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In this work, the intersubband absorption is studied in a �-doped graded quantum well structure with very
close excited levels when this structure is subjected to a very intense terahertz irradiation. Multiple peak
structure of the absorption is essentially modified by the strong oscillation of deepest excited levels, which
periodically changes their energy proximity, and by the appearance of the so-called “forbidden” transitions.
Effects generated by the oscillatory population of the deepest subbands have been considered. Calculations
have been done within the matrix density formalism and the adiabatic approach, taking into account self-
consistently electronic levels and depolarization contribution to levels shift. Relaxation rates dependence on
terahertz irradiation and charge concentration has been considered.
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I. INTRODUCTION

It is known that very intense transverse fields consider-
ably modify confined states of quantum nanostructures.1 A
conventional method to study these modifications is the in-
terband optical absorption.2–4 To analyze in a quantitative
way the interband response, it is necessary not only to con-
sider modifications of the electron and hole states, but also
excitonic effects. However, when the electronic excitation is
in the infrared �IR� range, the intersubband response between
electronic states of the conduction band becomes relevant.4 A
quite interesting case, but little studied, is that the modifica-
tion of the intersubband transitions caused by a very intense
terahertz irradiation.5 The aforementioned irradiation can be
achieved experimentally by using gas or free-electron lasers
�FEL� with energy densities of megawatt cm−2. These lasers
have already been used to study the response of different
types of nanostructures.6,7 Heterostructures with closely
spaced levels, such as stepped quantum wells �SQWs� or
graded quantum wells �GQWs� have been investigated
through optical and transport methods during the past
decade.8 Recently, photoluminescence and photocurrent
measurements have been reported for GQWs.9 The interlevel
population inversion in such structures due to the heating
caused by a longitudinal electric field is analyzed in Refs. 10
and 11. One of the most attractive features of GQWs that
distinguished them from other quantum structures is the nar-
row bandwidth of their intersubband optical transition. Thus,
GQWs are appropriate for the application as tunable optical
semiconductor devices including far-infrared lasers. The task
of the current work is to show peculiarities in graded quan-
tum wells when doped, because these structures show an
intricate response under specific stimuli, as intense terahertz
irradiation.

Let us suppose we subject a GQW to an intense terahertz
irradiation. The GQW is formed by a GaAs narrow well, of
width d, in the center of a Ga0.65Al0.35As wide well, of width
D. Finite AlAs barriers flank the wide well �see Fig. 1�a��. If
the structure undergoes a transverse terahertz electric field
E��t�=E� cos �t �Fig. 1�b��, the electronic response can be
studied within the adiabatic approximation whenever ��

�� ji, � ji being the interlevel energy distance between the jth
and ith levels. However, in the present scenario, since
�e�E�D /2� ji, we cannot consider the radiation as a perturba-
tion and we will have to describe electronic states numeri-
cally. For structures with closely spaced levels, when � ji
���, the intersubband transitions are excited in far-infrared
spectral region. The shape of the absorption peak is mainly
controlled by effect of the Coulomb interaction or by the
elastic scattering of electrons in heterostructure defects. Cou-
lomb interaction on intersubband transitions in two-
dimensional �2D� systems has different symptoms. One of
them is the depolarization shift of the spectrum caused by the
dynamic screening of the infrared field by electrons.12 How-
ever, exchange interaction opposes to the former interaction

FIG. 1. �Color online� Graded quantum well under terahertz
irradiation with the four deepest energy levels. Corresponding wave
functions are included. �a� E�=0 kV /cm. �b� E�=100 kV /cm and
�t=	.
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reducing depolarization shift and absorption shape appears
unchanged.

Due to the external field, electronic levels will oscillate
with a frequency �, causing the �n+1�-order intersubband
transitions and the consequent fine structure of the absorp-
tion. Here, n is the number of terahertz photons, while we
only have a single infrared photon corresponding to the
probe field. Moreover, a considerable modification of the
shape of the absorption peaks appears due to relaxation of
the levels and depolarization.

