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We reexamine the 1 /S correction to the self-energy of the gapless magnon of a D-dimensional quantum
Heisenberg antiferromagnet in a uniform magnetic field h using a hybrid approach between 1 /S expansion and
nonlinear sigma model, where the Holstein-Primakoff bosons are expressed in terms of Hermitian field opera-
tors representing the uniform and the staggered components of the spin operators �N. Hasselmann and P.
Kopietz, Europhys. Lett. 74, 1067 �2006��. By integrating over the field associated with the uniform spin
fluctuations, we obtain the effective action for the staggered spin fluctuations on the lattice, which contains
fluctuations on all length scales and does not have the cutoff ambiguities of the nonlinear sigma model. We
show that in dimensions D�3, the magnetic-field dependence of the spin-wave velocity c̃−�h� is nonanalytic
in h2, with c̃−�h�− c̃−�0��h2 ln�h� in D=3, and c̃−�h�− c̃−�0�� �h� in D=2. The frequency-dependent magnon
self-energy is found to exhibit an even more singular magnetic-field dependence, implying a strong momentum
dependence of the quasiparticle residue of the gapless magnon. We also discuss the problem of spontaneous
magnon decay and show that in D�1 dimensions, the damping of magnons with momentum k is proportional
to �k�2D−1 if spontaneous magnon decay is kinematically allowed.
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I. INTRODUCTION

One of the most successful methods for obtaining the
low-temperature properties of ordered quantum Heisenberg
magnets is the expansion in inverse powers of the spin
quantum number S. The idea is to first map the spin
Hamiltonian onto an interacting boson model using
either the Holstein-Primakoff1 or the Dyson-Maleyev
transformation,2,3 and then study the resulting interacting bo-
son system by means of the usual many-body machinery. As
the interaction vertices appearing in the boson Hamiltonian
involve the small parameter of 1 /S, the perturbative treat-
ment of the interaction is formally justified for large S. See,
for example, Refs. 4 and 5 for early applications of this ap-
proach to quantum antiferromagnets �QAFM�. A disadvan-
tage of this method is that calculations for QAFM beyond
the leading order in 1 /S are very tedious due to a large num-
ber of interaction vertices.5 Moreover, the vertices are even
singular for certain combinations of external momenta.5–7 Al-
though the singularities cancel in physical quantities if the
total spin is conserved,8 the appearance of singularities at
intermediate stages of the calculation indicates that this ap-
proach is not always the best way of calculating fluctuation
corrections to the magnon spectrum.

In this work we shall reconsider the leading 1 /S correc-
tion to the magnon self-energy of spin-S quantum Heisen-
berg antiferromagnets in a uniform magnetic field h at zero
temperature in the regime where the system has a finite stag-
gered magnetization. Our starting point is the Heisenberg
Hamiltonian

Ĥ =
1

2�
ij

JijSi · S j − �
i

h · Si, �1.1�

where Si are spin operators normalized such that Si
2=S�S

+1� and the magnetic field h is measured in units of energy.

The exchange integrals Jij connect nearest-neighbor sites ri
and r j on a D-dimensional hypercubic lattice with lattice
spacing a, total volume V=aDN, and N sites. As long as �h� is
smaller than a certain critical value hc �see Eq. �2.20� below�,
the spin configuration in the ground state is canted, as shown
in Fig. 1. We choose our coordinate system such that the
magnetic field h=hex points along the x axis, and the stag-
gered magnetization Ms=Msez points in z direction. The
magnetic field generates a uniform magnetization M=Mex
pointing in the same direction as h, giving via h a gap in the
transverse magnon polarized parallel to h, while the magnon
polarized perpendicular to h remains gapless.

Due to the canting of the spins, the effective boson Hamil-
tonian obtained from Eq. �1.1� within the Holstein-Primakoff

FIG. 1. �Color online� Spin configuration �Si�=Sm̂i in the clas-
sical ground state of a two-sublattice antiferromagnet subject to a
uniform magnetic field h=hex in the x direction. The hypercubic
lattice can be divided into two sublattices, labeled A and B, such
that the nearest neighbors of a given site all belong to the other
sublattice. The solid square denotes a site of the A sublattice and a
solid circle denotes a site of the B sublattice. Here �0 is the classi-
cal canting angle between the direction of the staggered magnetiza-
tion �i and the local spin direction m̂i.
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transformation contains cubic interaction vertices propor-
tional to S−1/2. Hence, to obtain the complete 1 /S correction
to physical observables, the cubic vertices should be treated
in second-order perturbation theory. The leading 1 /S correc-
tions to the magnon spectrum turns out to be rather peculiar:
Zhitomirsky and Chernyshev10 have shown that for interme-
diate magnetic fields in a certain range h�� �h��hc, there are
no well-defined magnons in a large part of the Brillouin zone
due to spontaneous two-magnon decays. Moreover, Syr-
omyatnikov and Maleyev11 calculated the 1 /S correction to
the anisotropy induced gap of the magnon polarized parallel
to the magnetic field, and showed that in dimensions D�3,
the correction is unexpectedly large. They suggested that
meaningful results can only be obtained if the 1 /S expansion
is resummed to all orders, which is of course impossible in
practice.

Unfortunately, within the conventional 1 /S expansion, the
expressions for the magnon self-energies �see Refs. 10 and
11� are quite complicated. For example, from the expression
for the magnon self-energy given by Zhitomirsky and
Chernyshev10 �which we reproduce in Appendix B�, it is not
immediately obvious that one of the magnon branches re-
mains gapless. In this work we shall therefore reconsider this
problem using our recently proposed parameterization of the
1 /S expansion in terms of Hermitian field operators.7 The
advantages of such an approach have already been pointed
out in Ref. 7, but the practical usefulness of this method has
not been demonstrated. In a sense, our method is a hybrid
approach between the 1 /S expansion and the nonlinear
sigma model �NLSM� approach.9,12,13 Recall that the NLSM
is an effective continuum theory for the staggered spin fluc-
tuations of a QAFM. In contrast to the singular interaction
vertices encountered in the conventional 1 /S expansion, the
vertices describing interactions between transverse spin fluc-
tuations in the NLSM are finite in momentum space and all
scale as k2 for h=0. On the other hand, the NLSM has to be
regularized using an ultraviolet cutoff, so that the NLSM
approach cannot be used to obtain the numerical value of the
observables, which receive contributions from wave vectors
in the entire Brillouin zone. Our approach combines the ad-
vantages of the 1 /S expansion with the those of the NLSM
by parameterizing the degrees of freedom in the 1 /S expan-
sion from the beginning in terms of a lattice version of the
continuum field, representing staggered spin fluctuations in
the NLSM.

The rest of this work is organized as follows: After giving
a detailed description of our hybrid approach in Sec. II, we
derive the effective action for staggered spin fluctuations of
our lattice model in Sec. III and exhibit the precise connec-
tion with the NLSM, where only the leading orders in the
derivatives are retained. In particular, we show how the regu-
lar vertices of the NLSM emerge from the conventional 1 /S
expansion. In Sec. IV we then use our method to derive
expressions for the frequency-dependent part of the magnon
self-energies, which for small magnetic field h, determines
the dominant h dependence of the magnon dispersions. In
Sec. V the self-energy of the gapless magnon is evaluated; in
particular, we show that in dimensions D�3 the fluctuation
corrections to the spin-wave velocity and the quasiparticle
residue of the gapless magnon exhibit a nonanalytic h depen-

dence. We also discuss the problem of spontaneous magnon
decay in general dimensions. After a brief summary of our
results in Sec. VI, we give in Appendix A explicit expres-
sions for the quartic interaction vertices associated with two-
magnon scattering in our hybrid approach. Finally in Appen-
dix B we show numerically that in D=2, our result for the
magnetic-field dependency of the spin-wave velocity of the
gapless magnon can also be extracted from the self-energy
given by Zhitomirsky and Chernyshev in Ref. 10.

