
Electron-ion interaction in doped conducting polymers

V. N. Prigodin,1,2 F. C. Hsu,1 J. H. Park,1 O. Waldmann,1 and A. J. Epstein1,3

1Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117, USA
2Ioffe Institute, St. Petersburg, 194021 Russia

3Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1185, USA
�Received 6 September 2007; published 3 July 2008�

The discovery of electric-field effect for conducting polymers in transistor structures aroused a number of
questions about structure, mechanism of charge transport, and a role of ions in conducting polymers. We
present here the model of an electrochemical transistor whose resistance is governed by the gate potential
through bulk ionic charging/discharging of the conducting polymer-based active channel. The predicted I�V�
characteristics do not agree with the measured experimental dependencies for highly doped conducting
polymer-based transistors. We suggest that the observable electric-field effect in conducting polymers is related
to their structural peculiarities. The large free volume within the conductive polymer chain network enables
ions to easily move into and out of the polymers. The main effect of ion insertion is breaking of the percolation
network for the conductivity by removing critical hoping sites and, as a result, producing a conductor-
nonconductor transition.
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I. INTRODUCTION

Heavily doped conjugated polymers are electrical conduc-
tors of interest for both fundamental science and application
in electronic devices. Due to their chain morphology the
electric response of polymers exhibits unusual features that
do not have analogies among conventional conductors.1 In
the absence of doping the conjugated polymers are one-
dimensional Peierls insulators with electronic charge-density
modulation along chains in the form of single and double
bonds.2 The Coulomb electron-electron interaction also con-
tributes to the Peierls gap of the electronic spectrum. Heeger,
MacDiarmid, and Shirikawa have shown that extra electrons
chemically or electrochemically can be introduced into or
removed from the polymer chains.1 At light doping, the extra
charges are not free electrons or holes as in conventional
semiconductors, but they are the strongly bound with the
Peierls distortion of the backbone.2 For a conjugated polymer
such as trans-polyacetelyne with a degenerate ground state
upon interchange of single and double bonds, those bound
states are classified as neutral solitons with spin or charged
spinless solitons. In the absence of degeneracy, three-
dimensional Coulomb and interchain interactions convert
solitons into polarons and bipolarons.

Heavy doping of conjugated polymers lifts the Peierls
alternation and entirely suppresses the gap in the electronic
spectrum leading to a profound increase of the room-
temperature conductivity, �RT.1–4 The �RT of the first doped
polymers had modest values and turned nonmetallic with
cooling.5,6 This dc-transport behavior of poorly conducting
polymers is similar to that observed in amorphous
semiconductors7 and dirty metals,8 although some differ-
ences due to the chain morphology are observed. A more
adequate description of charge transport of poorly conduct-
ing polymers may be obtained within the quasi-one-
dimensional models with weak interchain hopping or by
using a fractal chain models with reduced transverse
dimensionality.9,10

In the last decade, remarkable progress was made in sta-
bilizing the highly conducting state in heavily doped conju-
gated polymers. A finite residual conductivity at very low
temperatures down to 10 mK was successfully attained for
heavily doped polymers11 �for recent reviews see, e.g., Refs.
12 and 13�. The experiments also indicate that in spite of the
large value of �RT and finite residual conductivity, these
highly conducting polymers are still far from being typical
metals, e.g., the conductivity of most of samples still contin-
ues to decrease with decreasing temperature. Therefore, it
was suggested11–13 that this latest generation of conducting
polymers is close to insulator-metal transition �IMT� which,
in according with the general consensus, is an Anderson type
of the disorder-driven localization-delocalization transition.8

Through a small increase of disorder, e.g., with aging, the
polymers often can be driven into the insulator state. The
dielectric phase �doped polymer that becomes insulating at
low temperatures� can be converted back into the metallic
state by, for example, applying pressure.13 At the same time,
the �RT varies only slightly with pressure.

The principal advance in the understanding of metallic
state in conducting polymers was obtained by studying the
microwave and optical conductivity.12,14 It was found that the
low-frequency electromagnetic response of the metallic
samples when analyzed in terms of a Drude metal is pro-
vided by an extremely small fraction ��10−3� of total num-
ber of available electrons with very high mobility or very
long relaxation time ��10−12 s�. These data initiated the pro-
posal on a new mechanism of charge transport and a new
type of IMT for highly conducting doped polymers.15 From
structural study, it is well established that the conjugated
polymers are strongly inhomogeneous materials.16 In
“cooked spaghettilike” polymer chain media, one can distin-
guish the “crystalline” regions within which polymer chains
are dense and well packed. Outside those crystalline do-
mains, chains are poorly ordered with lower density. When
the polymers approach the IMT, the electron delocalization
first happens inside these crystalline regions �metallic
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grains�. The wave functions of electronic states in the amor-
phous region stay strongly localized.15

