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In this study, we present an interfacial operator approach for solving guided wave modes of plasmonic
crystals. They are formulated as an eigenvalue problem of the wave number along the axis of the crystal. In this
formulation, the permittivity and permeability of the metallic component can be arbitrary functions of fre-
quency. Moreover, a coupling interface method is introduced to facilitate accurate treatment of the interface
conditions with an arbitrary shape between the metal and host materials. Numerical results are illustrated for
different shapes of plasmonic crystals, and physical significance is discussed.
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I. INTRODUCTION

Plasmonics is considered to be the strongest interplay of
both optical and electronic data transfer along a tiny metal.1

It has found important applications in modern nanotechnol-
ogy such as magneto-optic data storage, microscopy, solar
cells, sensors for detecting biological molecules, and plas-
monic crystals.2 However, it has been difficult to solve
eigenmodes of plasmonic crystals in two or three dimensions
either analytically or numerically. This is mainly because the
metal is dispersive in frequency and the underlined equation
changes its type from being elliptic �metal� to hyperbolic
�host medium�. When the equation is solved numerically, the
change of type makes the discrete systems nondefinite �nei-
ther positive definite nor negative definite�. Moreover, plas-
monic modes may be highly localized, rendering themselves
another difficulty to be resolved numerically.

In an early study,3 we proposed the method of interfacial
operator to solve transverse magnetic �TM� eigenmodes of
plasmonic crystals in two dimensions. The method was sub-
sequently applied to solve planar eigenmodes of periodic ar-
rays of polar materials4 and of negative-index materials.5 In
these previous studies, we considered solving eigenmodes as
an eigenvalue problem of the frequency, and had to exploit
the specific structures of the dielectric functions of the me-
tallic and polar materials. In the present study, the method of
interfacial operator is reformulated to solve for guided wave
modes in plasmonic crystals. Solving guided wave modes is
now considered as an eigenvalue problem for the wave num-
ber �rather than the frequency� along the axis of the crystal.
The newly formulated method presents a breakthrough by
allowing the permittivity and permeability of the metal or
polar materials to be arbitrary functions of frequency. More-
over, plasmonic waveguides and band structures may depend
significantly on the shape of the interface between the metal
and host medium. Therefore, we apply the coupling interface
method, developed by Chern and Shu,6 to accurately treat a
general shape of interface. Furthermore, it must be also noted
that unlike the previous studies for two-dimensional prob-
lems, the plasmonic guided wave modes are in general hy-
brid transverse electric �TE� and TM modes, because the

electric and magnetic fields are coupled through the interface
conditions.

There are a few other methods which have been applied to
solve for the eigenmodes of plasmonic crystals. The method
of plane-wave expansion7 is most commonly used. Other ap-
proaches such as transfer-matrix method,8 multiple-scattering
theory or Korringa-Kohn-Rostoker �KKR� method,9–11 layer-
KKR method,12 multiple multipole method,13 and finite-
difference time-domain method14 can also be applied to
frequency-dependent problems. The method of multiple mul-
tipole expansion13 is one choice in which a careful definition
of cost function is required for detecting resonant frequen-
cies. Also, we have seen the method of vectorial eigenmode
expansion applied to study phonon polariton excitation in
photonic crystals.15 The present approach, the interfacial op-
erator together with the coupling interface method, can di-
rectly solve for the plasmonic guided wave modes with ac-
curate treatment of arbitrary-shaped interface between the
metal and host medium.

II. EQUATIONS FOR WAVEGUIDES

Consider waveguides along the axis of two-dimensional
crystals. The crystal geometry is assumed to be periodic in
the x-y plane with a unit cell shown schematically in Fig. 1.
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FIG. 1. The unit cell of the plasmonic crystal in the x-y plane. ax

and ay are the lengths of the unit cells in the x and y directions. � is
the interface between two different materials with �− �metal� and
�+ �host medium�.
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The guided modes are in general hybrid modes, and may be
simplified into TE and TM modes only under certain circum-
stances. For generality, we start with hybrid modes. Since the
waveguide is homogeneous in the z direction, we look for
monochromatic modes of the form:

E�x,y,z,t� = �Ex,Ey,Ez�ei�kz−�t�, �1�

H�x,y,z,t� = �Hx,Hy,Hz�ei�kz−�t�, �2�

where � is the frequency; k is the wave number along the z
direction �axial wave number�; �Ex ,Ey ,Ez� and �Hx ,Hy ,Hz�
are functions of �x ,y�. Substituting Eqs. �1� and �2� into
Faraday’s and Ampére’s laws yields the following equations
for Ez and Hz:

� · ���0� � Ez

M
� + � � � k � Hz

M
� = − ��0�Ez, �3�

� · ���0� � Hz

M
� − � � � k � Ez

M
� = − ��0�Hz, �4�

where we have defined M = �� /c�2��−k2. Note that c is the
speed of light in vacuum, �0 and �0 are the permittivity and
permeability constants in vacuum, and � and � are the rela-
tive permittivity and permeability, respectively. Notice that
they are frequency-dependent functions. The symbol � de-
notes � �

�x , �
�y �. Let � be the interface between two different

materials, which separates the domain into two subdomains
�+ �host medium� and �− �metal� �Fig. 1�. On �, the follow-
ing interface conditions should be satisfied:

�Ez�� = 0, �5�

�Hz�� = 0, �6�

���0�

M

�Ez

�n
�

�

= − k� 1

M

�Hz

�s
�

�

, �7�

���0�

M

�Hz

�n
�

�

= k� 1

M

�Ez

�s
�

�

, �8�

where n and s are unit normal and tangential vectors at the
interface, respectively, and �u�� denotes the difference of u
between �+ and �− sides at the interface �. These interface
conditions can be derived directly from Faraday’s and
Ampére’s laws. On the cell boundary, the Bloch conditions
are applied:

E�x + ax,y + ay� = ei�kxax+kyay�E�x,y� , �9�

H�x + ax,y + ay� = ei�kxax+kyay�H�x,y� , �10�

where ax and ay are the side lengths of the cell in the x and
y directions, and �kx ,ky� is the Bloch wave vector.

III. METHOD OF INTERFACIAL OPERATOR

Due to the fact that � and � are frequency-dependent
functions, we shall solve the problem of plasmonic guided

wave modes as an eigenvalue problem for k with given �. In
the interior of each region, the permittivity and permeability
are spatially independent, thus Eqs. �3� and �4� are reduced to
the Helmholtz equations with constant coefficients:

��2 + ��

c
�2

���E = k2E , �11�

��2 + ��

c
�2

���H = k2H . �12�

Here the subindex z is dropped for notational simplicity. In
order to express the interface conditions as an eigenvalue
problem like Eqs. �11� and �12�, we introduce two auxiliary
interface variables:

JE = ��
�E

�n
�

�

, �13�

JH = ��
�H

�n
�

�

, �14�

and rearrange Eqs. �7� and �8� as

��� 1

�

�E

�n
�

�

+
k

��0
� 1

��

�H

�s
�

�

� = k2JE, �15�

���1

�

�H

�n
�

�

−
k

��0
� 1

��

�E

�s
�

�

� = k2JH, �16�

with the help of Eqs. �5� and �6�. Here �= � �
c �2�+�−�+�− and

�	 and �	 are the relative permittivity and permeability
functions in �	, respectively. The left-hand side of Eqs. �15�
and �16� will be called the interfacial operators. It will be
re-expressed in terms of E, H, JE, and JH in the later section
during discretization procedure. Equations �11�, �12�, �15�,
and �16�, together with the Bloch boundary condition, con-
stitute a quadratic eigenvalue problem for k with unknowns
�E, H, JE, and JH�, since both k and k2 appear in Eqs. �15�
and �16�.

