been ob-
tained by considering a coherent noninteracting mesoscopic
conductor as an example of the system. Therefore, it would
be interesting to consider other systems in order to check the
generality of our conclusion.
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