II. INTERSUBBAND RESPONSE

Present calculations are based on the one-particle density
matrix, linearized with respect to the probe IR field
E
 exp�−i
t�. The method was already developed elsewhere
and we will not extend ourselves in detailing the theoretical
process to calculate the absorption.5 We will describe levels
broadening in a phenomenological way considering longitu-
dinal optical �LO� phonon emission in the spectral region

��LO, �LO being the longitudinal optical phonon
frequency. Also, we will take into account depolarization
contribution to broadening. If we consider a system with
j+1 levels excited by a far-infrared radiation �the deep
populated and j excited conduction levels�, perpendicularly
directed to the 2D plane, the induced transverse current
can be calculated through the density matrix �̂�t� as
j��t�=� je�2Dv1j�t��0

d��f1j�� , t�, where �f1j�� , t�
= ��1�z , t���̂�� , t��� j�z , t�	 are the nondiagonal terms of the
density matrix, v1j�t�=−i� j1��1�z , t��z�� j�z , t�	 are the inter-
subband matrix elements of the transverse velocity operator,
�k�z , t� are the electronic wave functions in the k subband,
�2D is the 2D density of states, and �= p2 /2m is the kinetic
energy for the in-plane motion. If we assume that the prob-
lem has in-plane isotropy, the density matrix only depends on
�. The relative absorption ��t� can be defined as the ratio of
the absorbed power Re�E��t�j��t�� to the Poynting vector
for the radiation across the structure, and can be written as

��t�= e2

c
�
� j

4m�v1j�t��2

� j1
Im�0

d�����, where � is the dielectric
permittivity, and ���� is the normalized intersubband polar-
ization which can be deduced from the matrix density as
�f1j�� , t�=−� ie

� j1
�E��t�v12�t�����.

To calculate the electronic states, we need to solve the
eigenvalue Schrödinger equation. It is convenient to use the
parametrically time-dependent wave functions, �k�z , t�, de-
termined by the eigenstate problem:

Ĥ�z,t��k�z,t� = �k�t��k�z,t� , �1�

and

Ĥ�z,t� =
p̂z

2

2m
+ VGQW�z� + VH�z,t� + Vxc�z,t� + ezE� cos �t .

�2�

Here, m is the electron effective mass in the growth direc-
tion, and VGQW�z�, VH�z , t�, and Vxc�z , t� are the GQW, Har-
tree, and Fock potential terms, respectively. Equation �1�
must be solved together with the Poisson equation for each

value of t. The standard self-consistent numerical procedure
for this eigenstate problem involves the Hartree potential
VH�z , t�, which is obtained from the Poisson equation,

d2VH�z,t�
dz2 =

4	e2

� �ND�z� − �
j

nj�t��� j�z,t��2� . �3�

Here, ND�z� is the doping profile of donors, coming from the
� doping, � is the dielectric permittivity that we have sup-
posed as uniform across the heterostructure, and

nj�t� =
mkBT

	�2 ln�1 + exp�F − � j�t�
kBT

�� . �4�

Therefore, �ND�z�dz=� jnj�t�=n2D is the in-plane averaged
2D density of electrons �donors� and j refers to the occupied
subbands. The Fermi energy, �F, is expressed through the
total electron density n2D.

The Fock term,

Vxc�z,t� =
e2

�
� dz�

1

�z − z��
��j�z�,t�� j�z,t� , �5�

includes exchange contribution.13 This contribution strongly
affects wave functions for high densities, as in our case. For
high doping concentration, the attractive space-charge poten-
tial energy created by the spatial distribution is noticeable.
The Hartree-Fock approximation used here for the many-
body Coulomb potential energy incorporates the main pecu-
liarities of the particle interactions as function of the carrier
densities. Thus, when the carrier density increases, the repul-
sive part of the Hartree-Fock potential energy increases as
well. Beyond a certain electronic density, the repulsion com-
pensates the attractive Coulomb interaction and the intersub-
band shift due to the Coulomb renormalization.13–15

Finally, ezE� cos �t is the terahertz energy contribution.
We will consider the IR field by means of the perturbation

operator �Ĥ�z , t�= ie

E�
�v̂�z , t�.

To solve Eqs. �1�–�5�, we have used the continuity condi-
tions for wave functions and current at each interface

���
k �z,t��z=Li

= ���
k �z,t��z=Li

,

� 1

m�

���
k �z,t�
�z

�
z=Li

= � 1

m�

���
k �z,t�
�z

�
z=Li

, �6�

where subindices � ,� refer to materials forming each inter-
face at Li position. Although underbarrier penetration slightly
modifies wave functions and energy levels position, we have
taken into account this possibility using barriers of finite
height in calculations.