II. HYBRID APPROACH: COMBINING THE ADVANTAGES
OF THE 1 ÕS EXPANSION WITH THOSE

OF THE NLSM

A. Holstein-Primakoff boson Hamiltonian

For completeness, let us briefly recall the general proce-
dure for setting up the 1 /S expansion around a given classi-
cal ground state, characterized by the directions m̂i
= �Si� / ��Si�� of the local magnetic moments.14 Supplementing
the unit vector m̂i by two additional unit vectors ei

�1� and ei
�2�

such that ei
�1�, ei

�2�, m̂i form a right-handed orthogonal triad of
unit vectors, and defining the corresponding spherical basis
vectors ei

p=ei
�1�+ ipei

�2�, p=�, we express the components of
the spin operator Si in terms of canonical boson operators bi
and bi

† using the Holstein-Primakoff transformation,1

Si = Si
	m̂i + Si

� = Si
	m̂i +

1

2 �
p=�

Si
−pei

p, �2.1�

with

Si
	 = S − ni, ni = bi

†bi, �2.2a�

Si
+ = 
2S
1 −

ni

2S
bi, �2.2b�

Si
− = 
2Sbi

†
1 −
ni

2S
. �2.2c�

Our spin Hamiltonian �Eq. �1.1�� can then be written as the
following bosonic many-body Hamiltonian:15

Ĥ = E0
cl + Ĥ2

	 + Ĥ4
	 + Ĥ� + Ĥ�, �2.3�

with the classical ground-state energy

E0
cl =

S2

2 �
ij

Jijm̂i · m̂ j − S�
i

h · m̂i, �2.4�

and

Ĥ2
	 = −

S

2�
ij

Jijm̂i · m̂ j�ni + nj� + �
i

h · m̂ini, �2.5�

Ĥ4
	 =

1

2�
ij

Jijm̂i · m̂ jninj , �2.6�

Ĥ� =
1

2�
ij

JijSi
� · S j

� =
1

8�
ij

�
pp�

Jij�ei
p · e j

p��Si
−pSj

−p�,

�2.7�
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Ĥ� = − �
i

Si
� · �h − �

j

JijSj
	m̂ j�

= − �
ij

Jij�Si
� · m̂ j�nj − �

i

Si
� · �h − �

j

JijSm̂ j� .

�2.8�

The part Ĥ� of the Hamiltonian describes the coupling be-
tween transverse and longitudinal spin fluctuations generated
by the uniform magnetic field. Within the Holstein-Primakoff
approach, we expand the square roots in Eqs. �2.2b� and
�2.2c� in powers of S−1,

Si
+ = 
2Sbi −

nibi

4S
+ . . .� , �2.9a�

Si
− = 
2Sbi

† −
bi

†ni

4S
+ . . .� . �2.9b�

The boson representation of the operator Ĥ� can then be
written as an infinite series of multiple-boson interactions

involving even powers of boson operators, while Ĥ� be-
comes an infinite series of terms involving odd powers of
boson operators,

Ĥ� = Ĥ2
� + Ĥ4

� + O�S−1� , �2.10�

Ĥ� = Ĥ1 + Ĥ3 + O�S−1/2� , �2.11�

where the subscripts indicate the number of boson operators.
Making the reasonable assumption that the true spin configu-
ration in the ground state resembles the classical one shown
in Fig. 1 �but with a renormalized canting angle ��, we have

�Si� = ��Si��m̂i, m̂i = �inez + mex, �2.12�

where we have chosen h=hex, and the true canting angle �
is related to n and m via n=cos � and m=sin �. Here �i
assumes the value +1 on one sublattice �which we call the A
sublattice� and −1 on the other sublattice �the B sublattice�.
A convenient choice of the other members of the local triad
is

ei
�1� = ey, ei

�2� = − �inex + mez. �2.13�

The relevant scalar products in this basis are for nearest-
neighbor sites i and j,

m̂i · m̂ j = m2 − n2 = − � , �2.14a�

ei
+ · e j

+ = ei
− · e j

− = 2n2, �2.14b�

ei
+ · e j

− = ei
− · e j

+ = 2m2, �2.14c�

ei
+ · m̂ j = − ei

− · m̂ j = − 2inm�i = − i	�i, �2.14d�

h · m̂i = hm , �2.14e�

where we have defined

� = n2 − m2 = 1 − 2m2 = cos�2�� , �2.15�

	 = 2nm = sin�2�� . �2.16�

Then we obtain from Eq. �2.4�,

E0
cl = − NDJS2� − NShm , �2.17�

and from Eq. �2.5�,

Ĥ2
	 =

Zh

2
hc�

i

ni, �2.18�

where

Zh = 1 +
2m
h

hc
, �2.19�

and we have introduced the notation

hc = 4DJS , �2.20�


h = h − hcm . �2.21�

In the classical limit S→� the exchange field hcm exactly
cancels the external field h so that in this limit, 
h=0. How-
ever, for finite S the difference 
h=h−hcm is finite. We shall
show in Sec. III that 
h is actually of the order of mhc /S. The

longitudinal part Ĥ4
	 of the Hamiltonian involving four boson

operators is

Ĥ4
	 = −

�

2 �
ij

Jijninj , �2.22�

and the leading two terms of the transverse part of the
Hamiltonian are

Ĥ2
� =

S

4�
ij

Jij��ei
+ · e j

−�bi
†bj + �ei

− · e j
+�bj

†bi + �ei
+ · e j

+�bi
†bj

†

+ �ei
− · e j

−�bjbi�

=
S

2�
ij

Jij�m2�bi
†bj + bj

†bi� + n2�bi
†bj

† + bjbi�� , �2.23�

Ĥ4
� = −

n2

8 �
ij

Jij�nibibj + binjbj + bi
†bj

†nj + bi
†nibj

†�

−
m2

8 �
ij

Jij�nibibj
† + bibj

†nj + bi
†nibj + bi

†njbj� .

�2.24�

Finally, the part Ĥ� of our effective boson Hamiltonian de-
scribing the coupling between transverse and longitudinal
fluctuations can be written as

Ĥ� = 	�
ij

Jij�iSi
�2�nj + n
h�

i

�iSi
�2�, �2.25�

where we have set Si
�=Si

�1�� iSi
�2� so that

Si
�1� = ei

�1� · Si =
1

2
�Si

+ + Si
−� , �2.26a�
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Si
�2� = ei

�2� · Si =
1

2i
�Si

+ − Si
−� . �2.26b�

The alternating factor �i in Eq. �2.25� indicates that this term
describes Umklapp scattering across the boundary of the an-
tiferromagnetic Brillouin zone. For our purpose it is suffi-
cient to neglect all terms in the expansion of Eq. �2.11� in-
volving five and more boson operators, which amounts to

retaining only Ĥ1 and Ĥ3. With our choice of basis vectors
these can be written as

Ĥ1 = n
h

2S

2i �
i

�i�bi − bi
†� , �2.27�

Ĥ3 = 	

2S

2i �
ij

Jij�i�bi − bi
†�nj . �2.28�

Let us emphasize that if we use the Dyson-Maleyev
transformation2,3 to bosonize the spin operators, we obtain a
non-Hermitian transverse part H4

�, which differs from Eq.
�2.24� while H1, H2, H3, and H4

	 are the same as above. Since
the physical quantities calculated in this work are essentially
determined by H3, our results do not depend on whether we
use the Holstein-Primakoff or the Dyson-Maleyev formal-
ism.

