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We report on theoretical investigations of scanning tunneling microscopy �STM�- induced molecular
negative-differential resistance �NDR� on heavily p-type doped Si�100�. Calculations are performed using the
density functional theory �DFT� local density approximation �LDA� within the Keldysh nonequilibrium
Green’s function �NEGF� formalism. The nonequilibrium Hamiltonian is determined self-consistently for mol-
ecules on a Si�100� substrate and below a Pt�100� STM tip. We investigate in detail the nonequilibrium
conditions which are likely to produce electronic p-type resonant NDR. The discussion is divided into two
parts. First, we discuss STM distance dependence and its relation to p-type resonant NDR. It is shown that
under high bias conditions electron tunneling is dominated by tunneling near the top of the vacuum barrier
thereby preventing resonant NDR at large STM imaging distances. Second, we discuss the self-consistent bias
profile and its effect on p-type NDR. It is shown that molecular charging effects may prevent the highest
occupied molecular orbital from passing the silicon electrochemical potential, though bistable effects beyond
the self-consistent NEGF-LDA method cannot be ruled out.
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I. INTRODUCTION

In recent years the scanning tunneling microscope �STM�
has been increasingly applied to the characterization and
construction of prototype atomic scale devices. A wide
variety of STM-induced effects including radiative emis-
sion, negative-differential resistance, switching, spin flip-
ping, and charge regulation have been observed at atomic
dimensions.1–6 Of particular technological interest, because
of its complementary nature with existing silicon technology,
is the observation of negative-differential resistance �NDR�
in molecular STM measurements on Si�100�. The conditions
which give rise to electronic NDR on silicon within the bal-
listic regime7 have been investigated at length in the litera-
ture both experimentally and theoretically,6–14 and in this
work we build upon existing studies to include the nonequi-
librium interactions of both the scanning tunneling micro-
scope tip and the Si�100� surface.15 Tip-sample electronic
coupling and the applied bias are both examined in detail.

To observe molecular resonant NDR with a semiconduc-
tor surface, for example silicon, it is necessary to heavily
p-type or n-type dope the semiconductor to move the elec-
trochemical potential below the valence band or above the
conduction band. Under heavy p-type doping the electronic
NDR mechanism requires a positive applied bias at the sub-
strate to pull the highest occupied molecular orbital of a
surface adsorbate past resonance at the valence band edge
into the Si band gap giving rise to NDR �see Fig. 1�. Con-
versely, the n-type electronic NDR mechanism requires a
negative bias to pull the lowest unoccupied molecular orbital
past resonance at the conduction band edge and then into the
Si band gap giving rise to NDR.

Experimental investigations of resonant molecular NDR
have thus far been largely limited to silicon surfaces,8–11

where the p-type mechanism is believed to be due to reso-

nant NDR and the n-type mechanism has had less success
and is attributed to possible vibronic interactions.12 Various
molecules have been studied with reproducibility including
cyclopentene,8,9 TEMPO �Refs. 6, 9, and 11� and styrene.6,10

The first theoretical investigation7 of resonant molecular
NDR, based on a nonorthogonal tight-binding Hückel model,
explained forward and reverse bias resonant NDR asymme-
try. A subsequent first-principles treatment of the device
region,12 using a simple effective mass type model for the
silicon contact, yielded further insights into the nature of
NDR and brought to light electrostatic considerations for

FIG. 1. Band diagram for STM-induced molecular p-type NDR
on Si�100�. A positive STM bias is applied to the substrate pulling
the highest occupied molecular level, �, past the resonance window
between the Si�100� electrochemical potential, �S, and the valence
band, EV, into the band gap resulting in a drop in current. The
current passing through � will be orders of magnitude lower when it
is inside the band gap than when it is on resonance resulting in the
observed NDR.
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achieving p-type resonant NDR. Furthermore, surface dop-
ants, well known to be present in heavily doped silicon, were
shown to play a possible role in shifting molecular levels on
the substrate. Additional insights into the p-type NDR
mechanism of cyclopentene on Si�100� were provided
through GW calculations14 in the presence of an equilibrium
electric field. Both the energetic position and surface hybrid-
ization of occupied molecular states were shown to affect the
interpretation of observed experimental NDR. Also, a theo-
retical study of negative bias �using the STM notation� NDR
�Ref. 13� has shown that a reduction of tunneling at the sili-
con conduction band edge can give rise to NDR. There has
also been some contention whether observed molecular NDR
may be due to vibronic excitation of the molecule which can
cause a molecule to move away from the STM tip and
thereby induce NDR.10,16 In this discussion we focus on
p-type NDR which has been more widely studied in the
literature8,9,12,14 and do not consider vibrational effects.