IV. COUPLING INTERFACE METHOD

To accurately discretize the above equations, we adopt the
coupling interface method.6 This is a second-order accurate
finite-difference method under Cartesian grid, and it treats
the interface as an immersed boundary. The advantages of
this method include that: �1� it is a dimension-by-dimension
approach, thus has no limitation on the dimensionality; �2� it
has little constraint on the geometry of the interfaces. Fur-
ther, this method uses only first-order derivatives on the in-
terface, and is thus natural to incorporate with the interfacial
operator approach, which introduces first-order derivatives as
auxiliary variables. Thus, we explain the method in detail for
one-dimensional case and sketch the idea in two dimensions.

A. One-dimensional layer structure

We consider a periodic structure of parallel slabs �Fig. 2�.
The propagation direction is in the z direction and thus the
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fields E and H are constants along the y direction. In this
case, �E

�s = �E
�y =0 and �H

�s = �H
�y =0 in the interface conditions

�15� and �16�. Thus, the E and H fields are decoupled. The
guided waves can be decomposed as a combination of TM
mode �H	0� and TE mode �E	0�. We shall discuss the
discretization for TM mode below. The TE mode can be
treated similarly.

For TM modes, E is only a function of x. Equation �11�,
the interface conditions �5� and �7�, and the Bloch condition
can be simplified as:

E� + ��

c
�2

��E = k2E , �17�

�E�� = 0, �18�

�� 1

�
E��

�

= k2JE, with JE ª ��E���, �19�

E�x + a� = eikxaE�x� . �20�

Here E� denotes d
dxE.

To discretize these equations, the unit cell �0,a� is parti-
tioned uniformly into N subintervals with size h= a

N . Let us
denote xi= ih and Ei=E�xi�, i=1, . . . ,N. There are two in-
terface points x= x̂1 and x̂2 and the interfacial variables JE,1
and JE,2 are defined on them �Fig. 2�. Suppose they lie in
�xp ,xp+1� and �xq ,xq+1�, respectively, for some integers p and
q. At an interior grid point xi �including periodic boundary�,
the standard central finite-difference method is adopted for
Eq. �17�:

1

h2 �Ei−1 − 2Ei + Ei+1� + ��

c
�2

�i�iEi = k2Ei + O�h2� .

�21�

At the grid points xp ,xp+1 ,xq ,xq+1, we perform the following
discretization. We shall only need to explain the case for the
pair xp and xp+1. The other case is the same. In the neighbor-
hood of x̂1, we approximate E�x� by quadratic functions
E	�x� in the region �	, respectively:

E−�x� = Ep +
1

h
�Ep − Ep−1��x − xp� +

Ep�

2h2 �x − xp�

��x − xp−1� + O�h3� , �22�

E+�x� = Ep+1 +
1

h
�Ep+2 − Ep+1��x − xp+1�

+
Ep+1�

2h2 �x − xp+1��x − xp+2� + O�h3� . �23�

By applying the interface conditions �E�x̂1
=0 and ��E��x̂1

=JE,1 in the above two equations, we can express Ep� and
Ep+1� as linear combinations of Ep−1 ,Ep ,Ep+1 ,Ep+2 and JE,1:

Ep� = Lp�Ep−1:p+2,JE,1� + O�h� , �24�

Ep+1� = Lp+1�Ep−1:p+2,JE,1� + O�h� , �25�

where Ep−1:p+2 is an abbreviation of �Ep−1 , ,Ep+2�. The no-
tation p−1:p+2 represents the index running from p−1 to
p+2. Thus, we arrive at a finite-difference approximation for
Eq. �17� at xp and xp+1:

Lp�Ep−1:p+2,JE,1� + ��

c
�2

�p�pEp = k2Ep + O�h� , �26�

Lp+1�Ep−1:p+2,JE,1� + ��

c
�2

�p+1�p+1Ep+1 = k2Ep+1 + O�h� .