In this chain-linked granular model, the metallic grains
with delocalized charge carriers remain spatially separated
by amorphous regions, and, therefore, direct electron transi-
tions between grains are suppressed exponentially with in-
creasing grain separation. The intergrain charge transfer is
possible because of the resonance tunneling through local-
ized states in amorphous media, whose energy is close to the
Fermi level. The resonance hopping among metallic grains
can explain the low-frequency anomaly of electromagnetic
response in the metallic phase.11,12 The low concentration of
charge carriers participating in dc transport corresponds to
the small probability of finding those resonance states and
the long relaxation time of electric response is related to the
narrow width of the resonance levels.

The present paper addresses another interesting phenom-
enon observed in the conducting polymers, an electric-field
effect. It was demonstrated17,18 that conducting polymers
may be used as active elements in a transistor structure. An
example is shown in the inset of Fig. 1. The conducting
polymer poly�3,4-ethylenedioxythiophene� doped with poly-
�styrene sulfonic acid� �PEDOT:PSSA� has most often been
used for these transistors, but the field effect is also observed
in other conducting polymers, including doped polyaniline,
doped polypyrrole and their doped copolymers.19 All pro-
cessing and materials handling are made in an ambient atmo-
sphere. Early versions of the device, including a H-shaped
source/drain bridge and the T-shaped gate, were coated on a
transparency film, using PEDOT:PSSA for the source-active
channel-drain and also for the gate electrode. Polyvinylphe-
nol �PVP� was used as the insulator between the active chan-
nel and the gate. The thickness of the PEDOT:PSSA film for
these devices typically is 60 nm and thickness of insulator
PVP layer between the gate and polymer film typically is 25
nm.

I-V characteristics of this conducting polymer-based tran-
sistor are shown in Fig. 1 at several gate voltages. At floating
gate potential, the source-drain current ISD linearly increases
with source-drain voltage VSD and the corresponding �RT of

PEDOT/PSSA is 26 S/cm. As it is shown in Fig. 1, the ISD
current decreases with positive gate voltage VG and the cut-
off voltage for ISD is approximately around 3 V. The ratio
ION / IOFF is 100 for the VG=3 V and reaches up to 104 in
other devices at higher gate voltage. Replacement of the
doped conducting polymer in the architecture of Fig. 1 with
a metal such as copper results in the absence of the transis-
torlike effect. More results of experimental study of the
doped conducting-polymers based transistors can be found in
recent publications.19–21

Because I-V characteristics of the conducting polymer-
based transistors are similar to that of semiconductor transis-
tors, the first attempts20 to describe the observable field effect
in the polymer were made by using the known models for
conventional semiconductor field effect. However, it leads to
unreasonable values of parameters20 and does not answer the
main question of how the electric field penetrates in the poly-
mer conductors with so high concentration of mobile charge
carriers. According to Debye-Huckel theory, the electric field
in such conductors should be screened on atomic or molecu-
lar scale.22,23 The screening length re for a degenerate elec-
tron gas is given by the relation re

−2= �e2 / ���0��N�EF�, where
N�EF� is the electron density of states at the Fermi level, �0 is
the vacuum permittivity, and � is the relative dielectric con-
stant of polymer. By using the constants �e�=1.6�10−19 C
and �0=8.85�10−12 C / �m�V�, the Debye radius is re
=740 �1/2N�EF�−1/2 cm−1/2 �eV�−1/2. The density of states at
the Fermi level is estimated to be N�EF��ne /EF, where ne is
the electron concentration. For a typical metal, EF is a few
eV, ne�1022 cm−3, and ��1, the Debye radius re is a few
angstroms. In heavily doped conducting polymers, the typi-
cal charge-carrier concentration is estimated to be ne�b−3

�1021 cm−3 for typical in chain repeat constant b�1 nm
and intrachain separation of 0.3 to 0.5 nm. Taking the Fermi
energy as EF�1 eV, the density of states at the Fermi level
is N�EF��1021 cm−3 �eV�−1, which is consistent with the
value extracted from the Pauli-spin susceptibility.24 For the
polymers with the characteristic dielectric constant
��100,25 the Debye radius then is re�2 nm. The thickness
of active polymer layer shown on Fig. 1 is 60 nm and, there-
fore, is much larger than the screening length.

