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The entanglement entropy of the incompressible states of a realistic quantum Hall system is studied by direct
diagonalization. The subdominant term to the area law, the topological entanglement entropy �which is be-
lieved to carry information about topologic order in the ground state�, was extracted for filling factors �

=1 /3, �=1 /5, and �=5 /2. The results for �=1 /3 and �=1 /5 are consistent with the topological entanglement
entropy for the Laughlin wave function. The �=5 /2 state exhibits a topological entanglement entropy consis-
tent with the Moore-Read wave function.
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I. INTRODUCTION

This paper is a numerical study, using direct diagonaliza-
tion, of the entanglement entropy of incompressible states of
quantum Hall systems. In particular, the entanglement en-
tropy is calculated for filling factors 1/3 and 1/5 in the n=0
Landau level and the 5/2 state in the n=1 Landau level. The
primary motivation for this work is to better understand the
nature of the 5/2 state observed in experiment.1 Originally,
the 5/2 state was not believed to be spin polarized.2 How-
ever, with theoretical input3–5 and further experimental
investigation,6 an incompressible spin polarized state was re-
vealed. An elegant theoretical possibility for this state is the
wave function suggested by Moore and Read;3 the feature of
the Moore-Read state being the presence of non-Abelian
fractional statistics. As well as being of interest in its own
right, states with non-Abelian statistics give rise to possible
robust implementation of quantum computation.7,8 However,
the Moore-Read state is the ground state of a not very real-
istic Hamiltonian with a three-body interaction term.4

The question remains, does the Moore-Read state contain
the physics of the �=5 /2 quantum Hall system; that is, is it
in some sense close to the ground state of a model with a
realistic Hamiltonian, i.e., electrons in a magnetic field inter-
acting via long-range Coulomb interaction? A valuable way
to address this issue is to compare the ground-state wave
function obtained from direct diagonalization of a realistic
Hamiltonian with the Moore-Read wave function. The re-
sults of such studies are unfortunately somewhat
ambiguous.9,10 In addition, even if there is a large overlap
between the numerical wave function and the Moore-Read
state, how does one know whether this overlap truly indi-
cates that the long-distance low-energy behavior is the same,
in particular whether the numerical wave function has non-
Abelian statistics? Attempts to directly detect non-Abelian
statistics in numerical systems with strictly Coulomb inter-
actions have thus far also proven to be elusive.11,12 Note in
Ref. 12, non-Abelian statistics were clearly observed. How-
ever, the Hamiltonian contained a mixture of Coulomb and
three-body terms.

Recently, an approach, using concepts from quantum in-
formation theory, has been proposed to characterize incom-
pressible quantum states. Kitaev and Preskill,13 and Levin

and Wen14 showed the subleading contribution to the en-
tanglement entropy of a subsystem, the topological entangle-
ment entropy, is universal and reflects the statistics of quasi-
particles of the incompressible Hall state in question. To be
more explicit, consider a two-dimensional quantum many-
body system and spatially divide the system into two parts,
the part of interest being the subsystem and the rest, which is
referred to as the environment. The results of Refs. 13 and 14
are that the entanglement entropy scales as

S � �L − � + O� 1

L
� + . . . �1�

for topologically ordered states. Here L is the linear size of
the boundary of the subsystem and � is the topological en-
tanglement entropy. S, the entanglement entropy, more pre-
cisely defined in Sec. II, intuitively is a measure of the quan-
tum entanglement of the subsystem and the environment.
The subleading term, the topological entanglement entropy,
was shown13,14 to be equal to the logarithm of the total quan-
tum dimension of the state in question. Intuitively,15 � re-
flects the number of distinct quasiparticle types and how the
number of linear independent states, for each type, grows
with the number of quasiparticles in the states.

It is important to note that the above expression holds
asymptotically for large L, that is, a large subsystem and a
very large environment. By considering several different
subsystems, it was shown that the leading contribution,
which scales as the linear size of the subsystem �and is non-
universal� could be cancelled out and the subleading term
could be extracted. Numerically, however, it is not easy to
implement this method.16

In Refs. 17 and 18, a more practical method for quantum
Hall systems, based on looking at several system sizes, was
used to successfully compute the topological entanglement
entropy of the Laughlin wave function for �=1 /3 and the
Moore-Read state for �=5 /2. In this paper we apply the
method of Ref. 17 to the exact ground-state wave functions
obtained from realistic Hamiltonians by direct diagonaliza-
tion. If the value of the topological entanglement entropy
extracted from a direct diagonalization calculation agrees
with the value calculated for the Moore-Read state, this pro-
vides evidence that the Moore-Read state correctly describes
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the physics of filling factor �=5 /2. It is important to realize,
without other physical constraints, that the equality of the
topological entanglement entropy is a necessary but not suf-
ficient condition for states to be topologically equivalent.
Simply stated, if two states do not have the same value of �,
they are not equivalent. However, equality of � does not
necessarily imply two states are equivalent. Therefore to
completely characterize an incompressible state, additional
information is needed.