We examine in detail the regime of high and low bias
p-type NDR through a self-consistent first-principles non-
equilibrium Green’s function �NEGF� model including both
the STM tip and Si�100� substrate atomistically. The discus-
sion is divided into four parts where two important effects
limiting p-type resonant NDR are presented. First, we
present the atomic structure applied to this study. We have
chosen styrene on Si�100� for this study since its � state is
well decoupled from the Si�100� substrate,15 which is a pre-
requisite for observing resonant NDR.14 Additionally, its sur-
face bonding properties have been well studied in the
literature.17–19 Second, we outline the transport method ap-
plied where particular attention is given to the construction
of the device Hamiltonian. In the third part we analyze the
STM electron transmission at various tip-sample distances
and bias voltages. We show that tunneling near the top of the
vacuum barrier prevents the p-type resonant NDR mecha-
nism at high bias and large tip-sample distances, such that
NDR should only occur at close tip-sample distances. In the
fourth section we present a self-consistent density functional
theory-nonequilibrium Green’s function �DFT-NEGF� calcu-
lation of the tip in close contact with styrene. It is shown that
the styrene � state approaches the valence band edge very
slowly due to the charging energy and quantum capacitance
of the molecule, thereby limiting resonant NDR �though we
are unable to rule out the possibility of bistable effects be-
yond the self-consistent nonequilibrium Green’s function-
local density approximation �NEGF-LDA� method�. Lastly,
we summarize our findings.

II. ATOMIC GEOMETRY

We begin by discussing the atomic geometry of our study.
The system is composed of styrene on Si�100� below a
Pt�100� tip �Fig. 2�b��. The atomic structure is obtained by
density functional theory �DFT� total-energy relaxation using
the electronic package SIESTA.20

A. Tip and sample structure

To model a metal tip, we use a Pt�100�-�3�3� structure
with strained coordinates to ensure that the tip geometry em-

beds into the �7.65 Å�7.65 Å� periodic Si�100�-�2�2�
unit cell. The imposed strain on the natural Pt�100�-�3�3�
unit-cell dimensions of �7.84 Å�7.84 Å� is assumed to
have an insignificant effect on the metallic tip density of
states �DOS� and transmission coefficient, in contrast to co-
valent bonded systems where bulk properties can be signifi-
cantly altered, and is therefore a fair approximation which
we adopt. Above silicon a 21 atom tip is placed: The first
bulk-like layer is frozen and the remaining 13 tip atoms are
permitted to relax.

Styrene is known to form chains on the hydrogen passi-
vated Si�100�-�2�1� surface.2 The reaction is initiated at a
single dangling bond and repeats by abstracting a hydrogen
atom from a neighboring dimer, thereby creating a new ad-
jacent dangling bond site, until encountering a surface de-
fect. To reduce computation time we include only one sty-
rene molecule in our Si�100�-�2�2� unit cell. In the STM
configuration, we relax the tip above styrene at 2 Å, 4 Å,
and 6 Å separations. This separation distance is defined as
the distance between the highest styrene hydrogen atom and
the tip apex atom. Each geometry optimization is performed
via the conjugate gradient method, using the local density
approximation �LDA�,20 employing a double � polarized ba-
sis set, and is converged to 0.01 eV/Å on a real-space grid
corresponding to an energy cutoff of 300 Ryd. Relaxation
calculations show that the simulated STM Pt tip physisorbs
with styrene at the closest tip-sample distance of 2 Å.

The results of the relaxation are summarized at follows:
The C-Si bond length is 1.89 Å, the C-C bonds within the
ethylene subgroup are 1.51 Å, and the benzene ring C-C
bond lengths are 1.4 Å. The angle between the C-Si bond
and ethylene subgroup is 112°, the angle between the ethyl-
ene subgroup and the benzene ring is 117°, and the molecule
is tilted 18° in the Si surface plane measured from the
x-direction pointing out of the page in Fig. 2. Lastly, the
molecular height above the hydrogen passivated surface is
found to be 5.3 Å. We have found this geometry where the
molecule leans out of the Si dimer to be 168 meV lower than
the alternate configuration where the molecule leans into the
Si dimer.15,19

B. Two-probe transport structure

Using the atomic coordinates obtained by total-energy re-
laxation described above, we build a two-probe transport

FIG. 2. �Color online� Simulated two-probe transport structure
for styrene on Si�100� beneath a Pt�100� tip. The tip position of
closest approach is set at 2.0 Å above the highest styrene hydrogen
atom.
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simulation of the tip-sample system. The two-probe system
has a scattering region plus a top and a bottom lead. The
scattering region consists of the atoms in the shaded box of
Fig. 2. Namely, a styrene/Si�100� surface along with a 13
atom tip and two Si�100� layers are included in the scattering
region. The tip is connected to a Pt lead that is modeled by
perfect semi-infinite Pt�100� crystal planes extending to z=
+�. Similarly, the Si substrate in the scattering region is
connected to a perfect semi-infinite Si�100� lead extending to
z=−�. Periodic boundary conditions are used in the trans-
verse �x,y� directions. Lastly, a voltage bias is applied across
the two leads which drives a current through the tip-sample
two-probe system.