Some authors assure the depolarization shift on the ab-
sorption is noticeable for high doped QWs.16,17 We have in-
cluded numerical calculations of these effects �see Appendix
A� based on a time-adapted version of expression �17� in
Ref. 16,
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� j1�t� =
8	e2�n1�t� − nj�t��

��� j1�t�� �
−



dz��
−

z

dz�� j�z�,t��1�z,t��2

,

�7�

where � j1�t�=� j�t�−�1�t�. Similar expression can be found in
Batista et al.18 for the case of time-independent wave func-
tions. We have represented in Fig. 2 the evolution of the
dimensionless depolarization � j1�t� for different terahertz
fields. Following the above references interlevel energy
modifications caused by the depolarization can be expressed
through �̃ j1�t�=� j1�t��1+� j1�t��1/2. Because the energy cor-
rections due to the dimensionless depolarization shift can be
of the order of 9.5%, we cannot ignore this contribution for
1→2 transition. Although expression �17� of Załużny only
considers a two-band model, we have extended it to estimate
the contribution for 1→3 transition, and depolarization shift
is negligible for this case �0.05%�. We have used in calcula-
tions a thermal energy kBT=0.4 meV, corresponding to T
=4.8 K.

With the above considerations, we have calculated wave
functions and subband energy values. We have used in cal-
culations a set of ten decoupled GQW. Each GQW is com-
posed by a 25 Å narrow well, placed in the center of a
300 Å wide well, and doped with a �-donor doping in its
center, in such a way that only the ground state �correspond-
ing to the first level in the conduction band� is populated. In
our case, the electronic density is n2D=5.5�1012 cm−2. Well
sizes have been deliberately chosen so that the two deepest
excited states �second and third conduction states� are very
close in energy for zero terahertz field. Since the electric
field of the radiation breaks the symmetry of wave functions,
zero-field “forbidden” transition between the first and third
levels becomes allowed. This transition, together with the
intense irradiation, will provide us the fine structure of a
quite complex relative absorption. We have considered a
terahertz electric field with amplitude E� varying between 0
and 100 kV/cm. Figure 1 shows the shape of the GQW sub-
jected to the limiting cases of terahertz fields: E�

=0 kV /cm �a� and E�=100 kV /cm for �t=	 �b�. The first
four levels and the corresponding wave functions are also
shown for both cases. For 0 kV/cm field, one can observe
that the energy gap between the first-excited and the ground
levels, �̃21�t� is 113 meV, while the energy gap between the

two excited levels �̃32�t� is about 8 meV. However, when
increasing the electric field, the first-excited level moves a
bigger energy amount than the others, becoming close to the
ground state: �̃21�t=	 /�� diminishes to 25 meV, while
�̃32�t=	 /��=82 meV for E�=100 kV /cm. Since the field
depends on �t, the distance between levels will oscillate be-
tween these extreme values. We will not take into consider-
ation the third excited level �̃4�t� because it is separated
enough from �̃3�t�.

Figure 3 shows �̃ j1�t� variation versus �t. One can see
that the temporal complexity of wave functions and levels
does not allow us to use the parabolic approximation, in
which wave functions and levels can be developed in cosine
series as5

�k�z,t� = �k�z� + �
k��k

eE�zkk�

�k − �k�
�k��z�cos �t + ¯ ,

�k�t� � �k + eE�zkk cos �t + �
k��k

�eE�zkk��
2

�k − �k�
cos2 �t . �8�

III. RELATIVE ABSORPTION

To calculate the relative IR absorption, averaged over the
terahertz pump, we first deduce the high-frequency contribu-
tion, ��p�z ,z� , t�exp�−i
t�, from the matrix density in the
coordinate-momentum representation. This contribution is
described by the linearized equation

���p�z,z�,t�
�t

+
i

�
�Ĥ�z,t� − Ĥ�z�,t� − �
���p�z,z�,t�

+
i

�
��Ĥ�z� − �Ĥ�z����p�z,z�,t� = 0, �9�

where z is the transverse coordinate �growth direction� and p
is the two-dimensional momentum. Following Ref. 5, we can
obtain the time-dependent photoinduced current through the
density matrix as

FIG. 2. �Color online� Time dependence of dimensionless depo-
larization for E�=100 kV /cm �solid line�, E�=80 kV /cm �dashed
line�, and E�=20 kV /cm �dotted line�.