The paper is organized in the following way: In the next
section, the numerical method is described, highlighting the
differences from Ref. 17, and in the following section the
numerical results are presented. The final section is a sum-
mary and gives our conclusions.

II. NUMERICAL METHOD

To do our direct diagonalization �DD� calculations, we
work with finite square clusters with periodic boundary con-
ditions, the flat torus geometry. This is in contrast to Ref. 17,
which works in the spherical geometry. One reason we favor
the torus geometry is that most published density-matrix
renormalization group �dmrg� calculations of quantum Hall
systems, which can handle larger system sizes, are performed
in this geometry19 �see, however, Feiguin et al.20 for dmrg in
the spherical geometry�. Although the present work is strictly
DD, we hope to lay the ground work for a future dmrg study.

To take the magnetic field into account, the Landau gauge
is chosen where the momentum in the y direction is a con-
served quantity and the single-particle orbitals, strips of
width of the magnetic length, are oriented parallel to the y
axis. The single-particle orbitals are labeled by the x guiding
center coordinate or equivalently by the momentum in the y
direction. Although momentum in the x direction is also con-
served, for simplicity, and since this symmetry has not been
implemented in dmrg, we do not make use of this quantum
number.21 The Lanczos algorithm is used to calculate the
ground state in each sector of total y momentum and then the
lowest energy state is selected. For the �=1 /3 and �=1 /5
fillings the state space is restricted to the n=0 Landau level,
while for the �=5 /2 filling the state space is restricted to the
n=1 Landau level. We again emphasize that the electrons
interact via the long-range Coulomb interaction periodically
continued in the usual way.22 Due to CPU limitations, the
calculations were limited to system sizes smaller than or
equal to 12 electrons in 36 orbitals ��=1 /3�, eight electrons
in 40 orbitals ��=1 /5�, and 16 electrons in 32 orbitals, ��
=5 /2�. �The diagonalizations involve state spaces of sizes at
most 35�106. It is possible, with some difficulty to extend
the calculations by one electron for �=1 /5.�

We now turn to the method used to compute the topologi-
cal entanglement entropy. After computing the ground state
�or states, the issue of ground-state degeneracy will be ad-
dressed later�, the entanglement entropy is then calculated.
As in the spherical geometry, in the torus geometry, there is
a natural �numerically easy� choice for the subsystem to cal-
culate the entanglement entropy. The subsystem chosen con-
sists of l adjacent �in x� orbitals, for example, for l=2 one
can take orbitals one and two to get the two orbital entangle-

ment entropy. In a system with N total orbitals �i.e., for 11
electrons in 33 orbitals, N=33� the many-electron wave
function has the form of a collection of coefficients
�i1i2i3. . .iN

, where i1 , i2 , i3 . . . iN take the values zero or one and
� denotes the amplitude for the state with occupancies
i1 , i2 , i3 . . . iN. One then computes the l-orbital density matrix
�an object very familiar from the density-matrix renormaliza-
tion group23�. Explicitly for l=2,

Mi1i2i1�i2�
= �

i3i4. . .iN

�i1i2i3. . .iN
�i1�i2�i3. . .iN

. �2�

The density matrix is then diagonalized, yielding the eigen-
value � j from which the entanglement entropy,