III. TRANSPORT METHOD

When a bias voltage is applied to a two-probe transport
structure, the scattering region is put into a nonequilibrium
state. At present, real-space DFT carried out within the
Keldysh NEGF framework is the state-of-the-art
technique21–23 for analyzing nonequilibrium quantum trans-
port through atomic systems within an ab-initio framework.
We make use of this technique and its associated electronic
package MATDCAL21 to calculate nonequilibrium properties.
The basic ideas behind the NEGF-DFT formalism are to cal-
culate the Hamiltonian of a two-probe device system using
DFT and determine the nonequilibrium quantum statistics of
the transport problem using NEGF, including the electron
transport open boundary conditions via real-space numerical
techniques.21,23 We briefly outline our simulation method in
this section in two parts. First, we discuss the NEGF trans-
port theory applied. Second, we discuss the procedure for
calculating the device Hamiltonian at large and small tip-
sample separation distances.

A. Transmission coefficient

Within NEGF, the transmission coefficient T=T�E ,V� is
calculated via Green’s functions, where E is the electron en-
ergy and V is the bias voltage. Once the DFT-NEGF single
particle Hamiltonian H of the device is obtained,21,23 the re-
tarded Green’s function G of the device scattering region at
energy E is obtained as

G�E� = ��E + i��S − H − 	S�E� − 	T�E��−1, �1�

where � is a small positive infinitesimal and S is the overlap
matrix between atomic basis functions. The quantities 	S and
	T are the self-energies of the substrate and STM tip, respec-
tively, which account for the quantum open boundary condi-
tions. They are calculated via recursive Fourier methods.24,25

The transmission coefficient of a two-probe ballistic tip-
sample system is determined by

T�E,V� = tr�
SG
TG†� , �2�

where 
S,T= i�	S,T−	S,T
† � are the linewidth functions. The

steady-state current under a given bias is calculated as22

I =
2q

h
�

−�

�

T�E��fS�E� − fT�E��dE , �3�

fS,T�E� =
1

1 + e�E−�S,T�/kBT , �4�

where fS,T is the Fermi function of the substrate/tip with an
electrochemical potential of �S,T. At low temperature, the
integration limits reduce to the bias window, from �S to �T.

B. Device Hamiltonian

As discussed in the introduction, to induce resonant
p-type NDR under bias the respective electrostatic potential
must pull a level past resonance across the valence band edge
into the band gap. However, the bias profile between two
contacts and across a molecule is a complex effect often
requiring the computationally time consuming self-consistent
nonequilibrium Green’s function-density functional theory
�NEGF-DFT� machinery.26 Hence, in order to obtain a first-
order qualitative understanding of the potential profile, a
simplistic parallel plate capacitive Laplace model is suitable
�where the molecule acts as a dielectric medium�. Specifi-
cally, this is valid if the STM tip is placed far away from the
sample �in the weak coupling limit�. In several cases it has
been shown that a parallel plate capacitive Laplace model is
able to adequately capture the voltage division between a
STM tip and an adsorbed molecule.8,12,15,27 This model may
be simply expressed as8,12

VMol = VTot�1 + �Mol
ZVac

ZMol
�−1

, �5�

where VMol is the potential drop across the molecule, VTot is
the potential drop across the entire system, �Mol is the rela-
tive molecular dielectric constant �treated as a fitting param-
eter�, ZVac is the vacuum gap length, and ZMol is the molecu-
lar length. In this electrostatic model the single molecule is
approximated by a dielectric monolayer geometry and the
STM tip is assumed to behave as a flat metal plate. In the
weak coupling limit, when the tip and sample are well sepa-
rated, and at low bias, a Laplace capacitive model is usually
valid since the molecule acts as a dielectric medium. How-
ever, when the tip is brought in close contact with the sample
at high bias this approximation can fail. Therefore, we divide
our transport analysis into two parts.

In our first analysis �see Sec. IV�, we investigate the reso-
nant properties of styrene through an equilibrium Hamil-
tonian and following Eq. �5� add in a capacitive potential
drop. That is,

H0 = Heq + VTot�r�� , �6�

where Ĥeq is the equilibrium tip-sample Hamiltonian at zero
bias and VTot is the capacitive Laplace potential drop across
the molecule and vacuum. To solve for the transmission we
replace the Hamiltonian in Eq. �1� with H0. From an analysis
of barrier tunneling using the Laplace capacitive model �see
Eq. �5��, we are able to show that the STM tip must be
placed close to the sample in order to observe resonant NDR.
In particular, it is demonstrated that the resonant tunneling
current of the highest occupied molecular orbital at the va-
lence band edge is orders of magnitude less than the contri-
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bution of states tunneling near the top of the barrier at high
bias and large STM tip-sample distances.

In the second part �see Sec. V�, we investigate the validity
of the Laplace capacitance model at close tip-sample contact
and high bias. We solve for the full nonequilibrium Hamil-
tonian, H, through a self-consistent NEGF-DFT loop.23 The
nonequilibrium analysis reveals that an additional quantum
capacitance, CQ, must be included in the STM capacitive
model. It is shown that resonant p-type NDR is impeded due
to CQ—which can be significant for atomic sized systems
such as molecules—and the molecular charging energy such
that the highest occupied molecular level is held fixed at the
silicon electrochemical potential.