Although the screening length is determined by solely the
thermodynamic density of states, it is implicitly assumed that
charge carriers are mobile. For conducting polymers near the
IMT, a fraction of carriers are expected to be strongly local-
ized and their mobility is very low. However, the mobility
determines only how fast the screening happens. Irrespec-
tively of transport mechanism, the characteristic screening
time te is given by the inverse conductivity as te���0 /�. For
the polymers with �RT�10 S /cm and ��100, the screen-
ing time should be very short te�10−11 s.

Thus, the consideration of the conducting polymers as
conventional conductors or semiconductors fails to explain
the observable field effects. The experiments clearly show
that the electric field deeply penetrates and changes the bulk
conductivity of polymers. In Refs. 18 and 19, it was sug-
gested that this happens due the above inhomogeneity of
polymers and due to the presence of mobile ions in poly-
mers. The inhomogeneous structure leaves enough free vol-
ume for migration of mobile ions. The mobile ions inside the

FIG. 1. The drain-source current as the function of drain voltage
�VG varying between 0 and 3 V� of a thin PEDOT:PSS/PVP film.
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polymers produce additional screening of the external field
but the crucial feature of ions is its ability to migrate between
the bulk polymer film and the external interface separating
the film and a gate. As a result, the concentration of ions
inside of the polymer is controlled by external electric field
applied to the gate. Due to electroneutrality, the internal ionic
density determines the concentration of primary charge car-
riers �holes� in the polymer and, thus, the polymer conduc-
tivity is governed by the external electric potential.

However, the recent experimental data21 find that the
above electrochemical depletion of bulk charge produces
small changes ��2%� of the primary charge-carrier concen-
tration and thereby itself cannot cause the observed large
field effect. In Ref. 21, it was proposed that the field effect in
conducting polymers is mainly due to the suppression of
mobility of primary charge carriers �holes�. Within the
granular model, the mobility is determined by the hopping
along the chains linking grains. The hopping sites on chains
are associated with the interstitial counterion charges in
amorphous regions. The introduction of a small amount of
ions enables the suppression of intergrain hopping by remov-
ing hoping sites along chains by compensating the counter-
ion charges with injected ion charges. Here, we present our
model calculations and the experimental data that supports
the present mechanism of field effect in the conducting poly-
mers. In the beginning, for sake of completeness, we also
consider in detail the model of conducting polymer-based
electrochemical transistor. The model enables us to repro-
duce the I�V� behavior, which is a characteristic for a tran-
sistor but does fail to fit the experimental dependencies.

The present article is organized in the following way. In
Secs. III–V, starting with the drift-diffusion equation for
electrons and ions experiencing a common self-consistent
electrical potential, we derive the charge-voltage characteris-
tics for an electrochemical capacitor and current-voltage
characteristics of an electrochemical transistor. Then we re-
view experimental data for the field effect in conducting
polymers and conclude that the electrochemical mechanism
of conductivity suppression is not adequate for conducting
polymers. In Sec VI, we introduce the chain-linked granular
model and derive the dependence of mobility as a function of
ionic compensation. In Sec. VII, we summarize the obtained
results.

II. DRIFT-DIFFUSION EQUATIONS: GENERAL SCHEME

To describe the phenomenon of field effect in conducting
polymers, we use the drift-diffusion approximation for the
charge current density of each type of charge carriers, holes
or ions26

J/z = − D � n + �nF. �1�

Here, n=n���� is the equilibrium density of carriers with
charge z �holes or ions� determined by the corresponding
local chemical potential �� and F is the electric field
F=−�� with � being an electric potential. The diffusion
coefficient D and the mobility � in Eq. �1� are related by the
Einstein equation

zD�dn/d��� = �n. �2�

The relationship �2� enables representation of the partial cur-
rent �Eq. �1�� in the form

J = − ��/z� � �, � = �� + z�, ����� = z2D�dn/d��� ,

�3�

where the electrochemical potential � is introduced and � is
the equilibrium conductivity. Equations. �1�–�3� assume that
the interaction of charge carriers with the thermal bath is
strong enough to provide the local equilibrium.25

The charge density n in Eq. �3� or the corresponding local
chemical potential �� is determined from the charge conser-
vation law

z��/�t�n = − �J . �4�

In Eq. �4�, we ignore the charge exchange between primary
charge carriers and ions. The electrical potential � in Eq. �3�
is given by the Poisson equation

− �0 � �� � �� = � zn, �5�

where � is the relative permittivity of the sample. The right
part of Eq. �5� includes the sum over all local charges.

Equations �4� and �5� require the explicit dependence of
equilibrium density n on the chemical potential ��. For ions
the relation

ni/ni0 = exp��i
�/�kBT��, ni0 = ni

� exp�− Ei/�kBT�� , �6�

which is always valid provided that ni /ni
��1, where ni

� is the
maximum affordable concentration of ions in the sample and
Ei is the corresponding standard electrochemical potential for
ions.