FIG. 3. �Color online� Time dependence of interlevel energy
distance for the 1→2 and 1→3 transitions. E�=0 kV /cm �short
dash-dot�, E�=20 kV /cm �dash-dot-dot�, E�=40 kV /cm �dash-
dot�, E�=60 kV /cm �dot�, E�=80 kV /cm �dash�, and E�

=100 kV /cm �solid�.
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j�t� =
e

L2�
p
�

−d/2

d/2

dz lim
�,��→z

�v̂��� + v̂�������p��,��,t�

=
2e

L2 �
pkk�

vk�k�t���p�k,k�,t� , �10�

where L2 is the normalization area and vkk��t�
=�−d/2

d/2 dz�k��z , t�v̂�z��k��z , t� is the interlevel electronic ve-
locity. For the case of resonant excitation between the ground
and the jth levels, when �
� �̃ j1, Eq. �7� becomes j�t�
�ev1j�t����j ,1 , t�. To obtain this result, we have made the
sum over 2D momentum according to ���j ,1 , t�
= �2 /L2��p��p�j ,1 , t�. If only the ground level is populated,
we can write from Eq. �7� the differential equation for
���j ,1 , t� as

����j,1,t�
�t

+ i�
 j1�t� − 
 − i� j1�t�����j,1,t� =
eE


�

v j1�t�n2D,

�11�

where 
 j1�t�= ��̃ j�t�− �̃1�t�� /� is the time-dependent inter-
level frequency, and � j1�t�=�
�t� is the effective �see Appen-
dix A� relaxation frequency. Solving Eqs, �9�–�11� and using
the generalized Ohm tensorial law

ji�t� = �i
j�t�Ej�t� , �12�

which, in the present case, is simplified to �
�t�= j�t� /E
,
we obtain the conductivity

�
�t� =
e2n2D

�

�

j=2,3
v j1�t��

−

t

dt�v j1�t��

�exp�− i�
t�

t

d��
 j1��� − 
 − i�
����� . �13�

Finally, if we average throughout a period we obtain the
relative absorption

�
 =
4	

c
�
Re�

−	/�

	/� dt

2	/�
�
�t� . �14�

Therefore, we calculate the electronic velocity between the
involved levels, and the relaxation frequency. In the present
context, it is possible to use the adiabatic approach since the
condition ����̃ ji is fulfilled for � of terahertz because we
have considered a quanta terahertz energy ��=1.5 meV.
However, integrals appearing in the conductivity and relative
absorption must be solved numerically. Also, we have found
that velocity matrix elements, v j1�t�, strongly depend on t. In
wide enough wells, this situation takes place even for low
fields. Since we are working with 300 Å GaAs wells, this
will be the general bearing. The calculations of the relative
absorption have been carried out considering a structure of
ten decoupled GQW to increase the absolute value of the
absorption.

We have also taken into account a stepped relaxation en-
ergy, considering a value in the passive region �elastic scat-
tering with acoustic phonons when �
��
LO� which
abruptly increases in the active ��
��
LO� region due to
the emission of longitudinal optic phonons. We include in

Appendix B the study of electron-LO phonon interaction and
elastic scattering under terahertz pump. For fixed � and n2D
values, with �
LO=35 meV, �� for the passive region re-
mains practically constant within the terahertz field range
used in this work, but it varies with the involved transitions.
Thus, for transition 1→2, ��12�0.66 meV and for transi-
tion 1→3, ��13�0.9 meV. For the active region relaxation
energy increases with terahertz field intensity from ��12
�1.4 meV ���13�1.5 meV� for low fields, to ��12
�1.8 meV ���13�3.4 meV� for E�=100 kV /cm.