The calculation of the device Hamiltonian, both in and out
of equilibrium, is carried out on a 200 Ryd real-space grid
within the local density approximation. The �kx ,ky�-space
sampling is set at �4�4�. The convergence criteria in the
self-consistent NEGF-DFT cycle is set at 10−4 in both the
density matrix and Hamiltonian matrix, where the Hamil-
tonian is stored in hartree units. We employ double � polar-
ized �DZP� basis orbitals on hydrogen and carbon. For sili-
con and platinum a single � polarized �SZP� basis set is
applied to all atoms. The silicon basis set is optimized, by
localizing the d-orbitals,28 to provide a bulk band gap of 1.2
eV �rather than the typical plane wave LDA band gap of 0.5
eV� with the valance band maximum located −5 eV below
the vacuum level. Free atomic orbitals are placed on the top
two styrene hydrogens, the uppermost styrene carbon atoms,
and the Pt tip apex atom to capture the typical 1 Å /dec
tunneling decay as the STM tip is pulled away from the
sample.15 Further details of the NEGF-DFT implementation
can be found in Refs. 21 and 23.

IV. BARRIER TUNNELING

In this section we examine how the vacuum barrier width
determines the p-type resonant NDR peak to valley ratio.
The potential drop across the device for this analysis is ap-
proximated by a parallel capacitor model �see Eq. �5��. It is
shown that the peak to valley ratio decreases with increasing
STM tip-sample distance. At typical STM imaging tip-
sample separations high bias NDR will not be observed since
the tunneling current is dominated by tunneling near the top
of the vacuum barrier.29 These results are explained through
an intuitive effective barrier height model.30

Let us first examine the equilibrium properties of styrene
on Si�100�. The projected density of states �PDOS� of sty-
rene on Si�100� is shown in Fig. 3 �as is a real-space plot of
the � state orbital�. From both the PDOS plot and � state
wave function it is apparent that styrene presents a weakly
hybridized, and therefore weakly broadened, molecular reso-
nance. Weak hybridization, or level broadening, is a prereq-
uisite to observe resonant p-type NDR �Ref. 14� on Si�100�.
Furthermore, the styrene � state is located at −6.3 eV, rela-
tively close to the silicon valence band edge at −5 eV.
Therefore from an equilibrium analysis styrene appears to be
well placed for the study of resonant p-type NDR.

In STM measurements the vacuum barrier width is in-
creased by retracting the tip away from the sample. The bar-

rier is said to be at a minimum width when the tip is phys-
isorbed or chemically bonded with the sample. During a
STM current-voltage measurement the applied bias is split
between the vacuum barrier and the molecular sample. The
larger the vacuum barrier, the lesser its capacitance in rela-
tion to the molecular capacitance, and therefore the larger the
fraction of the total applied bias which drops across the
vacuum. At large tip-sample distances, the molecular and
vacuum capacitances may be approximated roughly as par-
allel plate capacitors such that C=A� /d �A is the area, � is
the dielectric constant, and d is the plate distance�. As dis-
cussed earlier �see Sec. III�, we determine the potential drop
across the molecule and vacuum as a function of tip-sample
separation by treating both the vacuum and molecule as two
such parallel plate capacitors in series �see Fig. 4�. In this
approximation we assume that the potential drop begins at
the core of the top layer of silicon atoms and ends at the tip
apex atom. This can be justified by considering the metallic
nature of heavily doped p-type Si�100�.

The vacuum gap is approximated to be zero, ZVac=0,
when the STM tip is in full contact with styrene, that is when
the highest hydrogen atom and tip apex atom are separated
by 2 Å. Thus, at full contact VMol and VTot are equivalent
and the applied potential is the Laplace potential. At greater
STM tip-sample separations the voltage drop across the
vacuum increases as determined by Eq. �5� and shown in
Fig. 4. Note, �Mol is taken to be 2.0 for styrene following gas
phase data and previous first-principles calculations.15

At the NDR peak bias, a resonant p-type NDR model
requires that a molecular level be located between the elec-
trochemical potential and valence band �see Fig. 1�. Then as
more bias is applied this level passes out of the small con-
duction window between the electrochemical potential and
the valence band into the band gap giving rise to NDR.7

Hence the NDR peak to valley ratio is determined by the
contribution of the resonant state to the total current. If this
contribution is small as is the case at high bias, then the NDR
peak to valley ratio will be very small.

To determine the contribution of a molecular resonant
state to the total current we can look at a transmission plot.