The equilibrium electron density ne is given by

ne��e
�� =� N�E�f�E − �e

��dE , �7�

where f�E� is the Fermi-Dirac function

f�E� = 	1 + exp�E/�kBT��
−1.

In Eq. �7�, N�E� is the quantum-mechanical density of states
for the primary charge-carrier energy band and

� N�E�dE � 1/b3,

where b is the repeat constant for regular metals and b in-
cludes the value of the intrachain and interchain repeat con-
stants for polymer conductors.

For the degenerate electron gas �metals�, ne�1 /b3 and
the electron chemical potential �e

� are located deep �	kBT�
inside the partially filled energy band so that one can write

ne��e
�� =� N�E�dE�E � �e

��, dne/d�e
� = N��e

�� . �8�

In the opposite case for the nondegenerate charge carriers
�semiconductors�, ne�1 /b3, the chemical potential �e

� is far
�	kBT� outside the band and we have
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ne��e
�� = ne0 exp��e

�/�kBT��, ne0 =� N�E�exp�− E/�kBT��dE .

�9�

The set of Eqs. �4� and �5�, with Eqs. �6�, �8�, and �9�
supplied by the initial and boundary conditions, enables us to
describe the operation of electrochemical devices. We con-
sider a few of the applications of these equations.

III. SCREENING

We assume that the external electrical field F is applied to
a conducting sample. Inside the sample there is the electric
potential � so that near the sample surface, ����
=−F /�, but
any current is absent at the surface. Then from the equation
Je=0, it follows that ��e=0 or �e=�e

�+z� is constant, and the
Poisson Eq. �5� for the electric potential � in the absence of
ions reads

�0��� = − ze�ne�� − z�� − ne���� . �10�

In a metallic sample, �ne��−z��−ne����=−N�EF�z� and

� = �Fre/��exp�− x/re�, �0�/re
2 = ze

2N�EF� , �11�

where ��=EF	kBT is the Fermi energy. As we discussed in
Sec. I, the screening length in metals is of the lattice con-
stant. Therefore, the chemical potential turns constant inside
the metal.

For the description of charge screening in semicon-
ductors, we use the identity �ne��−z��−ne����=ne���
��exp�−z� /kBT�−1�, which enables us to rewrite the Pois-
son equation in the form

�0��� = − ze�exp�− z�/kBT� − 1� . �12�

Using the other identity,

d2�/dx2 = �1/2��d/d���dx/d��−2, �13�

and introducing variables

v = ze�/�kBT�, y = x/re, �0�/re
2 = ze

2ne/�kBT� , �14�

from Eq. �12� we get

y = 2v0
−1/2�v

dv�v + exp�− v� − 1�−1/2. �15�

According to Eq. �15�, far from the boundary y	1, the po-
tential v decays the same way as in a metal, Eq. �11�, i.e.,

v � exp�− y� . �16�

Equation �16� proves that the expression for Debye radius

1/r2���� = �z2/��0�dn����/d��, �17�

which initially is derived for a weak field, is valid also for
any electric field. Universality of Eq. �17� is a consequence
of screening that makes any electric field eventually weak.

Including in the consideration of ion charges provides ad-
ditional screening of an electric field and the total Debye
radius, rD becomes

1/rD
2 = 1/re

2 + 1/ri
2, �18�

where ri,e is the screening length provided by ions and elec-
trons �Eq. �17��.

IV. CHARGING

The description of an electrochemical device is simplified
if its size is much larger than any screening length. As a next
example, we consider the electrochemical capacitor
�supercapacitor�27 where electrical potential is applied be-
tween the conducting polymer and gate separated from the
polymer by electrolyte �an ion conductor� as it is shown in
Fig. 2. The electrical potential of the electrolyte is assumed
to follow that of the gate �electrochemical gating� provided
there is the intensive redox exchange between the electrolyte
and the gate. The absence of a partial charge current through
an interface means that the corresponding electrochemical
potential is constant across the given interface. Therefore, the
following boundary relations hold

��i
� + zi�� = ziVi, ��e

� + ze�� = zeVe, �19�

where ��i,e and �� are the changes of chemical and electrical
potentials inside the film due to the external electrical poten-
tials applied to the electrolyte �ionic contact� Vi and the poly-
mer �electronic contact� Ve. From Eq. �19�, it follows that

�� = Vi − ��i
�/zi = Ve − ��e

�/ze, ��i
�/zi − ��e

�/ze = Vi − Ve.