B. Linear spin-wave theory

To obtain the magnon spectrum within linear spin-wave

theory, we neglect Ĥ4
	 and Ĥ�, and approximate the trans-

verse part Ĥ� by its quadratic term in the expansion of the

spin operators in terms of the boson operators, Ĥ�� Ĥ2
�. We

should now diagonalize the quadratic boson Hamiltonian

Ĥ2= Ĥ2
	 + Ĥ2

�. We work in the sublattice basis and Fourier
transform the spin and boson operators on each sublattice
separately: for sites ri belonging to the A sublattice we define

Si
�p� =
 2

N
�

k
eik·riSA,k

�p� , �2.29�

bi =
 2

N
�

k
eik·riAk, �2.30�

and for sites r j belonging to the B sublattice,

Sj
�p� =
 2

N
�

k
eik·rjSB,k

�p� , �2.31�

bj =
 2

N
�

k
eik·rjBk, �2.32�

where the wave-vector sums are over the reduced �antiferro-

magnetic� Brillouin zone. The quadratic part Ĥ2= Ĥ2
	 + Ĥ2

� of
our effective boson Hamiltonian becomes

Ĥ2 = J̃0S�
k

�Zh�Ak
†Ak + Bk

†Bk� + n2�k�B−kAk + Ak
†B−k

† �

+ m2�k�Bk
†Ak + Ak

†Bk�� , �2.33�

where �k= J̃k / J̃0 with

J̃k =
1

N
�
ij

e−ik·�ri−rj�Jij . �2.34�

Note that

J̃0S = 2DJS = hc/2. �2.35�

To completely diagonalize Ĥ2 we first introduce the symmet-
ric and antisymmetric combinations

Ck =
1

2

�Ak + Bk�,  = � 1, �2.36�

and then perform a Bogoliubov transformation,

� Ck

C−k
† � = � uk − vk

− vk uk
�� �̂k

�̂−k
† � , �2.37�

where

uk =
Zh + m2�k + �k

2�k
, �2.38a�

vk =
Zh + m2�k − �k

2�k
, �2.38b�

with

�k = ��Zh + m2�k�2 − �n2�k�2�1/2

= �Zh + �k�1/2�Zh − ��k�1/2. �2.39�

Note that

uk
2 + vk

2 =
Zh + m2�k

�k
, �2.40�

2ukvk =
n2�k

�k
. �2.41�

Within linear spin-wave theory 
h=0 and hence Zh=1, but
the factor Zh will deviate from unity if we take higher orders
in 1 /S into account. Since the above transformations are ca-

nonical, our magnon operators �̂k satisfy the usual bosonic
commutation relations,

��̂k,�̂k��
† � = 
k,k�
,�. �2.42�

In terms of the new operators �̂k the quadratic spin-wave

Hamiltonian Ĥ2 is diagonal,

Ĥ2 = �
k

Ek�̂k
† �̂k +

1

2
� + E0	

�1�, �2.43�

with the magnon dispersions
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Ek = J̃0S�k. �2.44�

The constant

E0	
�1� = −

N

2
ZhJ̃0S = − NDJS2Zh

S
�2.45�

is the 1 /S correction to the ground-state energy due to lon-
gitudinal spin fluctuations. The total 1 /S correction to the
ground-state energy is obtained by adding the zero-point en-
ergy of the transverse spin waves to E0	

�1�,

E0
�1� = E0	

�1� +
1

2�
k

Ek = − NDJS2C1�h�
S

, �2.46�

with

C1�h� =
1

N
�
k

�Zh − �k� . �2.47�

In the long-wavelength limit we obtain to linear order in

h=h−hcm and to quadratic order in k,

Ek+
2 = mhch + c+

2k2, �2.48a�

Ek−
2 = n2mhc
h + c−

2k2. �2.48b�

For small m the spin-wave velocities are

c+
2 = c0

2�1 − 3m2� , �2.49a�

c−
2 = c0

2�n2 + 2m3
h/hc� , �2.49b�

where c0 is the leading large-S result for spin-wave velocity
for h=0,

c0 = 2
DJSa . �2.50�

At the level of linear spin-wave theory, we may approximate
the canting angle by its classical value �0, which is deter-
mined by the condition 
h=0, or equivalently

m = sin �0 = h/hc. �2.51�

This result can also be obtained by minimizing the classical
energy E0

cl in Eq. �2.4�. The gap of the dispersion Ek+ is then
simply given by h, while the dispersion Ek− is gapless with
spin-wave velocity

c− = c0n = c0
1 −
h2

hc
2 . �2.52�

C. Hermitian field operators

In the usual 1 /S approach one now substitutes the rela-
tions between the original Holstein-Primakoff bosons bi and

the magnon operators �̂k into Eqs. �2.22�, �2.24�, �2.27�,
and �2.28�. This yields rather lengthy expressions involving
momentum-dependent vertices. However, if one is only in-
terested in the transverse staggered spin fluctuations, it is
better perform another transformation which separates the
staggered from the uniform spin fluctuations. Therefore we

express the magnon operators �̂k in terms of two Hermitian

field operators X̂k and P̂k, achieving the natural normaliza-
tion on a lattice as follows:7,16,17

�̂k = p
�k

2
X̂k +

i

2�k

P̂k� , �2.53�

where the phase factors p+=−i and p−=1 are chosen for later
convenience. Here the dimensionless factors �k are defined
by

�k =
Ek

�k
, �2.54�

where

�k = 2J̃0Szk = hczk, �2.55�

and

zk = �uk + vk�2�k/2 = �Zh + �n2 + m2��k�/2.

�2.56�

Note that Zh=1 to leading order in 1 /S, so that to this order

zk+ = �1 + �k�/2, �2.57a�

zk− = �1 + ��k�/2, �2.57b�

where �=n2−m2. In particular, for k→0 we have zk+→1
and zk−→ �1+�� /2=n2. One easily verifies the canonical
commutation relations,

�X̂k, P̂k��� = i
k,−k�
,�. �2.58�

The quadratic part of the spin-wave Hamiltonian can then be
written as

Ĥ2 =
1

2�
k

�k�P̂−kP̂k + �k
2 X̂−kX̂k� + E0	

�1�. �2.59�

In contrast to the lattice normalization of Eq. �2.53�, we fo-
cused in Ref. 16 on the continuum limit to exhibit the rela-
tion with the NLSM. In that case a continuum normalization
of the fields is more convenient,

�̂k = p
 �0

2VEk
�Ek�̂k + i�0

−1�̂k� , �2.60�

where �0= �2J̃0aD�−1 is the large-S limit of the uniform trans-
verse susceptibility for h=0. The continuum fields fulfill the
commutation relation

��̂k,�̂k��� = iV
k,−k�
,�. �2.61�

The relation between lattice and continuum normalizations is

�̂k = aD
 N

Szk
X̂k, �2.62�

�̂k = 
NSzkP̂k. �2.63�

Our spin-wave Hamiltonian �Eq. �2.43�� in continuum nor-
malization can be written as
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Ĥ2 =
1

2V
�
k

��0
−1�̂−k�̂k + �0Ek

2 �̂−k�̂k� + E0	
�1�.

�2.64�

The field �̂k corresponds precisely to the continuum field
representing transverse staggered spin fluctuations in the
nonlinear sigma model.9 However, here we would like to
calculate also short-wavelength properties on a lattice so that
we shall work with the lattice normalization �Eq. �2.53��.