�27�

Finally we need to discretize Eq. �19� for the auxiliary vari-
able JE,1. We re-express � 1

�E��x̂1
in terms of JE,1 as follows:

� 1

�
E��

x̂1

=
1

�+�+
JE,1 +

�−�− − �+�+

�+�+�−
E−��x̂1� , �28�

and E−��x̂1� in turn can be approximated by:

E−��x̂1� =
Ep − Ep−1

h
+ �1

2
+ 
�hEp� + O�h2� , �29�

where 
= �x̂1−xp� /h. Combining Eqs. �24�, �28�, and �29�,
the interfacial operator in Eq. �19� can be approximated by a
linear combination of �Ep−1:p+2 ,JE,1� and the interface condi-
tion can be expressed as

J�Ep−1:p+2,JE,1� = k2JE,1 + O�h2� , �30�

where J is a linear function.
By omitting the truncation error terms, Eqs. �21�, �26�,

�27�, and �30� form a standard eigenvalue problem:

z

x

y

ametala

Γ : x = x̂1; JE,1

p qp + 1 q + 1

metal dielectric

Γ : x = x̂2; JE,2

Ω+Ω− metalΩ−
(b)

(a)

FIG. 2. �a� A layer structure wave guide. The wave guide con-
sists of metal and air. The gray parts are metal. We assume that the
length of a unit cell is a and the length of metal is ametal. �b� The
discretization near the interface � between metal and dielectric. The
square points are those grid points in the strict insides of the metal
and host medium. The circle points are the grid points near the
interface. We assume that x̂1 is in the cell �xp ,xp+1� and x̂2 is in the
cell �xq ,xq+1�. The interfacial variables JE,1 and JE,2 are defined at
x̂1 and x̂2, respectively.
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ATMUTM = k2UTM, �31�

where ATM is a �N+2�� �N+2� matrix and UTM

= �Ē1:N , J̄E,1 , J̄E,2�T. Ē1:N, J̄E,1, and J̄E,2 are the numerical so-
lutions of E1:N, JE,1, and JE,2.

B. Two-dimensional structure

For two-dimensional guided wave problems, the E and H
fields are in general coupled through the interface conditions
�7� and �8�. Therefore, we need to solve both Eqs. �11� and
�12� simultaneously.

To discretize these equations, we partition the unit cell
�0,a�� �0,a� uniformly into N2 squares with mesh size h
= a

N . The Cartesian grid points are �xi ,yj� , �ih , jh�, 1� i , j
�N. The abbreviation Ei,j =E�xi ,yj� is used. We shall also
abbreviate the unknowns �E1,1 , ¯ ,EN,N� by E1:N,1:N. On the
interface �, a set of uniformly distributed grids based on arc
length on � is adopted. They are labeled by �x̂r ,yr�, r
=1, ¯ ,NJ. At these points, the auxiliary interface variables
�JE,r ,JH,r� are defined.

1. Discretize the equations at Cartesian grids

In an interior Cartesian grid point, we discretize Eqs. �11�
and �12� by the standard central finite-difference method. At
a Cartesian grid point which is adjacent to the interface, the
following coupling interface method is adopted. We illustrate
the idea for the case in Fig. 3, where � intersects both x and
y axes. In Fig. 3, �xp ,yq� is the grid point at which we want
to derive a finite-difference equation; P and Q are the inter-
sections of � and the x and y axes from �xp ,yq�; and R
= �x̂r , ŷr� is the closest interface grid point to �xp ,yq�. Our
goal is to derive a finite-difference approximation for

�2E = 
 �2E

�x2 

p,q

+ 
 �2E

�y2

p,q

,

�2H = 
 �2H

�x2 

p,q

+ 
 �2H

�y2 

p,q

,

in terms of the grid data and the interfacial variables. The
discretization procedure is divided into the following steps.

�a� Dimension-by-dimension approach. We apply the pre-
vious one-dimensional method in both x and y direction
separately. Namely, along the grid line y=yq, we approxi-
mate � �2E

�x2 �p,q and � �2E
�x2 �p+1,q in terms of Ep−1:p+2,q and �� �E

�x �P.
Notice that our interfacial variables are defined at R, not at P
nor Q. Thus, we make slight modification, i.e. replacing
�� �E