We represent the evolution of the relative absorption in
Figs. 4 and 5. The peak appearing at E�=0 kV /cm only
corresponds to the 1→2 transition because 1→3 transition
is forbidden for zero field due to the symmetry of the wave
functions, as mentioned before. As soon as E��0 kV /cm,
the last transition appears and the absorption unfolds in two
multiple peaks structure. We see that, in the vicinity of �

=117 and 120 meV �values of �̃21 and �̃31, respectively, for
cos��t�=0� two very close peaks appear corresponding to
both transitions. It is the region of the bigger approach of the
levels. Starting from E��30 kV /cm, the relative absorption
corresponding to the transition 1→3 becomes more marked
although the structure of 1→2 is richer. Indeed, this bearing
is caused by the increase of the interlevel velocity due to the
wave functions overlap. It is important to point out that,
although the first-excited level could be partially filled after
excitation, contribution of the 2→3 transition is negligible in

FIG. 4. �Color online� Relative absorption vs terahertz field and
IR test energy.

FIG. 5. Sections of the relative absorption for different terahertz
fields. Ew=20 kV /cm �a�, Ew=40 kV /cm �b�, Ew=80 kV /cm �c�,
and Ew=100 kV /cm. �d� Arrows indicate the main contributions of
each transition.
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our calculations. This is due to a worthless interlevel redis-
tribution under terahertz pump because the interlevel energy
�̃21 is bigger than 25 meV while the terahertz quanta energy
�� is around 1.5 meV.

What happens beyond E�=100 kV /cm? If energy levels
are represented as function of the terahertz electric field for
�t=0 �Fig. 6�, a typical anticrossing of the two deepest lev-
els appears at E��120 kV /cm. Both levels decrease as the
field increases falling down under the Fermi level beyond the
anticrossing. This means that both subbands are occupied
and transition 1→2 cannot be expected to happen. At the
same time, transition 2→3 enhances its contribution becom-
ing noticeable.

In order to show the relative absorption behavior for
this situation, we have performed calculations for E�

=140 kV /cm with the general terahertz temporal evolution
E��t�=E� cos �t. So that, when �t varies between −	 and
	, E��t� will oscillate twice between −140 and 140 kV/cm,
passing through the anticrossing value periodically. Thus,
there are two temporal intervals where only the first level is
under the Fermi level �transitions 1→2 and 1→3 dominate�
and three intervals where the two deepest subbands are oc-
cupied �the main transitions are 1→3 and 2→3�. In the last
case, temporal evolution of the subbands population and the
corresponding depolarization shifts ��31�t� and �32�t�� have
been considered in calculations. In this case, relaxation en-
ergy values are ��12�1.2 meV, ��13�1.6 meV, and ��23
�1.9 meV in the passive region, and ��12�4.5 meV,
��13�4.5 meV, and ��23�8.9 meV in the active region.
The absorption obtained is shown in Fig. 7 compared with
the corresponding to E�=100 kV /cm in order to easily ap-

preciate the new peak related to 2→3 transition. Due to the
high relaxation rates in the active region, it is not possible to
appreciate any additional structure of the absorption. We
have neglected the possible �-X mixing that could be in-
duced by high electric fields.19

IV. SUMMARY

In summary, this work shows that the behavior of the
relative absorption for multiple-GQWs, with very close ex-
cited levels, is essentially different to that of a simple
multiple-QW when an intense terahertz irradiation is applied,
showing a richer and complex structure due to the appear-
ance of new transitions between the three involved levels.
Results indicate how the zero-field peak is unfolded in two
main peaks escorted by a series of satellites whose number
increases with the field amplitude. Such a fine structure of
the absorption is due to the �n+1�-order intersubband transi-
tions, with n terahertz photons and a single IR photon. Also,
a strong modification of absorption, which consists on a no-
ticeable spreading of the fine structure, with a redshift of the
left maximum and a blueshift of the right maximum for both
transitions, is also demonstrated. The subbands depolariza-
tion shift has been considered. Effects caused when the two
deepest subbands are populated are included leading to the
appearance of a third peak.

Experimentally, the intense terahertz irradiation can be
achieved by using free-electron or gas lasers with an energy
density in the megawatt cm−2 range �applications of these
lasers to study a heterostructure response can be found in
Ref. 7 or Ref. 6, respectively�. An alternative technique to
experimentally investigate the above mentioned peculiarities
of the relative absorption could be measures of the photocon-
ductivity. Due to the importance of IR intersubband absorp-
tion in many electro-optical devices,20 we expect the present
results are useful in the designing of such devices and en-
courages researches to carry out experiments in this topic.
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APPENDIX A: DEPOLARIZATION SHIFT

When intersubband transitions are excited by the laser
transverse electric field, electronic quantum states become a
superposition of wave functions of the subbands involved in
the transition. As a consequence, the charge density is inho-
mogeneously distributed along the z direction. This charge
distribution is proportional to the electronic total density and
induces a space-charge field that is superimposed to the laser
driving field, changing the resonant frequency of the transi-
tion �interlevel distance�. This frequency shift is called depo-
larization shift.