�20�

The requirement of the electroneutrality, which now replaces
the Poisson equation, should be added for Eq. �20� to get

zi�ni + ze�ne = 0. �21�

In the linear-response regime, �ni= ���0 /ri
2����i

� /zi
2� and

�ne= ���0 /re
2����e

� /ze
2�, and then from Eqs. �20� and �21�, it

follows

�� = �Vire
2 + Veri

2�/�ri
2 + re

2�, ��i
�/zi = �Vi − Ve�ri

2/�ri
2 + re

2� .

�22�

We define the differential capacity, c, per unit volume by the
following the equation

q = zi�ni = − ze�ne = �Vi − Ve���0/rc
2 = c�Vi − Ve� , �23�

c = ��0/rc
2, rc

2 = ri
2 + re

2. �24�

Thus, according to Eq. �24�, the total capacity, c, is given by
series of partial capacities of its constituents,

FIG. 2. Schematic of electrochemical capacitor.
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1/c = 1/ci + 1/ce, 1/c
 = ��0/r

2 = z


2dn
��

��/d�


� , 
 = i,e .

�25�

This relationship for linear response of polymers was derived
earlier in Refs. 28 and 29.

Equation �25� is directly generalized beyond the linear
regime. For some particular cases, it is possible to get ex-
plicit dependence of specific capacity, c, on the applied volt-
age. For a nondegenerate electron gas described by Eq. �9�
and for ze=−zi from Eqs. �20� and �21�, one can find

ne = ne0p, ni = ni0 + ne0�p − 1� , �26�

where

p = �1 − a�/2 + ��1 − a�2/4 + a exp�v��1/2, �27�

a = ni0/ne0, v = zi�Vi-Ve�/�kBT� . �28�

For ze=zi, the electronic and ionic densities vary with ap-
plied voltage as

ne = ne0�a + 1�/�a exp�v� + 1�;

ni = ni0�a + 1�exp�v�/�a exp�v� + 1� . �29�

For degenerate electrons, we assume that the density of
states near the Fermi level, N�EF+��e

��, remains constant, at
least, as long as ���e

���EF. The corresponding screening
length re is given by the equation

��0/re
2 = ze

2N�EF� . �30�

Introducing the variables

1/a = �ze/zi�2N�EF�kBT/ni0 = �ri/re�2, x = �zi/ze���e
�/�kBT� ,

Eq. �21� for the determination of equilibrium electron and
ion concentrations reads

1 − x/a = exp�v + x� . �31�

Defining, the capacitance density c as q=zi�ni=−ze�ne=cV
and c0=��0 /rc

2, we have

c/c0 = − �1 + 1/a��x/v� , �32�

where x is found from Eq. �31�. From Eqs. �31� and �32�, it
follows that the linear regime c=c0 holds as long as �v� / �1
+a��1 and x=−av / �1+a�.

For a	1 �ri�re�, the capacity c from Eq. �32� remains
always constant �c0� as long as electron chemical potential
�the Fermi level� does not reach the band edges and the as-
sumption about the degenerate electron gas fails. Taking into
account that N�EF��ne

0 /EF and the typical electron concen-
tration in heavily doped polymers is ne0�1021 cm−3 and for
the Fermi energy EF�1 eV, the density of states at the
Fermi level is N�EF��1021 cm−3 �eV�−1. Plugging ze= �e�
=1.6�10−19 C=1.6�10−19 F�V, we find that in this case
�a	1�, the capacity c0 is around 100 F /cm3. The condition
a	1 is satisfied for the concentration of ions ni0
�ne0�kBT /EF��3�1019 cm−3 at T=300 K.

At a�1 �ri	re or ni0�ne0�kBT /EF��3�1019 cm−3�,
the nonlinear regime is realized. As long as v� ln�1 /a�, the
capacity c and ionic concentration exponentially increases

with the applied voltage, c /c0= �exp�v�−1� /v, where c0
=��0 /ri

2=zi
2ci

0 / �kBT�. The capacity c approaches the satura-
tion c=c0 /a=��0 /re

2=ze
2N / �EF��ze

2ne
0 /EF, as c= �1

− �1 /v�ln�v /a��c0 /a at v	 ln�1 /a�.
It should be stressed that here the voltage is applied be-

tween the ionic and electronic contacts each of which has
only one type of charge carrier �see Fig. 2�. The electro-
chemical sample is assumed to have both types of charge
carriers.