D. Spin-wave interactions

In order carry out the 1 /S expansion using the operators
Xk and Pk defined in Eq. �2.53�, we should first express the
interaction part of the bosonized Hamiltonian in terms of
these operators. To obtain the leading 1 /S correction to linear
spin-wave theory, it is sufficient to approximate the effective
bosonized Hamiltonian by

Ĥ � E0
cl + Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4, �2.65�

where Ĥ4= Ĥ4
	 + Ĥ4

�. Later we shall use the phase-space path
integral to derive the effective action for staggered fluctua-
tions. All expressions in the Hamiltonian should therefore be
symmetrized whenever powers of noncommutating operators
are encountered.18–20 Only after symmetrization we may re-

place the field operators by numbers. If Â1Â2¯ Ân is a prod-

uct of operators consisting of X̂k or P̂k in arbitrary order,
the symmetrized product is

�Â1Â2 ¯ Ân� �
1

n!�P

ÂP1
ÂP2

¯ ÂPn
, �2.66�

where the sum is over all n! permutations of 1 , . . . ,n. We
obtain from Eq. �2.27� for the linear part of the Hamiltonian,

Ĥ1 = n
h
SNP̂0−. �2.67�

The part Ĥ3 in Eq. �2.28� can be written as

Ĥ3 = −
N

2

hc	


8S
P̂0− +
 2

N
�

k1k2k3


k1+k2+k3,0 1

2!
�−−−

PXX�k1;k2,k3��P̂k1−X̂k2−X̂k3−� +
1

2!
�−++

PXX�k1;k2,k3�P̂k1−X̂k2+X̂k3+

+ �++−
PXX�k1;k2;k3��P̂k1+X̂k2+�X̂k3− +

1

2!
�−++

PPP�k1;k2,k3�P̂k1−P̂k2+P̂k3+ +
1

3!
�−−−

PPP�k1,k2,k3�P̂k1−P̂k2−P̂k3−� , �2.68�

where the vertices are

�−−−
PXX�k1;k2,k3� =

hc	


8S
�k1

, �2.69a�

�−++
PXX�k1;k2,k3� =

hc	


8S
��k1

− �k2
− �k3

� , �2.69b�

�++−
PXX�k1;k2;k3� =

hc	


8S
�k2

, �2.69c�

�−++
PPP�k1;k2,k3� =

hc	


8S
�k1

, �2.69d�

�−−−
PPP�k1,k2,k3� =

hc	


8S
��k1

+ �k2
+ �k3

� . �2.69e�

Explicitly, the symmetrized products in Eq. �2.68� are

�P̂1X̂2� =
1

2
�P̂1,X̂2�+, �2.70�

�P̂1X̂2X̂3� =
1

3
�P̂1X̂2X̂3 + X̂2X̂3P̂1� +

1

6
�X̂2P̂1X̂3 + X̂3P̂1X̂2�

=
1

2
�P̂1,X̂2X̂3�+, �2.71�

where �Â1 , Â2�+= Â1Â2+ Â2Â1 is the anticommutator and we

have abbreviated P̂k1
by P̂1 and analogously for the other

labels.

Finally, consider the part Ĥ4= Ĥ4
	 + Ĥ4

� of the Hamiltonian
involving four boson operators, which according to Eqs.
�2.22� and �2.24� is given by

Ĥ4 = −
n2

2 �
ij

Jij�ninj +
1

4
�nibibj + binjbj+ bi

†bj
†nj + bi

†nibj
†��

+
m2

2 �
ij

Jij�ninj −
1

4
�nibibj

† + bibj
†nj + bi

†nibj + bi
†njbj�� .

�2.72�
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Expressing Ĥ4 in terms of the operators P̂k and X̂k defined
in Eq. �2.53� and symmetrizing all expressions containing
noncommuting operators, we obtain

Ĥ4 = E0	
�2� + 
Ĥ2� + Ĥ4�, �2.73�

where

E0	
�2� = −

NDJS2�

�2S�2 �2.74�

is a 1 /S2 correction to the classical ground-state energy, and


Ĥ2� =
1

2�
k

��
P�k�P̂−kP̂k + �

X�k�X̂−kX̂k� �2.75�

is a 1 /S correction to Ĥ2. The vertices are

�
P�k� =

hc

4S
��1 + �k� , �2.76a�

�
X�k� =

hc

4S
�� − �k� . �2.76b�

Finally, the properly symmetrized quartic part Ĥ4� of our
spin-wave Hamiltonian is given in Appendix A. For our pur-
pose it is only important that the corresponding interaction
vertices are nonsingular functions of the external momenta
and are analytic functions of h2.

III. EFFECTIVE ACTION FOR THE STAGGERED SPIN
FLUCTUATIONS

In Ref. 7 the precise relation between the magnon quasi-
particle operators of the 1 /S expansion and the continuum
fields �k representing transverse fluctuations of the stag-
gered magnetization has been established. In this section we
shall use this relation to derive the effective action for the
staggered spin fluctuations for the Hamiltonian �Eq. �1.1��,
retaining subleading 1 /S corrections and short wavelength
fluctuations in the entire Brillouin zone.

For weak magnetic fields, the operators P̂ correspond to

transverse fluctuations of the total spin, while X̂ describe
staggered �antiferromagnetic� spin fluctuations. To calculate
the self-energy of antiferromagnetic magnons, we can there-
fore eliminate the degrees of freedom associated with the

generalized momenta P̂. This is most conveniently done
using path integration. The appropriate path integral in our
case is the imaginary-time phase-space path integral.18,19 Re-
call that for a one-dimensional quantum mechanical system

with position operator X̂, momentum operator P̂, and Hamil-

tonian Ĥ�P̂ , X̂�, the partition function can be written as

Z =� D�P,X�exp��
0

�

d�iP
�X

��
− Hs�P,X��� , �3.1�

where Hs�P ,X� is obtained from the Hamiltonian Ĥ�P̂ , X̂� by

first symmetrizing Ĥ�P̂ , X̂� with respect to the ordering of the

operators X̂ and P̂, and then replacing the operators by their
eigenvalues. In principle, ambiguities associated with the op-
erator ordering in the phase-space path integral can always
be resolved by going back to the discretized definition of the
path integral.18,19 However, recently Gollisch and
Wetterich20,25 showed that in the continuum notation, the
symmetrization prescription leads to the same result as the
more fundamental discretized definition of the phase-space
path integral. The Euclidean action corresponding to our
spin-wave Hamiltonian is of the form

S�P,X� = �
l=0

�

Sl�P,X� , �3.2�

where Sl�P ,X� contains l powers of the fields. To obtain
the effective action Seff�X� for the staggered fluctuations, we
integrate over the generalized momenta,

e−Seff�X� =� D�P�e−S�P,X�. �3.3�

Within the Gaussian approximation �corresponding to linear
spin-wave theory� we truncate the expansion in Eq. �3.2� at
the term l=2. The relevant contributions to S�P ,X� can be
written as

S0 = ��E0
cl + E0	

�1�� , �3.4�

S1�P−� = �n
h
SNP0−, �3.5�

and

S2�P,X� =
�

2 �
K,

��k�P−KPK + �k
2 X−KXK�

− ��P−KXK − X−KPK�� , �3.6�

where the last term in Eq. �3.6� corresponds to the measure
term iP�X /�� in the phase-space functional integral �Eq.
�3.1��. The fields PK and XK are defined by replacing the

operators P̂k and X̂k by quantum fields Pk��� and Xk���,
depending on imaginary time � and expanding the fields in
frequency space,

Pk��� = �
�

e−i��PK, �3.7a�

Xk��� = �
�

e−i��XK. �3.7b�

We combine momenta k and bosonic Matsubara frequencies
i� to form a composite label K= �k , i��. In general the cant-
ing angle can be determined from the condition that the func-
tional average of the field PK=0,− vanishes,