− �
j

� j ln � j . �3�

is obtained.
Since the torus geometry is used in calculating the, say,

two-particle entropy, it does not matter if one takes the or-
bitals 1, 2, or 30, 31, etc. However, there is a subtlety in that
we are not explicitly taking conservation of x momentum
into account, and due to ground-state degeneracy, the nu-
merical wave function may not be translationally invariant.
To handle this problem, we have used the wave functions
that are more translationally invariant in the following sense:
�take for concreteness seven electrons in 21 states, �=1 /3�.
Calculate the “left” and “right” l-body entanglement entro-
pies, taking the left subsystem to be orbitals 1 ,2 ,3 , . . . , l and
the right subsystem to be 22− l , . . . ,20,21. We choose the
ground state where the entanglement entropies for the left
and right subsystems are equal. For example, for seven elec-
trons in 21 orbitals, the states with ky =7,14,21 �in appropri-
ate units� are degenerate but only ky =14 satisfies the above
criteria. For �=1 /3 and �=1 /5, this criteria uniquely picks
the ground state. For �=5 /2, there are certain filling factors
�i.e., 14/28� where two ground states satisfy the equality of
the left and right entanglement entropies. In these cases, we
pick the ground state with the lowest momentum.

Following Ref. 17, from the entanglement entropies for
different numbers of orbitals and different system sizes, we
have attempted to calculate the topological entanglement en-
tropy. The idea is based on the asymptotic formula Eq. �1�.
The first term in Eq. �1� is referred to as the area law, entropy
being proportional to the bounding area, which is one-
dimensional in this case. The system and subsystem must be
sufficiently large to realize the bulk behavior of the strongly
correlated state, and the subsystem must be much smaller
than the system to realize the area law behavior of the en-
tanglement entropy. Consider first of all a very large system
�or at least the largest system we can compute with DD� and
a sufficiently large but not too large subsystem. As in Ref.
17, we identify the number of Landau orbitals with the area
enclosed.

By plotting S vs the square root of the number of orbitals,
one hopes to get a straight line �reflecting the area law Eq.
�1��; then the y intercept should give minus one times the
topological entanglement entropy. It is however, not easy to
treat a very large system with direct diagonalization. A pos-
sibility to overcome this difficulty, is to use information from
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a number of system sizes. Again following Eq. �17�, one can
plot the l-orbital entanglement entropy vs 1 /N �N=number
of orbitals� and try to extrapolate to an infinite system. Our
experience indicates that a linear extrapolation in 1 /N works
better than adding nonlinear terms, so we use a simple linear
extrapolation only. The extrapolated l-orbital entanglement
entropies are then plotted vs the square root of the number of
orbitals in the subsystem �	l�. If a straight line results, then
the topological entanglement entropy can be extracted as the
y intercept.

A possible alternative approach to the above method is to
numerically implement the method of Refs. 13 or 14. Such
an approach was taken in Ref. 16 and applied to the quantum
dimer model. Since the dimer model is defined on a lattice, it
is easier to vary the choice of the subsystem. However, to
obtain accurate results, large system sizes had to be used
�this is practical since no diagonalization is needed at the
Rokshar-Kivelson point of the phase diagram� or alterna-
tively special properties of the dimer model had to be uti-
lized.

III. NUMERICAL RESULTS

Let us now examine the results of our calculation. First
we consider �=1 /3 in Figs. 1�a� and 1�b�. Figure 1�a� is a
graph of S, the entanglement entropy vs the square root of
the number of orbitals in the subsystem, for various system
sizes. We have also shown in this figure an extrapolation to
large N given by the solid circles �see below for discussion�.
For the largest system N=36, one sees reasonably linear be-
havior for up to six orbitals in the subsystem and a y inter-
cept of 
−1 and a topological entanglement entropy of 
1.
In the spherical geometry, for �=1 /3, it is known that the
topological entanglement entropy takes a value of ��0.55.
However, for the torus, the subsystem has two boundaries
rather than one and even the leading term in the entangle-
ment entropy only depends on orbitals rather close �	l� to the
respective boundaries. Hence one expects the contribution
from each boundary to merely add14 and give twice the value
of topological entanglement entropy for the sphere. Our nu-
merical value �
1, given the uncertainties, see Fig. 1�a�, is
consistent with this expectation.

To try to get a more precise estimate in Fig. 1�b�, we plot
S, the l-orbital entanglement entropy vs 1 /N for various l
values. By doing a linear least-squares fit �LSF� in 1 /N for
N=24,27,30,33,36 and taking the value of the line at
1 /N=0, the l-orbital entanglement entropy was extrapolated
to large system sizes. These values are shown by the solid
circles in Fig. 1�a�. The solid circles are then fit to a straight
line and the intercept gives a topological entanglement en-
tropy �=1.13�0.38. This is consistent with the value ex-
pected from the Laughlin state for �=1 /3. The large uncer-
tainty is the result of the poor linearity of a curve passing
through the solid circles.