V. GATING

Finally, we consider the field effect in the conducting
polymers. The device geometry is shown on Fig. 3 and dif-
fers from the electrochemical capacitor discussed in Sec. IV
by the presence of two separated electronic contacts: source
and drain. In the stationary regime, any ionic current is ab-
sent and a gate potential Vg is screened by holes, as a result,
the electrochemical potential for ions inside the polymer film
becomes �i=�iVg and hence the ionic chemical potential
reads �i

�=zi�Vg−��, where � is the spatially varying electric
potential inside the film. In the beginning, we consider the
nondegenerate case when the concentrations of electrons and
ions as a function of the corresponding chemical potential
are described by Eqs. �6� and �9�. We assume also that zi
=ze�e�, i.e., we deal with holes and cations as it take place in
the experiments.17–21

From the requirement of electroneutrality �Eq. �21��, it
follows that � satisfies the equation

exp�− ze�/kBT� = �ne0 + ni0�/�ne0 exp��e/kBT��

+ ni0 exp�zeVg/kBT� . �33�

The electric potential � also should satisfy the equation
d2� /dx2=0, and at the end, we check that indeed this equal-
ity holds. The expression for hole current �Eq. �3�� with Eq.
�33� now reads

Je = − zeDe�ne0 + ni0��d/dx�ln�ne0 exp��e/kBT�

+ ni0 exp�zeVg/kBT�� ,

where De is the diffusion coefficient for holes. In the station-
ary regime, the requirement Je=−I �I-const. is the measured
current in the external circuit� determines the electrochemi-
cal potential �e as a function of x

FIG. 3. Schematic of electrochemical transistor.
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ne0 exp��e/kBT� + ni0 exp�zeVg/kBT�

= �ne0 + ni0 exp�zeVg/kBT��

�exp	Ix/�zeDe�ne0 + ni0��
 . �34�

We assume here that the source contact is grounded, i.e.,
�e�0�=0.

In this way according to Eqs. �33� and �34�, the electrical
potential � is given by the equation

exp�ze�/kBT� = �ne0 + ni0�−1�ne0 + ni0 exp�zeVg/kBT��

�exp	Ix/�zeDe�ne0 + ni0��
 . �35�

The electric potential from Eq. �35� provides the requirement
that the electric field F=−�� is constant and d2� /dx2=0
inside the film. Also, the above solution �Eq. �34� and �35��
provides �i=ziVg-const. and, therefore, there is no ionic cur-
rent in the active channel.

Defining the voltage drop across the sample as �e�L�
=VD, where L is the length of channel, from Eq. �35�, we
find I�V� characteristics of the device

I�VD,VG� = I0�1 + a�ln��eu + aev�/�1 + aev�� , �36�

where we introduce the new variables

v = ziVG/�kBT�, u = ziVD/�kBT� , �37�

and the parameters

a = ni0/ne0; I0 = �1/R0��kBT/zi�;

R0 = L/�S�0�; �e0 = ze
2Dene0/�kBT� , �38�

with S being the cross section of conducting channel and R0
is the floating device resistance in a linear regime.

I�V� characteristics given by Eq. �36� demonstrate the be-
havior which is typical for conventional transistors �see Fig.
4�. In the linear limit along the drain voltage, the conduc-
tance of the device is

G�v� = �1/R0��1 + a�/�1 + a exp�v�� . �39�

We can define the cutoff gate voltage vc, when G�vc�
�1 /R0. For the case of our interest a�1 from Eq. �39� we
have

vc = − ln�a� . �40�

The I�V� from Eq. �36� also demonstrates the regime of
“plateau” at the negative drain voltage u�us=v−vc�0 with
the saturation current, Is, given by the equation

Is = − I0�1 + a�ln�1 + exp�− us�� . �41�

The mechanism leading to the plateau regime is similar to
that for conventional semiconductor transistors. Increasing
the drain voltage increases the driving field inside the film
but simultaneously suppresses the conductivity by decreas-
ing the charge-carrier density. According to Eqs. �34� and
�35�, the distribution of electron density along the active
channel is

ne�x�/ne0 = �1 + a�	1 − aev�1 + aev�−1

���1 + aev�/�eu + aev��x/L
 ,

and varies from ne0�1+a� / �1+aev� at x=0 to ne0�1+a� / �1
+aev−u� for x=L �see Fig. 4�.

Above, we consider a nondegenerate electron gas. Within
the model of a degenerate electron gas, the conductivity is
determined by only the density of states and the diffusion
coefficient for holes at the Fermi level. Therefore, the con-
ductivity does change with the gate voltage so long as the
electron chemical potential �the Fermi level� does not ap-
proach the bottom of conduction band. At those gate volt-
ages, the hole concentration becomes small so that the de-
scription derived for nondegenerate electron gas becomes
adequate. Therefore, we anticipate that the above I�V� char-
acteristics, given by Eq. �36�, are universal for electrochemi-
cal transistors at least at a qualitative level.