�P0−� = 0. �3.8�

Equation �3.8� defines the correction 
h=h−hcm=h
−hc sin � and hence the sine of the renormalized canting
angle sin �=m= �h−
h� /hc. Within the Gaussian approxi-
mation this implies 
h=0, leading to the classical result �Eq.
�2.51��. Hence S1�P−�=0 within this approximation and the
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effective action for the fields X is given by the Gaussian
integral

e−Seff�X� � e−S0� D�P�e−S2�P,X�. �3.9�

Carrying out the integration, we obtain in Gaussian approxi-
mation Seff�X�=S0+Seff

�0��X�, where

Seff
�0��X� =

�

2 �
K

Ek
2 + �2

�k
X−KXK. �3.10�

At long wavelengths this action has the same form as the
corresponding Gaussian part of the action of the NLSM.
However, in contrast to the NLSM, our action is defined on
the lattice so that fluctuations on all wavelengths are in-
cluded. The Gaussian propagator of the X field is thus

�XKXK���0 = 
K,−K�
����k�−1 �k
2

Ek
2 + �2 . �3.11�

The other propagators are within Gaussian approximation

�PKPK���0 = 
K,−K�
����k�−1 Ek
2

Ek
2 + �2 , �3.12�

�XKPK���0 = 
K,−K�
����k�−1 �k�

Ek
2 + �2 . �3.13�

Here the symbol �. . .�0 denotes functional averaging with the
Gaussian action S2�P ,X�. Note that the formal sum
���XKP−K�0 represents the expectation value of the sym-

metric operator ��X̂kP̂k��0=0, so that we should regularize
formally divergent Matsubara sums using a symmetric con-
vergence factor cos��0+�,

��X̂kP̂k��0 =
1

�
�
�

�cos��0+�
Ek

2 + �2 = 0. �3.14�

The higher 1 /S corrections to Seff�X� can now be obtained
by including the spin-wave interactions perturbatively.
Therefore we rewrite Eq. �3.3� as

Seff�X� = S0 + Seff
�0��X� + Seff

int�X� , �3.15�

where the interaction part Seff
int�X� is defined via the follow-

ing functional average:

Seff
int�X� = − ln�e−Sint�P,X��P

� − ln�� D�P�e−S2�P,X�e−Sint�P,X�

� D�P�e−S2�P,X� � ,

�3.16�

where

Sint�P,X� = S1�P−� + �
l=3

�

Sl�P,X� . �3.17�

The leading correction of relative order 1 /S arises from the

first-order correction due to S4�P ,X�, corresponding to Ĥ4
defined in Eqs. �2.73�–�2.75� and �A1�, and the second-order
corrections due to the sum of S1�P−� and S3�P ,X�, corre-

sponding to Ĥ�� Ĥ1+ Ĥ3 in Eqs. �2.67� and �2.68�. Note that
to order 1 /S the difference 
h=h−hcm and hence S1�P−� are
finite so that the condition �Eq. �3.8�� for the renormalized
canting angle reduces to

�P0−�S1�P0−� + S3�P,X���0 = 0. �3.18�

Performing the Gaussian averages we obtain to first order in
1 /S,


h = m�1 − C2�h��
hc

2S
, �3.19�

with the numerical constant

C2�h� =
1

N
�
k

�uk
2 + vk

2 − �k�uk + vk�2�

=
1

N
�
k

1 − �k
2 − n2�k

�k
. �3.20�

Our condition �Eq. �3.19�� leads to the same 1 /S corrections
for the canting angle as in Ref. 21 and thus yields the same
result for the uniform magnetization. Note that S1�P−� is of
order S−1/2 and should be taken into account on the same
footing with S3�P ,X� in second-order perturbation theory
to collect all corrections of relative order 1 /S. Using Eq.
�3.19� we obtain for the total contribution of order S−1/2 to

the action S��P ,X� corresponding to Ĥ� in Eq. �2.11�,

S��P,X� � S1�P−� + S3�P,X�

= − �
N

2

hc	


8S
C2�h�P0− + �
 2

N �
K1K2K3


K1+K2+K3,0

� 1

2!
�−−−

PXX�k1;k2,k3�PK1−XK2−XK3− +
1

2!
�−++

PXX�k1;k2,k3�PK1−XK2+XK3+ + �++−
PXX�k1;k2;k3�PK1+XK2+XK3−

+
1

2!
�−++

PPP�k1;k2,k3�PK1−PK2+PK3+ +
1

3!
�−−−

PPP�k1,k2,k3�PK1−PK2−PK3−� . �3.21�
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The leading correction to the Gaussian approximation for the
effective action Seff�X� is of order 1 /
S,

Seff
�1/2��X� = �S��P,X��P, �3.22�

where the subscript indicates the power of 1 /S. The 1 /S
correction is

Seff
�1��X� = �S4�P,X��P −

1

2
��S��P,X� − �S��P,X��P�2�P.

�3.23�

To calculate the Gaussian average in Eq. �3.22� we use the
fact that averaging the field PK for fixed X yields

�PK�P =
�

�k
XK. �3.24�

After proper symmetrization of the vertices we obtain

Seff
�1/2��X� = �
 2

N �
K1K2K3


K1+K2+K3,0 1

3!
�−−−

�3� �K1,K2,K3�XK1−XK2−XK3− +
1

2!
�−++

�3� �K1;K2,K3�XK1−XK2+XK3+� , �3.25�

with

�−−−
�3� �K1,K2,K3� =

hc	


8S
�k1

�1

�k1−
+
�k2

�2

�k2−
+
�k3

�3

�k3−
+

��k1
+ �k2

+ �k2
��1�2�3

�k1−�k2−�k3−
� , �3.26�

�−++
�3� �K1;K2,K3� =

hc	


8S
��k1

− �k2
− �k3

�
�1

�k1−
+
�k2

�3

�k3+
+
�k3

�2

�k2+
+

�k1
�1�2�3

�k1−�k2+�k3+
� . �3.27�

Actually, the terms cubic in the frequencies, which are due to the cubic terms in the PK in Eq. �3.21�, can be omitted because
the contribution of these terms to the self-energy of the X fields is frequency independent to order 1 /S. Since we are only
interested in the frequency dependent part of the self-energy, we may thus replace

�−−−
�3� �K1,K2,K3� → V−�K1,K2,K3� �

hc	


8S
�k1

�1

�k1−
+
�k2

�2

�k2−
+
�k3

�3

�k3−
� , �3.28�

�−++
�3� �K1;K2,K3� → V+�K1,K2,K3� �

hc	


8S
��k1

− �k2
− �k3

�
�1

�k1−
+
�k2

�3

�k3+
+
�k3

�2

�k2+
� . �3.29�

Graphical representations of the interaction vertices V�K1 ,K2 ,K3� are shown in Fig. 2.
At this point we can make contact with the NLSM, which is an effective low-energy theory for staggered spin fluctuations.