FIG. 3. PDOS for styrene on Si�100�. The electrochemical po-
tential is located at −5.2 eV. The � and �� states are indicated. An
orbital plot of the weakly hybridized � state at −6.3 eV is also
shown.
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In Fig. 5 we plot the calculated transmission at �2 Å, 2.25
V�, �4 Å, 3.275 V�, and �6 Å, 4.3 V� for styrene on Si�100�
beneath a Pt tip. As the tip is pulled away larger bias voltages
are required to pull the styrene � state into resonance be-
tween the p-type silicon electrochemical potential and va-
lence band maximum �VBM�, since more voltage drops
across the vacuum barrier. A noticeable effect is apparent in
the transmission plots of Fig. 5: As the STM tip is pulled
away the NDR peak to valley ratio decreases exponentially.
The peak to valley ratio may be determined by estimating
how much of the total tunneling current is contributed by the
highest occupied molecular orbital at the resonance bias.
NDR occurs because the tunneling current contribution of
this state is lost when it is pulled into the band gap. At �2 Å,
2.25 V� we see that the resonant � state is responsible for a
large fraction of conduction in the tunneling window. In Fig.
5 the tunneling window is indicated by the two dashed red
lines, where the leftmost red line is the Si�100� electrochemi-
cal potential position and the rightmost red line is the Pt�100�
electrochemical potential position. At �4 Å, 3.275 V� the �
state transmission magnitude is diminished and is much less
than the transmission near the Pt tip electrochemical poten-
tial. Therefore at a 4 Å tip-sample separation the NDR peak
to valley ratio is expected to be very small. At �6 Å, 4.3 V�
transmission through the � state is entirely dominated by
tunneling at the Pt tip electrochemical potential. Thus, at
even modest tip-sample separations the p-type resonant NDR
magnitude could be unobservable. We term this effect NDR
washout, where the electron tunneling rate near the top of the
vacuum barrier is said to washout tunneling just below the
silicon valence band maximum.

Though this system requires a complex first-principles
model to determine molecular level motion under bias, the
effect of washout can be understood in terms of a Wentzel-

Kramers-Brillouin-Jeffreys �WKBJ� model. Within this
model the transmission depends exponentially on the barrier
width W,

T�E� � e−2/
W�	2mE�, �7�

where m is the free-electron mass. This transmission trend is
critically important to understanding observed STM tunnel-
ing p-type resonant NDR. The probability of tunneling at
lower energies is exponentially less than at higher energies.
Therefore, at high bias any contribution to the total current at
low energies is washed out by tunneling at higher energies.
The larger the bias, the larger the washout effect. Since an
applied bias is split between the vacuum barrier and the mol-
ecule, the optimal bias for observing maximum NDR occurs
at or near full tip molecule contact �thereby minimizing the
washout effect�.

It is important to note that although p-type resonant NDR
has not been experimentally reported for styrene on Si�100�,
the effect of washout is quite general and is a property of the

FIG. 4. �Color online� Diagram for the capacitive Laplace STM
model. Parallel plate capacitances CVac and CMol are assigned to the
vacuum barrier and molecule, respectively. The potential is as-
sumed to be flat inside the metallic tip and in the heavily acceptor
doped silicon substrate �for a positive STM bias�. A relation be-
tween the total voltage applied, VTot, and the potential drop across
the molecule, VMol, can be easily derived �Ref. 8�. The tip and
sample electrostatic potentials are indicated by �T and �S, respec-
tively, where VTot=�T−�S. FIG. 5. �Color online� Transmission plots for styrene on Si�100�

as a Pt STM tip is pulled away. The tip position of closest approach
is set at a 2 Å separation between the uppermost styrene hydrogen
atom and the Pt�100� tip apex atom. Transmission plots are calcu-
lated at 2 Å, 4 Å, and 6 Å separations. Zero energy is set at the
silicon valence band maximum, which is located 5 eV below the
bulk silicon vacuum level. The styrene � state is said to be in
resonance when it lies between the silicon electrochemical potential
and VBM. As the tip is pulled away more potential drops across the
vacuum region and the bias at which the styrene � state is brought
into resonance increases proportionally with the vacuum barrier
width. The bias window is indicated by dashed red lines. The p-type
silicon electrochemical potential assumed to lie 0.2 eV below the
Si�100� valence band maximum as indicated by the leftmost dashed
red line. The transmission broadening factor is 7 meV correspond-
ing to a temperature of approximately 80 K �Ref. 8�.
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tunneling barrier and not a material property of the molecule.
We have chosen styrene for this analysis because it presents
a weakly hybridized highest occupied molecular orbital14

that is easily identifiable in transmission plots. However, a
recent p-type resonant NDR study of cyclopentene on
Si�100� �Ref. 8� has provided NDR measurements as a func-
tion of tip-sample separation. These results show the ex-
pected drift to high bias in the NDR peak position as the
STM tip is retracted by approximately 4 Å. However, the
peak magnitude does not diminish exponentially, but in-
creases slightly, and it is likely that a nonresonant mecha-
nism is responsible for cyclopentene NDR.14 Furthermore,
we have found through self-consistent NEGF-DFT calcula-
tions that the lowest bias cyclopentene NDR peak reported
�at 2.3 V�8 corresponds to a tip-sample vacuum gap of ap-
proximately 5.5 Å �much larger than typical physisorbtion
distances of approximately 2 Å� where NDR washout is
likely to be a noticeable effect.