VI. ION CONTROL OF ELECTRON MOBILITY

It is natural to anticipate for the heavily doped conducting
polymers that the concentration of remnant mobile ions is
small in comparison with the primary charge density, i.e., the
parameter a�1. In this case, the bulk capacity of the poly-
mer is determined by the ion component and the changes of
hole concentration and, hence, the changes of hole conduc-
tivity demonstrates the sharp exponential dependence with
the gate voltage. The experimental dependence is rather
smooth with the gate voltage.17–21 For this reason, we failed
to obtain satisfactory fit of the experimental I�V� character-
istics using the derived theoretical dependencies, Eqs.
�36�–�39�.

FIG. 4. �a� Predicted I�V� characteristics of electrochemical
transistor for different gate voltages. �b� Schematic distribution of
electron charge inside the electrochemical transistor active channel.
Here, a=n0i /n0e is the initial ratio of ionic to electronic densities;
u=eUSD /kBT; v=eVG /kBT.
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Similar to the model of conventional semiconductor
transistor30 above, we assume the constant mobility for pri-
mary charge carriers �holes�. Therefore, the change of device
conductance is solely due to the change of the number of
charge carriers. As a result, the model predicts a substantial
change of conductivity if only a significant fraction of pri-
mary charge carriers is replaced with ions. The experimental
data19,21 does not support this conclusion. The critical degree
of charge compensation, the ratio of injected ionic charge to
the total hole charge at which the conductivity drops by an
order of magnitude, is of only a few percent �2%–5%�.21

Therefore, the decrease of hole concentration itself is not the
factor which determines the observed field effect.

We propose that, simultaneous with the variation of
charge-carrier concentration, there is the noticeable variation
of mobility of charge carriers which accounts for the ob-
served field effect in the conducting polymer. The sharp in-
crease of mobility by a few orders of magnitude with in-
crease of charge concentration in the process of doping
conjugated polymers was reported in a number of works.31–33

The increase is explained by a fact that at low doping, the
charge carriers are trapped by Coulomb forces near dopants
or deep traps.32,33 With increase of doping, the Coulomb in-
teraction is screened, the deep traps are filled, and afterwards
the charge carriers are released for charge transport.

In this section, we describe the field effect in conducting
polymers by following a similar approach. However, it
should be stressed that for conducting polymers, the large
change of mobility with small variation of charge concentra-
tion occurs in the regime of heavy doping.19,21 Therefore, the
mobility cannot be controlled by traps as trapping takes place
at light doping. We propose that the field effect in conducting
polymers is an electric-field induced conductor-
nonconductor transition described by the chain-linked granu-
lar model.18,19,21 Within the present model, the charge trans-
port is controlled by intergrain hopping of holes through
intermediate states in the disordered regions separating
grains. The hopping states that form the intergrain bridges
for holes are associated with localized states on polymer
chains near to acceptors �e.g., PSS–�. These acceptors sitting
in a disordered less dense regions are easy accessible for
interaction with the injected cations, and their charges are
first to be compensated during doping �Fig. 5�. The compen-
sation of acceptor charges as injected cations removes the
intergrain hopping states for holes, and the electronic states
at the Fermi level become more localized resulting in the
decrease of conductivity.

To obtain a more quantity comparison, we consider the
temperature dependence of typical devices. According to the
chain-linked granular model, the temperature dependence of
resistivity is given by the quasi-one-dimensional Mott’s
law:13,15

Rf�T� = R0 exp��T1/T�1/2� , �42�

where the temperature dependence scale T1 in Eq. �42� is
determined by characteristics of electronic states of single
chains

T1 = b/�N1�� . �43�

Here, N1 is the one-dimensional �1D� Fermi density of states,
� is the localization length along a chain and b is the numeri-
cal factor �b=16,25�. As we already discussed, the hopping
states along chains linking the nearest grains are associated
with negatively charged acceptors in strongly disordered re-
gions. Therefore, the parameter N1 in Eq. �43� can be ap-
proximated as N1�nd /W, where nd is the linear concentra-
tion of acceptors and W is the characteristic energy-level
spread. Injected cations compensate acceptor charges and a
number of available hopping states along the polymer back-
bone decreases. Then T1 as a function of compensation de-
gree, q, increases as

T0/T1 = 1 − 
q , �44�

with 
 is the material dependent constant.
The temperature dependence of the conductivity of the

active channel at different levels of ion compensation was
studied in Refs. 19 and 21. Cations are injected at room
temperature by applying a positive gate voltage. As it was
shown in Ref. 21, the increase of channel resistance Rf /R0,
where R0 is the initial resistance at 300 K, and Rf is the
room-temperature resistance at the applied gate voltage,
which actually depends on the total injection charge or the
level compensation q. In Fig. 6, the resistance of the con-
ducting polymer-based transistor as a function of tempera-
ture is shown for the different Rf /R0 or the different level of
compensation.