�x �P by �� �E
�x ��x̂r,yq� in the derivation, of our one dimen-

sional approach and the resulting formula for � �2E
�x2 �p,q changes

a little bit. We arrive at the formula


 �2E

�x2

p,q

= LExx�Ep−1:p+2,q,��
�E

�x �
�x̂r,yq�

� + O�h� . �32�

Similarly, we get


 �2E

�y2

p,q

= LEyy�Ep,q−1:q+2,��
�E

�y �
�xp,ŷr�

� + O�h� . �33�

�b� Using the interfacial variables at interface grid points.
We express Eqs. �32� and �33� in terms of the interface data
at R:

��
�E

�x
�

x̂r,yq

� ��
�E

�x
�

R
+ �yq − ŷr���

�2E

�x � y
�

R
, �34�

��
�E

�y
�

xp,ŷr

� ��
�E

�y
�

R
+ �xp − x̂r���

�2E

�x � y
�

R
. �35�

The jump of the cross derivative term in Eqs. �34� and �35� is
expanded and approximated by

��
�2E

�x � y
�

R

= �+
 �2E+

�x � y



R

− �−
 �2E−

�x � y



R

, �36�


 �2E+

�x � y



R

�
1

h2 �Ep+2,q+2 + Ep+1,q+1 − Ep+2,q+1 − Ep+1,q+2� ,

�37�


 �2E−

�x � y



R

�
1

h2 �Ep,q + Ep−1,q−1 − Ep,q−1 − Ep−1,q� . �38�

The truncation error of the above approximation is O�h�.
Next, we re-express the terms �� �E

�x �R and �� �E
�y �R in Eqs. �34�

and �35� in terms of normal and tangential derivatives of E at
R:

��
�E

�x
�

R

= nxJE,r + sx����R
 �E−

�s



R

+ � �E

�s
�

R
� , �39�

(p, q)

R : JE,r and JH,r

(p − 1, q)

(p, q − 1)

h

JE,r+1 and JH,r+1

Γ

JE,r−1 and JH,r−1

P

Q

FIG. 3. Square: Numerical Cartesian grid. Circle: Interfacial op-
erators. JE,r−1:r+1 and JH,r−1:r+1 are interfacial variables. n and s are
the unit normal and tangent vectors at R. The gray area is �− and
the white area is �+.
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��
�E

�y
�

R

= nyJE,r + sy����R
 �E−

�s



R

+ � �E

�s
�

R
� , �40�

where n= �nx ,ny� and s= �sx ,sy� are the unit normal and tan-
gential vectors of � at R, respectively. Due to �E�R=0, we
have

� �E

�s
�

R

= 0. �41�

�c� Interpolation for the one-side tangential derivative.
The one-side tangential derivative can be expressed as


 �E−

�s



R

= sx
 �E−

�x



R

+ sy
 �E−

�y



R

. �42�

The one-side partial derivatives at R can be approximated by


 �E−

�x



R

�
1

h
�Ep,q − Ep−1,q� + �1

2
+ 
x�h
 �2E

�x2 

p,q

+ 
yh
 �2E

�x � y



p,q
, �43�


 �E−

�y



R

�
1

h
�Ep,q − Ep,q−1� + �1

2
+ 
y�h
 �2E

�y2

p,q

+ 
xh
 �2E

�x � y



p,q
, �44�

where 
x= �x̂r−xp� /h and 
y = �ŷr−yq� /h. The cross deriva-
tive can be approximated by


 �2E

�x � y



p,q
�

1

h2 �Ep,q − Ep−1,q − Ep,q−1 + Ep−1,q−1� .

After above three steps, we deduce a coupling equation for
the second-order partial derivatives � �2E

�x2 �p,q and � �2E
�y2 �p,q. This

coupling equation is solvable practically. Finally, we get


 �2E

�x2 

p,q

� LExx
� �Ep−1:p+2,q−1,q+2,JE,r� ,


 �2E

�y2

p,q

� LEyy
� �Ep−1:p+2,q−1,q+2,JE,r� ,

where LExx
� and LExx

� are linear functions. Then the finite-
difference scheme for �2Ep,q is

FIG. 4. �Color online� The frequency � versus axial wave num-
ber k for the layer structure. The Bloch wave number is kx=0. The
filling ratio of metal is 0.4. a is the length of the unit cell. The red
�gray� line is TM mode and the blue �dark gray� dash line is TE
mode. The black line is the light line. The yellow �light gray� dash
line is the line �=�sp, the surface-plasmon frequency.