The most important experimental implication of the wash-
out effect is that typical STM tip-sample imaging
distances,8,10,15 of 5 Å or more, could be too distant to ob-
serve p-type resonant NDR. The exact tip-sample distance
and voltage at which washout prevents NDR is a function of
the dielectric constant and the highest occupied molecular
orbital position of each individual molecule. The lower the
molecular dielectric constant and the closer the highest oc-
cupied molecular level is to the valence band maximum at
zero bias, the further the tip may be placed from the sample
before NDR washout occurs. The precise quantitative mag-
nitude of the washout effect depends on the WKBJ barrier
height and the highest occupied molecular orbital-lowest un-
occupied molecular orbital �HOMO-LUMO� energy gap of
the molecule. Since LDA tends to underestimate the gap, the
washout effect may be somewhat smaller than that predicted
by LDA. However, in Sec. V we show that there is an even
more fundamental self-consistent obstacle to resonant NDR.

This transmission study demonstrates that in order to ob-
serve p-type resonant NDR two criteria must be met. First,
the STM tip should be physisorbed or chemically bonded
with the sample to assure low bias operation and minimize
direct tunneling. So far we have assumed that the potential
drop follows a Laplace profile when the STM tip is phys-
isorbed with the molecule. This assumption turns out to not
be completely correct and we explore this aspect in Sec. V.

V. QUANTUM CAPACITANCE

To complete this analysis of p-type resonant NDR we
present self-consistent NEGF-DFT calculations of the system
under bias. It is shown that the styrene � state approaches
the p-type Si�100� electrochemical potential very slowly
thereby limiting resonant NDR. We explain this effect in
terms of a charging energy and quantum capacitance model.

A. Styrene nonequilibrium Green’s function-density
functional theory bias profile

In Sec. IV it was shown that the NDR peak to valley ratio
will decrease as the STM tip is pulled away from the sample.

Therefore it is optimal to place a STM tip as close as pos-
sible to the molecular sample to avoid high bias operation
and thus minimize NDR washout. In our NEGF-DFT analy-
sis of styrene we therefore place the STM tip in contact with
the sample and investigate its nonequilibrium properties. At
full contact the distance between the tip apex atom and high-
est styrene hydrogen is approximately 2 Å.

Previously, in Sec. IV we assumed, within an electrostatic
capacitive model, that the bias profile should approximately
follow the Laplace potential when the tip is in direct contact
with the styrene molecule—since the vacuum barrier is con-
sidered to have collapsed. Nonequilibrium calculations re-
veal an entirely different picture. In Fig. 6�a� PDOS calcula-
tions for styrene under various bias voltages ranging from 0
V to 5 V are shown. In Fig. 6�b� the same bias voltages are
profiled across the device region. Each potential profile is a
one-dimensional cut of the full real-space potential drop
through the tip apex atom �x ,y� coordinates. Two surprising
features are evident in Fig. 6. First, the � state does not pass
the Si�100� electrochemical potential even at a bias as high
as 5 V. Second, the potential drop across the molecule does
not follow a linear Laplace profile. Even at full contact be-
tween the STM and molecule an applied bias is split between

FIG. 6. �Color online� Bias characteristics of styrene attached to
Si�100� in physisorbtion contact �full contact� with a Pt�100� tip.
The PDOS of the styrene � state under bias is shown in �a�. The
potential profile across the device region is shown in �b�, where a
cut of the potential drop is taken through the tip apex atom. The
electrochemical potential is located at −5.2 eV.
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what remains of the vacuum gap between the tip and the
molecule as seen in Fig. 6�b�. At low bias the vacuum barrier
between the STM tip and molecule absorbs a small fraction
of the applied bias. At very high bias most of the applied
potential drops across the small vacuum gap between the
molecule and the STM tip.

However, contrary to intuition, below 2 V the system bias
profile shown in Fig. 6�b� can be well matched by assuming
a vacuum region length, ZVac, of 2 Å and a molecular region
length, ZMol, of approximately 6 Å in Eq. �5�—�Mol is taken
to be approximately 2.0. This result shows surprisingly that
even when the charge densities of the tip and molecule
strongly overlap, unless a chemical bond is formed, the
vacuum gap cannot be considered to have collapsed from an
electrostatic perspective even though it has from an electron
tunneling perspective. However, the lengths of ZVac and ZMol
cannot be easily justified from empirical arguments since it is
not always clear where the vacuum region begins and ends at
close tip-sample distances. A first-principles calculation
should be conducted to validate any assumptions �especially
those concerning the geometry of a system�. Above 2 V the
system bias profile cannot be understood purely in terms of
the vacuum and molecular electrostatic capacitances �see
Fig. 4�. In Sec. V B 1 we show that the molecular quantum
capacitance must also be included in our STM circuit model
to account for the high bias behavior.