If we define the induced current density as

FIG. 6. �Color online� Energy levels vs E� for �t=0 showing
the anticrossing. Dotted line represents the Fermi level.

FIG. 7. �Color online� Relative absorption for E�

=140 kV /cm �solid line� and E�=100 kV /cm �dashed line�.
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j��t,t�� = �
j

e�2Dv1j�t��
0



d��f1j��,t��

= �
j

ev1j�t��N1j�t�� − N j1�t��� , �A1�

where the density-matrix elements satisfy the following
equations

i�
�

�t�
N1j�t�� = − � j1�t�N1j�t�� + ñ2D�i

e

�
v j1�t�E��t�� + Ṽ1j�t�

��N j1�t�� + N1j�t���� ,

i�
�

�t�
N j1�t�� = � j1�t�N j1�t�� + ñ2D�i

e

�
v j1�t�E��t�� − Ṽ1j�t�

��N j1�t�� + N1j�t���� . �A2�

where ñ2D�t�=N11−N j j =n1�t�−n2�t�. Let us remember that
we have chosen a parametrically time-dependent basis,
�k�z , t�. Thus, interlevel velocity and energy depend on time
through the wave functions. The term including the Coulomb

matrix element Ṽ1j�t� details the renormalization of the ex-
ternal electric field caused by the charge redistribution within
the heterostructure. Coulomb matrix element is connected to
the wave functions of the two subbands through

Ṽ1j�t� =
4	e2

�
�

−



dz� j�z,t��1�z,t��
−

z

dz

��
−

z�
dz�� j�z�,t��1�z�,t� . �A3�

Adding and subtracting Eqs. �A2� and taking the second-
order derivative of this difference, after some algebra, we
obtain the Fourier component �t�→�� of the current as

j���,t� = i�
j

�ev j1�t��
�

2ñ2D�t�

�
2�� j1�t� + 2ñ2DṼ1j�t��

� j1
2 �t� + 2ñ2DṼ1j�t�� j1�t� − ����2

E���� ,

�A4�

and finally,

j���� = i�
j
�

−	/�

	/� � �ev j1�t��
2	

2ñ2D�t�

�
2�� j1�t� + 2ñ2DṼ1j�t��

� j1
2 �t� + 2ñ2DṼ1j�t�� j1�t� − ����2�

�dtE���� = ����E���� . �A5�

Expression �A5� indicates that the conductivity and, thus,
the relative absorption has a singularity at � j1

2 �t�
+2ñ2DṼ1j�t�� j1�t�− ����2=0 for each 1→ j subband transi-

tion. This singularity can be prevented by including dissipa-
tive terms changing � by �− i�, where � is the inverse of a
characteristic relaxation time. Thus, the relative absorption

has a maximum at ��=
� j1
2 �t�+2ñ2D�t�Ṽ1j�t�� j1�t�

=� j1�t�
1+2ñ2D�t�Ṽ1j�t� /� j1�t�=� j1�t�
1+� j1�t�. The depo-

larization shift is defined as �ds�t�= �2ñ2D�t�Ṽ1j�t�� j1�t��1/2

=� j1�t��� j1�t��1/2, the amount that the peak maximum shifts

from � j1�t�. By substituting ñ2D and Ṽ1j�t� we obtain, for our
structure,

�ds�t� =
8	e2

�
� j1�t��n1�t� − n2�t���

−



dz� j�z,t��1�z,t�

��
−

z

dz��
−

z�
dz�� j�z�,t��1�z�,t� . �A6�

This expression is similar to Eq. �7�.