FIG. 5. �Color online� The skin depths versus the axial wave
number k for the layer structure. The Bloch wave number is kx=0.
The skin depth is defined to be the distance from the peak of E to
where E decays to Epeak /e. The red �dark gray� part is the skin
depth in the dielectric part whereas the cyan �light gray� part is the
metal part.

FIG. 6. �Color online� The frequency � versus the real part of
the axial wave number k for the layer structure with damping. The
Bloch wave number is kx=0. The corresponding damping frequency

is
��a

2c =0.002 96. The solid line is TM mode while the line with
cross symbol is TE mode. The imaginary part of k is marked by
different colors �grayscale�. Red �dark gray dot�, cyan �medium
dark dot�, and yellow �light gray dot� indicate that the imaginary
part of ka /2c lie in �0,10−6�, �10−6 ,10−3�, and �10−3 ,10−2�,
respectively.
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�2Ep,q � �LExx
� + LEyy

� ��Ep−1:p+2,q−1,q+2,JE,r� .

Similarly, we can get the finite-difference approximation for
�2Hp,q:

�2Hp,q � �LHxx
� + LHyy

� ��Hp−1:p+2,q−1,q+2,JH,r� .

2. Discretize the interface conditions at interface grids

First, we express the left-hand side of the interface con-
ditions �15� and �16� in terms of the interfacial variables and
one-side derivatives:

� 1

�

�E

�n
�

R

=
1

�+�+
JE,r +

�−�− − �+�+

�+�+�−

 �E−

�n



R

,

� 1

��

�H

�s
�

R

=
�−�− − �+�+

�+�−�+�−

 �H−

�s



R

,

�1

�

�H

�n
�

R

=
1

�+�+
JH,r +

�−�− − �+�+

�+�+�−

 �H−

�n



R

,

� 1

��

�E

�s
�

R

=
�−�− − �+�+

�+�−�+�−

 �E−

�s



R

.

Using Eqs. �43� and �44�, we can further express the normal
and tangential derivatives �

�E−

�n �R and �
�E−

�s �R in terms of grid
values of E at nearby Cartesian grids. Then the interfacial

FIG. 7. �Color online� The frequency � versus the axial wave
number k for the square structure. The Bloch wave vector is

�
kxa

2 ,
kya

2 �= �0.5,0.5� and the filling ratio of metal is 0.16.

FIG. 8. �Color online� The frequency � versus the real part of
the axial wave number k for the square structure. The Bloch wave
vector is �kx ,ky�= �0,0� and the filling ratio of metal is 0.16. The

corresponding damping frequency is
��a

2c =0.002 96. The imaginary
part of k is marked by different colors �grayscale�. Red �dark gray
dot�, cyan �medium dark dot�, and yellow �light gray dot� indicate
that the imaginary part of ka /2c lie in �0,10−6�, �10−6 ,10−3�, and
�10−3 ,10−2�, respectively.

FIG. 9. �Color online� The frequency � versus the axial wave
number k for the wavy structure. The Bloch wave vector is
�kx ,ky�= �0,0� and the filling ratio of metal is 0.16.

FIG. 10. �Color online� The frequency � versus the real part of
the axial wave number k for the wavy structure. The Bloch wave
vector is �kx ,ky�= �0,0� and the filling ratio of metal is 0.16. The
corresponding damping frequency is ���a� / �2c�=0.002 96. The
imaginary part of k is marked by different colors �grayscale�. Red
�dark gray dot�, cyan �medium dark dot�, and yellow �light gray
dot� indicate that the imaginary part of ka /2c lie in �0,10−6�,
�10−6 ,10−3�, and �10−3 ,10−2�, respectively.
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operators in Eqs. �15� and �16� are approximated by linear
combinations of grid data and interfacial variables:

�� 1

�

�E

�n
�

R
� JEn

�Ep−1:p+2,q−1,q+2,JE,r� ,

�

��0
� 1

��

�H

�s
�

R
� JHs

�Hp−1:p+2,q−1,q+2,JH,r� ,

��1

�

�H

�n
�

R
� JHn

�Hp−1:p+2,q−1,q+2,JH,r� ,

�

��0
� 1

��

�E

�s
�

R
� JEs

�Ep−1:p+2,q−1,q+2,JE,r� .