B. Styrene capacitance

In a sense we can view the high bias profile in Fig. 6�b� as
a screening effect. Once the molecule begins to conduct
through its highest occupied molecular orbital as shown in
Fig. 6�a�, a sufficient density of states is present in the bias
window to screen the applied bias. Therefore at high bias,
any voltage increase drops between the molecule and the
metal tip. This increased screening can be understood in
terms of the circuit model in Fig. 7�a� which augments the
simple capacitive model of Fig. 4 with the quantum capaci-
tance of the molecule as described below.

1. Quantum capacitance and electrostatic capacitance

The potential across a molecule has two contributions: a
Poisson potential and a Laplace potential. The Laplace po-
tential can be properly approximated by the series CMol and
CVac capacitive model shown in Fig. 4. The Poisson potential
is determined by the amount of charge gained or lost by the
molecule. In the case of styrene charge is lost when the high-
est occupied molecular orbital is brought close to the elec-
trochemical potential of silicon. If we change the electro-
chemical potential in the molecule by an amount ��Mol and
the resulting change in the electrostatic potential due to the
loss of charge is ��Mol, then Poisson’s equation for the mol-
ecule may be approximately written as26

�Q = q2Do���Mol − ��Mol� . �8�

We define CQ=q2Do to be the quantum capacitance26,31–35 of
the molecule, where q is the single electron charge and Do is
the PDOS of the molecule at �Mol. From Eq. �8� we see that
the quantum capacitance serves to couple the electrostatic

potential of the molecule to the electrochemical potential of
the molecule.

If we couple the molecule to a tip and a substrate, its
electrochemical potential ��Mol� will be determined by the
contact to which it is more strongly coupled. This can be
understood in terms of the single-level energy dependent
electron correlation function,22

Gn�E� =
�Sf�E − �S� + �Tf�E − �T�

�E − ��2 + ��S + �T�2/4
, �9�

where �S,T and �S,T are respectively the substrate and tip
coupling constants and electrochemical potentials �f�E� is
the Fermi function�. In our styrene study the substrate forms
a covalent bond and the tip a physisorbtion bond, hence �S is
greater than �T ��S��T� and the electrochemical potential in

FIG. 7. �Color online� The high bias STM circuit model is
shown in �a�, where the quantum capacitance of the molecule
couples the electrostatic potential of the molecule to the electro-
chemical potential of the molecule. The molecular electrochemical
potential is split by the resistance of the molecule and the resistance
of the vacuum barrier—see the region �ii� shaded in red. The ratio
of these resistances scales exponentially with the vacuum barrier
width. The original Laplace circuit model is shaded blue in region
�i�; this model remains valid at low bias when CQ�CMol. The ratio
of CVac to CMol scales linearly with the vacuum barrier width. In
subfigure �b� a plot of the PDOS of styrene at the silicon electro-
chemical potential as a function of applied bias for the range where
the voltage drop across the molecule does not change �3–5 V� �as
seen in Fig. 6�b�� is provided.
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the molecule is determined by the Fermi distribution in the
substrate.

In a circuit model we can view the molecular electro-
chemical potential ��Mol� as being split between the tip and
substrate electrochemical potentials ��T and �S�, by the
vacuum resistance RVac and the molecule resistance RMol �see
shaded region ii in Fig. 7�a��.36 The resistances are propor-
tional to their respective coupling constants, that is RVac
��S and RMol��T. The ratio RVac /RMol decays exponentially
as we increase the vacuum barrier width, since the tip and
sample wave functions both decay exponentially into the
vacuum barrier. Since the molecule couples much more
strongly to the substrate than the tip, we can approximate the
resistances as RVac=� and RMol=0 �see Fig. 7�a��. Therefore,
the molecular electrochemical potential �Mol is equal to the
substrate electrochemical potential �S and as we sweep the
bias ��Mol=��S.

For both contacts, the change in the electrochemical po-
tential is equivalent to the change in the electrostatic poten-
tial in the substrate, that is to say ��S=��S and ��T=��T. In
the Laplace picture �see Fig. 4 and shaded region i of Fig.
7�a�� we view the change in the molecular electrostatic po-
tential ��Mol to be purely a function of the molecular capaci-
tance CMol and the vacuum capacitance CVac as we sweep the
voltage bias. However, when the molecule begins to lose
charge we must consider Poisson’s equation and include a
quantum capacitance which couples ��Mol to ��Mol. There-
fore in a circuit representation we must couple the Laplace
division of the molecular electrostatic potential ���Mol in
shaded region i of Fig. 7�a�� to the resistive division in the
molecular electrochemical potential ���Mol in shaded region
ii of Fig. 7�a�� by the quantum capacitance at a given bias
�CQ�. Note, we consider the change in the electrochemical
potential as we sweep the bias incrementally because the
quantum capacitance �CQ� changes with the applied bias.
The circuit model of the quantum capacitance coupling be-
tween ��Mol and ��Mol in an STM measurement is shown in
Fig. 7�a�.