In Figs. 2�a� and 2�b� we plot analogous graphs for �
=1 /5. Looking at Fig. 2�a�, the entanglement entropy vs the
square root of the number of orbitals in the subsystem, for
the largest system size �N=40, but only eight electrons�, we
again see linear behavior for up to 6–7 orbitals. A fit to the
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FIG. 1. Entanglement entropy of �=1 /3 state. �a� Entanglement
entropy versus 	l �where l is number of orbitals comprising the
subsystem� for different total number of orbitals, N=21–36. Finite-
size scaling �FSS�, N→�, results for S versus 	l ��� is shown with
LSF, yielding an intercept of −�=−1.13�0.38. �b� Finite-size scal-
ing of entanglement entropy. N→� results, shown in Fig. 1�a�,
were obtained by linear LSF to N=24,27,30,33,36 data. Estimated
uncertainty �	S� in N→� values of S was 	S
0.1, smaller than the
size of the plotting symbol ���.
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linear part gives a y intercept of about −1 or a slightly
smaller value −1.2 if we exclude l=1. This is compared to an
expected value of −2 ln	5�−1.61. The solid circles in Fig.
2�a� are values of the entanglement entropy extrapolated

from Fig. 2�b�. A linear fit to the extrapolated values yields
an intercept of −1.62�0.16. This is in excellent agreement
with the value from the �=1 /5 Laughlin state. The much
smaller, although still substantial, uncertainty reflects the bet-
ter linearity of a curve passing through the solid circles in
comparison to the case �=1 /3.

Finally, let us investigate the �=5 /2 system.18 In Fig. 3�a�
we again plot the entanglement entropy vs the square root of
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FIG. 2. Entanglement entropy of �=1 /5 state. Same as Fig. 1
except: �a� N→� results for S versus 	l ��� yield an intercept of
−�=−1.62�0.16 �b� N→� results were obtained by linear LSF to
N=25,30,35,40. Estimated uncertainty in N→� values of S was
	S
0.15, approximately the size of the plotting symbol ���.
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FIG. 3. Entanglement entropy of �=5 /2 state. Same as Fig. 1
except: �a� N→� results for S versus 	l ��� yield an intercept of
−�=−2.01�0.19 �b� N→� results were obtained by linear LSF to
N=24,26,28,30,32. Estimated uncertainty in N→� values of S
was 	S
0.18, approximately the size of the plotting symbol.
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the number of orbitals in the subsystem. There is reasonably
linear behavior up to about 6–7 orbitals yielding a y intercept
of roughly −1.5. On the other hand, for the Moore-Read state
we expect a topological entanglement entropy of about
2 ln	8�2.08. Trying to get a more precise estimate in Fig.
3�b�, we plot the l-orbital entanglement entropy vs 1 /N for
various values of l. Again a simple linear extrapolation of the
five largest systems sizes is adequate. The solid circles in
Fig. 3�a� shows the extrapolated entanglement entropies. Us-
ing a linear fit, the extrapolated values then give a y intercept
of −2.01�0.19. Thus, the numerical state has a topological
entropy close to that of the Moore-Read state. A possible
alternative state, having the same topological entanglement
entropy, is the Halperin 3-3-1 state.24 However, since we are
only working with spin polarized electrons in a single layer,
this state is excluded on general grounds of symmetry.25

IV. CONCLUSION

In this paper, direct diagonalization—by necessity on
small system sizes—has been used to calculate the entangle-
ment entropy for the �=1 /3, �=1 /5, and �=5 /2 quantum
Hall states. We emphasize that a realistic Hamiltonian, long-

range Coulomb interaction, has been used. At all filling frac-
tions considered, the area law has been verified by examin-
ing the largest system size. To accurately extrapolate the
topological entanglement entropy, it was necessary to ex-
trapolate the l-orbital entanglement entropy to large system
sizes. For �=1 /3 and �=1 /5, this extrapolation gave results
that are consistent with values of the topological entangle-
ment entropy for the Laughlin state. It should be noted that
our results are consistent with an entropy corresponding to a
topological ground state with two boundaries �following
from our computation in the Landau gauge� rather than a
single boundary in the spherical geometry. For �=5 /2 the
value of the topological term obtained was consistent with
the topological term for the Moore-Read state. We view this
as a confirmation that the incompressible state at �=5 /2, is
in fact, the Moore-Read state.
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