The experimental data on Fig. 6 can be fit to the quasi-
one-dimensional Mott’s law �Eq. �43��, where the tempera-
ture scale T1 varies with the applied voltage. It enables us to
establish the dependence of T1 on the applied gate voltage
and on the degree of compensation. The inset on Fig. 6 dem-
onstrates the experimental dependence of T1 on compensa-

FIG. 5. Ionic suppression of intergrain hopping. The compensa-
tion by cations of negative charge of acceptors removes the nearby
localized states that provides for holes easy hopping between
grains.
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tion level q. Linear fitting of the dependence T1�q� in accor-
dance with Eq. �44� gives slope coefficient as 
�7 and the
critical compensation as a few percent.

We can estimate the critical concentration of ions within
the present model based on the following simple argument. If
we assume 50% crystallinity and the size grain �10 nm,
then intergrain hopping includes �10 intermediate sites
along the chain link. To interrupt this connection, it is
enough to introduce only one ion, i.e., approximately 5%
“dedoping” may produce an appreciable effect.

VII. CONCLUSION

The undoped conjugated polymers are semiconductors
and are now often used as active elements in field effect
transistors.34 The operation of those devices is described
within the canonical model of field effect transistor devel-
oped for crystalline semiconductors.30 They work often in
the accumulation regime which is provided by bending of the
band edge with the gate voltage near the interface. The
charge carriers from the bulk of the semiconductor occupy
these new states and increase the conductivity of the active
channel. For the case of thin organic layers, the theory re-
cently was adjusted by Stallinga and Gomes.35 All these
models assume the constant charge-carrier mobility and that
the change of conductivity is due to variation of charge con-
centration with gate voltage. In real devices, there is a de-
pendence of mobility on the gate voltage or on the charge
concentration and this dependence occurs to be strong at low
charge concentration when the filling of trap states takes
place.

The present work addressed the field effect transistors
based on heavily doped conjugated polymers. These poly-
mers are no longer semiconductors but metals with conduc-
tivity �10 S /cm and charge-carrier density �1021 cm−3.
Surprisingly, such transistors demonstrate IV characteristics
which are similar to those of regular transistors but they
work on a different principle.

It was suggested that the field effect in conducting
polymer-based transistor is related to the insertion of small
density of ions into conducting polymer.19,21 The porous
structure of the polymer leaves space for electrolyte. Then
the ionic chemical potential inside of the polymer is con-
trolled by the gate potential. Due to electroneutrality, the
electrochemical potential for ions and electrochemical poten-
tial for electrons �Fermi level� are interdependent. In such a
way, the concentration of electrons is governed by the gate
potential �electrochemical gating�. In contrast to the regular
transistor in the conducting polymer-based transistor, the
charge density of the active channel varies not only near the
gate electrode interface but across the whole active channel
thickness.

In the present work, we have shown that such a simple
model does not enable us to quantitively describe the observ-
able field effect in conducting polymer-based transistors. The
experiments19,21 have shown that the small fraction of ions to
the total number of charge carriers ��2%� enables to sup-
press the conductivity by a factor 10.21 We have shown here
that these strong changes of conductivity are rather related to
the strong changes of mobility of holes due to morphology of
the conducting polymers.

We suggest that the field effect in conducting polymers is
an inherent feature of the inhomogeneous structure of poly-
meric networks including the existence of dense and well
ordered crystalline regions. The crystalline domains can be
considered like metallic grains or dots of mesoscopic size
embedded in porous and poorly conducting media. The main
effect of applied positive gate voltage is the suppression of
the intergrain hopping by partial charge compensation �de-
doping� of the disordered polymer media. As a result, the
conductor-nonconductor transition occurs. Because the con-
ducting network is close to the percolation threshold, a small
decrease �compensation� of hopping sites is able to produce
such a transition.

This conclusion is consistent with an early electrochemi-
cal study which shows that it is difficult to get a complete
dedoping of highly conducting polymers due to doped crys-
talline domains remaining inside the polymers.36,37
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FIG. 6. Quasi-one-dimensional Mott’s law fit for temperature
dependent resistance at different room-temperature conducting
states Rf /R0 induced by the different applied gate voltage:
Rf�300 K� /R0�300 K�=1��, 2.2���, 7.8���, 15.6���, 35.7���
and 100���. Inset: Characteristic temperature scale of quasi-one-
dimensional Mott’s law vs the compensation level �ion charge/hole
charge� �after Hsu et al. �Ref. 21��.
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