In the presence of a uniform magnetic field the Euclidean action of the NLSM is13,12

SNLSM��� =
�s

2
�

0

�

d�� dDr�
�=1

D

�����2 + c−2���� − ih � ��2� , �3.30�

where the unit vector ��� ,r� represents the slowly fluctuat-
ing staggered magnetization, �s and c are the spin stiffness
and the spin-wave velocity at temperature T=0, and ��

=� /�r� is the spatial derivative in direction �=1, . . . ,D.
The model �Eq. �3.30�� can be obtained from the correspond-
ing NLSM for h=0 by substituting ��→��− ih�. Although
this procedure does not explicitly take into account the
magnetic-field dependence of the spin-wave velocity and the
spin stiffness, one usually argues that c and �s in Eq. �3.30�
are effective parameters, implicitly including the effect of the
magnetic field. However, this procedure is based on the as-
sumption that in the presence of a magnetic field, the mag-

FIG. 2. �Color online� Graphical representation of the interac-
tion vertices V+�K1 ,K2 ,K3� and V−�K1 ,K2 ,K3� defined in Eqs.
�3.28� and �3.29�. Solid lines represent the gapless field X−, while
dashed lines correspond to the gapped field X+. The shape of the
symbols reflects the symmetry of the vertices with respect to the
permutation of the labels.
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non dispersions can be characterized by a single spin-wave
velocity c�h�. From Eqs. �2.49a� and �2.49b� it is clear that
this assumption is not justified because the dispersion of
spin-wave mode polarized parallel to the magnetic field in-
volves a different spin-wave velocity than the mode polar-
ized perpendicular to the magnetic field.16 Apparently, there
are no published calculations of the 1 /S corrections to the
magnetic-field dependence of the spin-wave velocity. In the
following section we shall show that in dimensions D�3,
the magnetic-field dependence of the spin-wave velocity
c−�h� of the gapless magnon mode is nonanalytic in h2.

To make contact with our spin-wave approach, let us con-
sider the interaction vertex due to the magnetic field in the
NLSM. Therefore we rewrite Eq. �3.30� as

SNLSM��� =
�s

2
�

0

�

d�� dDr�
�=1

D

�����2 + c−2�����2�
− �V

�

2
h2 +

�

2
�

0

�

d�� dDr�h · ��2

− i�
0

�

d�� dDrM · �� � ���� , �3.31�

where �=�s /c2 and M=�h. Choosing the coordinate system
such that the staggered magnetization points in direction ez

and keeping in mind that h=hex, we now set �=
1−�2ez
+� and expand Eq. �3.31� in powers of the transverse fluc-
tuations �. Retaining only terms up to cubic order in the
fluctuations �=�+ex+�−ey, we obtain in momentum-
frequency space,

SNLSM��� � − �V
�

2
h2 +

�

2
�

K
�


��2 + c2k2 + m
2��−K�K

− i�h�
0

�

d�� dDr�+
2���− + O��

4� , �3.32�

where m−
2 =0 and m+

2 =h2. At the first sight, the cubic inter-
action in Eq. �3.32� does not resemble the cubic term
Seff

�1/2��X� in Eqs. �3.25�–�3.27�. However, the NLSM is only
valid to leading order in the derivatives so that for a com-
parison with Eq. �3.32�, we should expand the vertices in
Eqs. �3.26� and �3.27� to leading order in momenta and fre-
quencies. Moreover, for small h we may approximate �k
�hc so that we obtain

�−−−
�3� �K1,K2,K3� �

	


8S
��1 + �2 + �3� = 0, �3.33�

�−++
�3� �K1;K2,K3� �

	


8S
�− �1 + �2 + �3� = − 2

	


8S
�1,

�3.34�

where we have used the fact that �1+�2+�3=0 by energy
conservation. Finally, using relation �2.62� between con-
tinuum and lattice normalization of the field representing the
staggered spin fluctuations, it is easy to see that for weak
magnetic field, the continuum limit of our lattice action

Seff
�1/2��X� in Eq. �3.25� reduces to the cubic term in expan-

sion �3.32� of the NLSM.

IV. FREQUENCY-DEPENDENT PART OF THE SELF-
ENERGY TO ORDER 1 ÕS

Defining the noninteracting propagators of the staggered
spin fluctuations,

G0,�K� =
�k

Ek
2 + �2 , �4.1�

and expressing the corresponding interacting propagators in
terms of the self-energies ��K�,

G
−1�K� = G0,

−1 �K� + ��K� , �4.2�

the leading frequency-dependent contribution to the self-
energy correction of the gapless magnon mode can be writ-
ten as

�−�K� =
1

�N
�
K�

�


G0,�K��G0,�K� + K�

�V
2�K,K�,− K − K�� , �4.3�

while the self-energy of the gapped magnon mode is

�+�K� =
1

�N
�
K�

G0,−�K��G0,+�K� + K�V+
2�K�,K,− K − K�� ,

�4.4�

where we have used V�−K ,−K� ,K+K��=−V�K ,K� ,−K
−K��. The corresponding Feynman diagrams are shown in
Fig. 3.

The frequency integrations in Eqs. �4.3� and �4.4� can
now be performed analytically; the relevant integrals are

I�n��E1,E2,�� = �
−�

� dx

2�

xn

�x2 + E1
2���x + ��2 + E2

2�

=
in

2
 E1

n−1

E2
2 − �E1 − i��2 +

�E2 + i��n

E2�E1
2 − �E2 + i��2�� ,

�4.5�

where n=0,1 ,2. Explicitly,

FIG. 3. �Color online� Feynman diagrams of the self-energy
corrections to second order in the three-legged vertices �see Eqs.
�4.3� and �4.4��. The slashed tadpole diagrams give frequency-
independent contributions of order 1 /S, which are analytic func-
tions of the magnetic field. Since in this work we are only interested
in the frequency-dependent part of the self-energy, we shall omit the
tadpole diagrams.
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I�0� =
E1 + E2

2E1E2��E1 + E2�2 + �2�
, �4.6a�

I�1� = −
�

2E2��E1 + E2�2 + �2�
, �4.6b�

I�2� =
E2�E1 + E2� + �2

2E2��E1 + E2�2 + �2�
. �4.6c�

The result for the self-energies can be written as

�−�K� =
hc

2	2

16S

2

N�
q

�zq+zk−k+�M0
2�k,q�I++

�0��i�,k,q� + 2M0�k,q�M+�k,q�I++
�1��i�,k,q� + M+

2�k,q�I++
�2��i�,k,q��

+ zq−zk−q−�M−
2�k,q�I−−

�0��i�,k,q� + 2M−�k,q�M−�q,k�I−−
�1��i�,k,q� + M−

2�q,k�I−−
�2��i�,k,q��� , �4.7�

�+�K� =
hc

2	2

16S

2

N�
q

zq−zk−q+�M+
2�q,k�I−+

�0��i�,k,q� + 2M+�q,k�M0�q,k�I−+
�1��i�,k,q� + M0

2�q,k�I−+
�2��i�,k,q�� , �4.8�

where

I�
�n� �i�,k,q� = �2−nI�n��Eq,Ek−q�,�� , �4.9�

and we have introduced the functions

M0�k,q� =
�q

zk−q+
−
�k − �q − �k−q

zk−
, �4.10a�

M+�k,q� =
�q

zk−q+
−
�k−q

zq+
, �4.10b�

M−�k,q� =
�k

zk−
−

�k−q

zk−q−
. �4.10c�

For later reference we note that

M0�0,q� =
�q

zq+
+

2�q − 1

z0−
, �4.11a�

M+�0,q� = 0, �4.11b�

M−�0,q� =
1

z0−
−

�q

zq−
, �4.11c�

M0�k,0� =
1

zk+
+

1

zk−
, �4.11d�

M+�k,0� =
1

zk+
−

�k

z0+
, �4.11e�

M−�k,0� = 0. �4.11f�

Furthermore, if both k and q are small

M−�k,q� =
a2

4Dn4 �q2 − 2k · q� + O�k4,q4,k2q2� . �4.12�

V. RENORMALIZATION OF THE GAPLESS MAGNON

A. Spin-wave velocity

We now show that in dimensions D�3, the leading 1 /S
correction to the spin-wave velocity c̃−�h� of the gapless
magnon is nonanalytic in h2. Therefore we expand for small
� and �k�,