At low bias the quantum capacitance is very small, be-
cause the molecular density of states at the substrate electro-
chemical potential is very small as shown in Fig. 6�a� �we
consider the low bias regime in Fig. 6 to lie below 2 V as
discussed in Sec. V A�. Therefore at low bias the electro-
chemical potential and electrostatic potential are well decou-
pled and the Laplace model remains valid �see Fig. 4 and
shaded region i of Fig. 7�a��. At high bias the molecular
density of states at the substrate electrochemical potential is
quite large. Thus the high bias quantum capacitance of sty-
rene is much larger than the molecular electrostatic capaci-
tance and the vacuum capacitance �see next paragraph�. We
know that CVac and CMol are comparable in size given the
reasonable voltage Laplace division at 1 V in Fig. 6�b�.
Therefore, following Fig. 7�a�, at high bias the molecular
quantum capacitance dominates, tying the molecular electro-
static potential to the substrate electrochemical potential, and
the most of the voltage drops across the vacuum barrier �see
the bias regime above 2 V in Fig. 6�b��.

The molecular electrostatic capacitance can be roughly
expressed as CMol=q2 /Uo where Uo is the single electron
charging energy. For isolated ethylbenzene, which is styrene

with two hydrogens attached similar to the passivation state
of styrene on H:Si�100�, the charging energy is on the order
of 9 eV, thus 1 /Uo
0.11 eV−1. For styrene attached to
Si�100� the charging energy can be expected to reduce to a
few eV due to image charge effects37 and delocalization of
the � state as it hybridizes with bulk silicon states. Whereas
the styrene PDOS at the silicon electrochemical potential can
be seen in Fig. 7�b� to vary between 20 eV−1 and 60 eV−1 at
high bias �from 3 V to 5 V�. Hence, as the highest occupied
molecular orbital approaches the electrochemical potential of
the substrate the molecule enters the limit of CQ�CMol and it
becomes very difficult for the level to pass the silicon elec-
trochemical potential and NDR is prevented �since we are in
the regime ��Mol=��Mol=��S�.

2. Decoupling the molecular electrochemical
potential from the substrate

One could reduce the coupling to the silicon surface by
inserting a large tunneling barrier between the molecule and
substrate. The tunneling barrier may be composed of a
vacuum region or an oxide. It should be noted, however,
given the large charging energy of molecules, that the self-
consistent field analysis will break down when both contacts
are very weakly coupled38 and the system will enter the Cou-
lomb blockade regime. Furthermore, electron charging in
conventional resonant tunneling diodes has been shown to
produce bistability and hysteresis39,40 and this may also be
important to the operation of molecular resonant tunneling
diodes.

We have found that the electrostatic and quantum capaci-
tances together prevent the styrene � state from passing the
Si�100� p-type electrochemical potential even when a 5 Å or
10 Å amorphous SiO2 oxide layer41,42 is introduced to fur-
ther decouple the molecule from the substrate. Yet, we have
also determined that the styrene � state delocalizes reason-
ably well into the SiO2 barrier. The decay of a surface state,
in this case a molecule, into an oxide layer is a material
property and other oxides may better decouple the molecular
states from bulk silicon than amorphous SiO2. It has been
shown that styrene can undergo desorption from p-type
Si�100� at 1nA current levels when forward biased.6,43 How-
ever, the introduction of an oxide layer can lower tunneling
current levels down to pA and thereby significantly reduce
the likelihood of desorption, which further motivates the pos-
sibility of introducing an oxide layer. A decoupling oxide
layer, possessing a sufficiently low dielectric constant rela-
tive to the molecular dielectric constant, also beneficially
lowers the voltage at which the highest occupied molecule
orbital is brought between the p-type electrochemical poten-
tial and the valence band maximum.

VI. SUMMARY

We have shown that the vacuum barrier width, electro-
static capacitance, and quantum capacitance can together de-
preciate STM-induced p-type resonant NDR on Si�100�. As
the tip is pulled away from Si�100� less voltage drops across
the molecule and the NDR peak drifts to higher voltages,
since one has to apply a higher bias to shift the highest
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occupied molecular orbital toward the valence band. At
higher voltages the tunneling current near the top of the bar-
rier rises exponentially and thus overwhelms tunneling
through resonant occupied states. Therefore, to minimize di-
rect tunneling �washout� it is optimal to position the STM tip
as close as possible to the molecular sample, thus avoiding
STM tunneling under high bias conditions. Next we exam-
ined the nonequilibrium properties of styrene on Si�100�,
which has a well-defined resonant � state, at bonding contact
with a Pt�100� STM tip. It was shown that the electrostatic
capacitance and quantum capacitance of styrene together
prevent the highest occupied molecular orbital of styrene
from passing the Si�100� electrochemical potential �though
bistable operation beyond the self-consistent NEGF-LDA
method has not been ruled out�. Since charging energies and
quantum capacitance effects are known to be significant for
small systems, it is likely that STM-induced resonant mo-
lecular NDR could be better observed on semiconductor sur-
faces under ballistic conditions by further decoupling the

molecule from the silicon surface via a vacuum or oxide
barrier.
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