APPENDIX B: INTERSUBBAND RELAXATION
FREQUENCY

A detailed analysis of the interband relaxation frequency
can be found in Refs. 14, 15, and 21. The dependence on
time and density of this frequency can be obtained as
follows.22 If the intersubband collision integral in the kinetic
equation of the matrix density if defined as J���f �p�=−��fp,
one obtains that the rate of electronic transitions from the
state �np	 to the subband n� is

�ij�p,t� =
2	

�
�
Q

�CQ�2��j�eiqzz�i	�2

���NQ + 1����ip�t� − � jp−�q�t� − ��Q�

� �1 − f jp−�q� + NQ���ip − � jp−�q − ��Q�

��1 − f jp+�q�� , �B1�

where Q= �q ,qz� is phonon wave number, NQ is the phonon
distribution function, L is the normalization area, and p is the
electronic momentum. For the elastic-scattering case ��

��
LO� we substitute the coupling factor for the
deformation-potential interaction with the acoustic phonons,
CQ. Neglecting Pauli blocking �1− f jp��q�, and integrating
over qz we get

�ij�
LA�p,t� =

2	D2T

��s2L2�
−



dz��i�z,t��2�� j�z,t��2�
q

����ij�t� +
�p · q

m
−

�2q2

2m
� . �B2�

where D is the deformation potential, � is the crystal density,
and s the sound velocity in the sample. To integrate we have
used the parabolic energy dispersion �ip�t�=�i�t�+ p2 /2m and
�ij�t�=�i�t�−� j�t�. Now we define p�= p−�q and the sum
over q can be written as �q���ij�t�+�p−�p��. By using 2D
density of states we obtain
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�ij
LA�t� =

	D2T�2D

�s2�
�

−



dz��i�z,t��2�� j�z,t��2. �B3�

Here, �−
 dq

2	 ��i�e−iqz�j	�2=�−
 dz��i�z , t��2�� j�z , t��2 are the

characteristic intersubband wave vectors with self-consistent
wave functions. Thus, �ij�t� depends on the electronic den-
sity through self-consistent wave functions, which include
electron-electron interaction. When the sample is subjected
to a terahertz irradiation with frequency �, we average along
a period and finally obtain

�ij
LA��� = �

−	/�

	/� dt

2	/�
�ij

LA�t� . �B4�

Thus, the relaxation frequency depends on the electronic
density and the frequency of the terahertz field.

In the active region ��
��
LO�, the relaxation frequen-
cies can be obtained by substituting CQ=
2	e2��LO /�q2V
from the Frölich interaction with long-wavelength longitudi-
nal optical phonons. Neglecting Pauli blocking and for the
low-temperature case �we neglect absorption and stimulated
emission of LO phonons�,

�ij
LO�p,t� =

2	2e2�
LO

��L2 �
q
�

−



dz

�
e−q�z−z��

q
�i�z,t�� j�z,t��i�z�,t�� j�z�,t�

� ���nn��t� − ��LO +
�p · q

m
−

�2q2

2m
� , �B5�

where ��= 1
�

− 1
�0

is effective dielectric constant. Integrating
over the angle of q,

�ij
LO�p,t� = 2
LO

�

���
qmin

qmax

dq
qMijij�q,t�

��q2 − qmin
2 ��qmax

2 − q2��1/2 ,

�B6�

with �qmin�t�= �p−
p2+ p̃ij
2 �t��, �qmax�t�= p+
p2+ p̃ij

2 �t�,
p̃ij

2 �t�= pij
2 �t�− pLO

2 , pLO=
2m�
LO, and pij
2 �t�=2m�ij�t�. The

matrix Mijij�q , t� is defined as

Mijkl�q,t� =
e2m

	��2�
−



dqz

�i�e−iqzz�j	�k�eiqzz�l	
q2 + qz

2

=
e2m

	��2q
�

−



dz�i�z,t�� j�z,t�

��
−

z

dz��k�z�,t��l�z�,t�e−q�z−z��. �B7�

Some approximations can be done if p� pij�, as in photoex-
citation. In this case, q is fixed due to the energy conserva-
tion law and Mijij�q , t� only depends on time and electronic
density. Now Eq. �B6� reduces to

�ij
LO�t� = 	
LO

�

��


�2m��ij�t� − �
LO��
�

��
−



dz�i�z,t�� j�z,t�

��
−

z

dz��i�z�,t�� j�z�,t��z − z�� . �B8�

and averaging over a period,

�ij
LO��� = �

−	/�

	/� dt

2	/�
�ij

LO�t� . �B9�

Again relaxation rate depends on terahertz frequency and
electronic density.
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