�−�k,i�� = f0�
2 + f1�k

2 + f2�
4 + f3�

2�k
2 + f4�k

4 + O��6� ,

�5.1�

where � and �k=c−�k� are assumed to have the same order of
magnitude, and c−=c0n2 is the spin-wave velocity within lin-
ear spin-wave theory �see Eq. �2.52��. To calculate the renor-
malized spin-wave velocity, we may neglect in Eq. �5.1� the
terms of order �4 involving the coefficients f2, f3, and f4.
Using Eqs. �4.1� and �4.2� we obtain for the infrared behav-
ior of the propagator of the gapless mode

G−�k,i�� =
Z−hcn

2

�2 + c̃−
2k2 . �5.2�

Introducing the dimensionless constants F0 and F1,

F0 = hcn
2f0, F1 = hcn

2f1, �5.3�

the wave-function renormalization factor Z− can be written
as

Z− =
1

1 + F0
� 1 − F0, �5.4�

and the renormalized spin-wave velocity c̃− obeys

c̃−
2

c−
2 =

1 + F1

1 + F0
� 1 + F1 − F0. �5.5�

The constants f0 and f2 associated with the expansion in
powers of frequencies for vanishing external momentum can
be obtained by expanding �−�k=0,�� in powers of �2.
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Using Eq. �4.7� and Eqs. �4.11a�, �4.11b�, �4.11c�, �4.11d�, �4.11e�, and �4.11f� one gets

�−�0,i�� =
hc

2	2

16S

2

N�
q

�zq+
2 M0

2�0,q�I++
�0��i�,0,q� + zq−

2 M−
2�0,q�I−−

�0��i�,0,q��

= �2hc
2	2

16S

2

N�
q
���q +

1+�q

2n2 �2�q − 1��2

Eq+��2Eq+�2 + �2�
+

� zq−

z0−
− �q�2

Eq−��2Eq−�2 + �2�
� . �5.6�

Using hc
2	2=4n2h2, we obtain for the first two coefficients in

the frequency expansion,

f0 =
n2h2

16S

2

N�
q
���q +

1+�q

2n2 �2�q − 1��2

Eq+
3 +

� zq−

z0−
− �q�2

Eq−
3 � ,

�5.7�

f2 = −
n2h2

16S

2

N�
q
���q +

1+�q

2n2 �2�q − 1��2

4Eq+
5 +

� zq−

z0−
− �q�2

4Eq−
5 � .

�5.8�

Keeping in mind that zq− /z0−−�q=O�q2� for small q, it is
easy to see that in the domain of small magnetic field �h
�hc�, the integrals on the right-hand sides of the equations
above are dominated by the first term involving the gapped
mode Eq+. More precisely, the relevant ultraviolet cutoff for
the momentum integrals in Eqs. �5.7� and �5.8� is the inverse
of the length scale

 = c0/h . �5.9�

In D�3 the contribution from wave vectors in the regime
�q� !1 gives rise to contributions to the magnon self-energy,
which are nonanalytic in h2. Keeping in mind that for small
field the magnetic length  is large compared to the lattice
spacing, we may calculate the leading nonanalytic magnetic-
field dependent contributions to Eqs. �5.7� and �5.8� by ex-
panding the integrand in powers of q.

We find that the leading magnetic-field dependence of the
spin-wave velocity c̃− associated with the gapless mode is
determined by f0. Since we are only interested in the nonana-
lytic h2 dependence, we may set n�1. In the thermodynamic
limit we then obtain for the dominant contribution to Eq.
�5.7�,

f0 �
h2aD

2S
� dDq

�2��D

1

Eq+
3 . �5.10�

Consistently neglecting terms which are analytic in h2, we
may ignore the magnetic-field dependence of the noninter-
acting spin-wave velocities, c��c0=2
DJSa, so that energy
dispersions are approximated by Eq−�c0�q� and Eq+

�
h2+c0
2q2. Using hc=2
Dc0 /a we obtain from Eq. �5.7�

for the corresponding dimensionless coefficient for
1�D�3,

F0 = hcn
2f0 = �D

mD−1

S
, �5.11�

where m=h /hc=ha / �2
Dc0� is the relevant dimensionless
magnetic field �see Eq. �2.51��, and

�D = 2D−1DD/2KD�
0

1/m

dy
yD−1

�1 + y2�3/2 . �5.12�

Here

KD =
21−D

�D/2��D/2�
�5.13�

is the surface area of the D-dimensional unit sphere divided
by �2��D. In D�3 we may take the limit 1 /m→� in �D so
that

�D = �D

�
�D/2�� 3−D

2 �

�

. �5.14�

In particular, �2=2 /�. In D=3 the integral �3 depends for
small m logarithmically on the upper limit,

�3 � �3� ln�1/m�, �3� =
6
3

�2 . �5.15�

It turns out that the coefficient F1 in front of the k2 correction
to the self-energy is for small h proportional to h2 so that for
h��, the dominant magnetic-field dependence of the spin-
wave velocity is due to the term F0 in Eq. �5.5�. We thus
obtain for the leading magnetic-field dependence of the spin-
wave velocity of the gapless magnon,

c̃−
2

c0
2 � 1 − F0 = 1 −

2

�S

�h�
hc

, D = 2, �5.16a�

=1 −
6
3

�2S

h2

hc
2 ln� hc

�h��, D = 3, �5.16b�

where we have neglected magnetic-field-independent 1 /S
corrections. Recall that within linear spin-wave theory the
velocity c− of the gapless magnon is analytic in h2=hc

2m2;
from Eq. �2.52� we obtain c−�c0�1−m2 /2� for small m. We
conclude that in dimensions D�3 the dominant magnetic-
field dependence of the spin-wave velocity of the gapless
magnon is due to spin-wave interactions. In Appendix B we
show that the nonanalytic dependence on h2 predicted by Eq.
�5.16a� can be recovered numerically from in the expression
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for the magnon self-energy given by Zhitomirsky and
Chernyshev.10

B. Quasiparticle residue

In view of the fact that the magnetic-field dependence of
the spin-wave velocity of the gapless magnon is dominated
by spin-wave interactions, it is reasonable to expect that also
the higher coefficients in the expansion of the self-energy of
the gapless magnon for small wave vectors and frequencies
exhibit some nonanalytic dependence on the magnetic field.

Consider first the renormalized magnon energies Ẽk, which
can be defined by

Ẽk
2 = Ek

2 + �k Re ��k,Ẽk + i0� . �5.17�

The expansion for small wave vectors is

Ẽk−
2 = c̃−

2k2�1 + Ã−�k̂�k2 + O�k4�� . �5.18�

It is well known22 that only if the coefficient Ã− is positive, a
gapless magnon with momentum k can spontaneously decay
into two magnons with momenta q and k−q. Within linear
spin-wave theory we obtain from Eqs. �2.39� and �2.44� in D
dimensions

Ek−
2 = c−

2k2�1 + A−�k̂�k2 + O�k4�� , �5.19�

Ek+
2 = h2 + c+

2k2�1 + A+�k̂�k2 + O�k4�� , �5.20�

with

A−�k̂� = −
a2

4  1 − 2m2

D�1 − m2�
+

1

3�
�

k̂�
4� , �5.21�

A+�k̂� = −
a2

4  1 − 2m2

D�1 − 3m2�
+

1

3�
�

k̂�
4� . �5.22�

Obviously, for m�1 the coefficient A−�k̂� is negative for all

directions k̂ so that to this order in spin-wave theory, the
gapless magnon cannot spontaneously decay at long wave-

lengths. For larger m the coefficient A−�k̂� decreases and

eventually vanishes at a critical m��k̂�, which depends on the

direction k̂. From Eq. �5.21� it is easy to show that the di-

rection where m��k̂� assumes the smallest possible value is

given by the diagonal k̂x= . . . = k̂D, and that the associated
minimum is m�=h� /hc=2 /
7�0.76. For the special case
D=2 this result has been obtained previously by Zhitomirsky
and Chernyshev,10 who examined the leading 1 /S correction
in the regime h��h�hc numerically.