Combining the discretizations for the equations at the Carte-
sian grids and for the interface condition at the interface
grids, we arrive at a quadratic eigenvalue problem:

AmixUmix + kBmixUmix = k2Umix,

where Amix and Bmix are 2�N2+NJ��2�N2+NJ� matrices and

Umix = �Ē1:N,1:N,H̄1:N,1:N, J̄E,1:NJ
, J̄H,1:NJ

�T.

We solve this quadratic eigenvalue problem by doubling the
matrix to reduce the problem to an ordinary eigenvalue prob-
lem:

� 0 I

A B
�� Umix

kUmix
� = k� Umix

kUmix
� ,

� 0 I

Amix Bmix
�� Umix

kUmix
� = k� Umix

kUmix
� ,

where 0 and I are zero and identity matrix.
In this formulation, both � and � are allowed to be arbi-

trary functions of frequency �, which can be obtained from
either experimental measurement or explicit models. In the
Sec. V, we shall adopt the Drude model and solve the above
eigenvalue problem for the wave number k in terms of �, kx,
and ky.

V. RESULTS AND DISCUSSION

The problem to solve plasmonic waveguides can be recast
as a dispersion relation in the abstract form F�k ;� ,kx ,ky�
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FIG. 11. �Color online� An eigenmode of the wavy structure. The Bloch wave vector is �kx ,ky�= �0,0� and the filling ratio of metal is
0.16. ��a� / �2c�=0.7, �ka� / �2�=0.82815. �a� and �b�: E /E0 field; �c� and �d�: H /H0 field. E0 and H0 are reference electric and magnetic
fields.
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=0. In other words, we will solve for the axial wave number
k and the associated wave modes with given frequency �,
and planar wave numbers kx and ky.

In the present study we consider the Drude model

�− = 1 −
�p

2

��� + i���
�45�

for metal, and the host medium is air with �+=1, and we
have chosen

�pa

2c =1.
We are concerned with signal propagation and energy ab-

sorbing problems in plasmonic crystals. Plasmonic
waveguides are used to guide surface plasmons �plasmonic
signals� along a very thin interface between the metal and
host dielectric to realize light propagation in subwavelength
metallic structures.2 To qualify for this property of light on a
wire, the guided wave mode must have very small decay
lengths �skin depths� on both sides of the metal-dielectric
interfaces, as well as a significantly large group velocity
along the axis of propagation.

Figure 4 shows the frequency bands versus the axial wave
number for the periodic array of planar metals �without
damping�. There are two branches below the light line which
approach the surface-plasmon frequency �sp=

�p

1+�+
for pla-

nar interface. These are the propagation modes. The lower
branch is more interesting as it has a larger group velocity
for ka

2 �1. Figure 5 shows the skin depths of this lower
branch on the two sides of the metal-dielectric interfaces.
These skin depths decrease with increasing the axial wave
number, while the corresponding group velocity decreases to
zero. For real metal, however, there is one more restriction.
Namely, the axial wave number k is no longer real, and its
imaginary part measures the length of propagation. Figure 6
shows the frequency bands for the periodic array of planar
metals �gold�. The corresponding damping frequency is

��a

2c
=0.002 96. It is seen that, on the branches below the light
line, only the portions close to the light line have longer
lengths of propagation. Further, this length of propagation
decreases with increasing axial wave number. It is therefore a
trade-off problem to choose propagating plasmonic modes in
an appropriate range of frequencies.

In contrast to the array of planar metals, the array of
square metal cylinders allows more branches of plasmonic
modes. Figures 7 and 8 show the frequency bands versus the
axial wave number for such a structure without and with
damping, respectively. There are many branches of plasmon
modes which originate from the origin and form an expan-
sion fan. These various branches allow more freedom for
choosing an optimal range of frequencies for propagating
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FIG. 12. �Color online� An eigenmode of the split-ring structure. The interface is plotted as black line. The Bloch wave vector is
�kx ,ky�= �0,0�; ��a� / �2c�=0.7; ���a� / �2c�=0. �ka� / �2� is 0.6818 in �a� and �b� and 1.5106 in �c� and �d�. E0 and H0 are reference
electric and magnetic fields.
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plasmonic modes. For real metal �8�, as before, the length of
propagation decreases with increasing axial wave number. In
Figs. 7 and 8, above the light line, the dispersion curves
cluster around �sp in the limit of k=0. These standing plas-
monic modes provide a good chance that the periodic struc-
ture is an outstanding light-absorbing material near the
surface-plasmon frequency at normal incidence to light
sources. In real metal, the standing modes suffer damping as
seen in Fig. 8. It is noted that the modes closer to the light
line either from above or below experience less damping
while propagating along the axial direction.

Figures 9 and 10, respectively, show the dispersion rela-
tion of a periodic array of wavy metal without/with damping.
This example is spectacular as we observe that a wider ex-
panded fan region of plasmon modes below the light line and
a significant band broadening near �sp in the limit of k=0.
This is due to the curvature effect which enables neighboring
surface plasmons to interact with each other, and thus lifting
certain degeneracy in frequency. For real metal �Fig. 10�,
again, we note that the modes closer to the light line either
from above or below experience less damping while propa-
gating along the axial direction.

Figure 11 shows the E field and H fields of an eigenmode
for the wavy structure. It is seen that both E and H fields are
concentrated along the wavy edges, roughly in form of iso-
lated islands. For this particular mode, the ��a� and �b�� E
field exhibits the mode shape of peak-to-valley structure in
the neighboring islands along the two edges, while the ��c�
and �d�� H field exhibits the mode shape of peak-to-peak,
valley-to-valley structure in the neighboring islands along
the two edges. The rich variety of coupling between neigh-
boring islands along the two edges lifts degeneracy of the
guided wave modes.

As a final illustration, the method can also be applied to
compute plasmonic guided wave modes for split-ring
structure,16,17 which are often used in negative-index materi-
als. Figure 12 shows the results for two modes with ka /2
=0.6818 and 1.5106 at the same frequency �a /2c=0.7.
Localized plasmons are observed to exist along the edges of
the inner and outer rings, but not on the openings except in
Fig. 12�a� where the localization of the E field near the open-
ing is not too strong.

VI. CONCLUDING REMARKS

In the study, we presented the interfacial operator ap-
proach with the coupling interface method for solving guided
wave modes of plasmonic crystals. It is considered as an
eigenvalue problem for the axial wave number. In this for-
mulation, the metallic components can be very general in
geometry, and are allowed to have arbitrary frequency-
dependent permittivity and permeability.

Four metallic shapes are studied: layered, square, wavy
and split-ring structures. The Drude model for metal with
and without damping is adopted. Except for the layered
structure, the plasmonic guided wave modes are in general
hybrid modes. Two major conclusions can be drawn. For
signal propagation via plasmonic waves, it has been found
that with the increasing axial wave number, �i� the group
velocity becomes slower, �ii� the skin depth of the plasmonic
wave modes becomes thinner, and �iii� the propagation
length becomes shorter �if damping effect is considered�.
These indicate that transmitting signals by plasmonic guided
wave is a trade-off problem in choosing an appropriate range
of dispersions with less damped effect, thinner thickness, and
significant group velocities. In addition, the wavy curvature
also broadens the fan structure of the propagation wave
modes. This means that the wavy structure provides more
frequency modes for signal propagation. For energy absorb-
ing problems, the standing-wave modes �real part of k�0�
are concerned. The curvature in the wavy structure intro-
duces more branches of frequency bands there. This suggests
that wavy structure can absorb energy from a wider range of
frequency bands. Finally, it is demonstrated that the present
method can resolve very fine eigenmodes of the split-ring
structure.
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