Apparently, the leading 1 /S correction in the limit of
small magnetic fields, m=h /hc�1 has not been explicitly
analyzed in Ref. 10. In terms of the expansion coefficients

introduced in Eq. �5.1�, we obtain Ã−�k̂�=A−�k̂�+
A−, where
the 1 /S correction is


A− = c0
2hc�f2 − f3 + f4� . �5.23�

Let us consider first the contribution from the coefficient f2
related to the �4 term in the expansion of the self-energy

�−�0, i�� for small frequencies. Because for small h the in-
tegral defining f2 in Eq. �5.8� the dominated by wave vectors
�q�!h /c0, we may approximate

f2 � −
h2aD

8S
� dDq

�2��D

1

Eq+
5 . �5.24�

The integral is easily evaluated to leading order for small
m�1. Introducing the dimensionless coefficient

F2 �
c0

2hcf2

a2 , �5.25�

we obtain for D�3,

F2 � −
�D

S
�mD−3 + O�mD−1�� , �5.26�

with the numerical coefficient

�D =
�2
D�D−2

8
KD�

0

�

dx
xD−1

�1 + x2�5/2

=
�2
D�D−2

8
KD

2

3
�
��5 − D

2
���D

2
� . �5.27�

In particular, in two dimensions �2=1 / �48��. Obviously, for
D�3 the coefficient F2 diverges for m→0, so that the con-
tribution from the term f2 to 
A− is for sufficiently small m
much larger than the linear spin-wave result �Eq. �5.21��. It
turns out, however, that the singular contribution to 
A− due
to f2 is exactly canceled by a similar contribution from the
coefficient f3. In order to extract the dominated contribution
to f3, it is sufficient to approximate the magnon self-energy
�Eq. �4.8�� by

�−�k,i�� �
2h2aD

S
� dDq

�2��DI++
�0��i�,k,q� . �5.28�

Expanding the right-hand side to second order in k and com-
paring with Eq. �5.1�, we obtain

f3 � −
h2aD

8S
� dDq

�2��D

1

Eq+
5 3 −

10

D

c0
2q2

Eq+
2 � . �5.29�

The integral can easily be carried out analytically with the
result f3= f2+O�mD−1�. From Eq. �4.7� we can also show that
the term f4 is of order a2mD−1 /S and can be neglected as
compared to f2 and f3. Because 
A− involves the combina-
tion f2− f3, we conclude that the singular contributions pro-
portional to mD−3 cancel in 
A−, so that the leading
magnetic-field dependence of A− is proportional to mD−1

� �h�D−1. This is small compared to the linear spin-wave re-
sult but nonanalytic in h2, similar to the leading magnetic-
field dependence of the spin-wave velocity in Eqs. �5.16a�
and �5.16b�.

On the other hand, the singular magnetic-field dependence
appearing in the coefficients f2 and f3 does not cancel in the
self-energy �−�k ,�+ i0� off resonance. Retaining only the
singular contributions to Eq. �4.7�, we obtain with f2� f3
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�−�k,� + i0� � − f0�
2 + f2�

2��2 − c̃−
2k2� . �5.30�

The corresponding renormalized magnon Green function for
small m can be written as

G−�k,i�� = Z−�i��
hcn

2

�2 + c̃−
2k2 , �5.31�

where the renormalized spin-wave velocity is given in Eqs.
�5.16a� and �5.16b�, and

Z−�i�� =
1

1 + F0 + hcn
2f2�

2 � 1 − F0 − �a2F2/c0
2��2.

�5.32�

After analytic continuation to real frequencies we obtain for
the renormalized residue of the magnon peak for small m,

Zk− � Z−�i� → c̃−�k�� = 1 − F0 + F2k2a2 = 1 − F0 − �D
k2a2

Sm3−D .

�5.33�

Expressing m=h /hc=ha / �2
Dc0�=a / �2
D � in terms of the
length scale  =c0 /h associated with the magnetic field, we
may alternatively write

Zk− = 1 − F0 −
�̃D

S
�  

a
�3−D

k2a2 = 1 −
1

S
�a

 
�D−1

��̃D − �̃Dk2 2� ,

�5.34�

where �̃D=�D�2
D�1−D and �̃D=�D�2
D�3−D. In particular,
in D=2 the leading momentum dependence of Zk− is propor-
tional to k2 a=k2c0a /h. The higher powers in k become im-
portant for �k �"1, so that the expansion in Eq. �5.34� is
limited to the regime �k�! −1�a−1 where the 1 /S correction
is small compared to unity.

C. Magnon damping

Given the magnon self-energies ��K� in Eqs. �4.7� and

�4.8� and the renormalized magnon dispersions Ẽk, the mag-
non damping can be obtained from

�k = −
�k

2Ẽk

Im ��k,Ẽk + i0� . �5.35�

Zhitomirsky and Chernyshev10 have shown that in two di-
mensions, one should self-consistently take into account the
imaginary part of the magnon self-energy when evaluating
the integrals on the right-hand side of Eq. �4.7�. However, as
long as we are not too close to the critical field h�, the result
for the magnon damping is nonsingular even if we ignore the
damping of intermediate magnons in Eq. �4.7�. We therefore
expect that a simplified version of Eq. �5.35�, taking into
account only the renormalization of the real part of the mag-
non dispersion, yields a qualitatively correct estimate for the
magnon damping away from h�.

To calculate the damping �k− of the gapless magnon for
wave vectors �k��h /c0= −1, it is sufficient to retain in Eq.
�4.7� only the terms involving the functions I−−

�n��i� ,k ,q� be-

cause the imaginary part of the functions I++
�n���+ i0,k ,q�

vanishes for ��2h. Using Eq. �4.12� we obtain for ��0

Im�M−
2�k,q�I−−

�0��� + i0,k,q� + 2M−�k,q�M−�q,k�

�I−−
�1��� + i0,k,q� + M−

2�q,k�I−−
�2��� + i0,k,q��

= −
�

4
� a2

4Dn4�2

W�k,q�
�� − Ẽk−q− − Ẽq−� , �5.36�

where

W�k,q� =
q

�k − q�
�k2 − q2�2 +

�k − q�
q

�q2 − 2k · q�2

− 2�k2 − q2��q2 − 2k · q� . �5.37�

Note that in the nonlinear sigma model the contribution cor-
responding to Eq. �5.36� is neglected because the relevant
vertex involving three gapless magnons is set equal to zero
�see Eq. �3.33��, which is correct to leading order in the
derivatives. Hence, the damping of the gapless magnon can-
not be obtained using the NLSM. To estimate the magnon

damping we set �= Ẽk− and approximate the renormalized
magnon dispersion by

Ẽk− � c−�k��1 + Ā−k2� , �5.38�

where for simplicity we have replaced the direction-

dependent coefficient Ã−�k̂� defined in Eq. �5.18� by some

angular average Ā−. At long wavelengths we then obtain

�k− =
�
D

8�4D�2

h2aD+3

S
� dDq

�2��D

W�k,q�
k

�
�Ẽk− − Ẽk−q− − Ẽq−� . �5.39�

As discussed in the textbook by Lifshitz and Pitaevskii,22 in

the long-wavelength limit the energy conservation Ẽk−

= Ẽk−q−+ Ẽq− can only be satisfied for Ā−�0. From our dis-
cussion in Sec. V B �see also Ref. 10� we know that this
condition is only satisfied in a certain range h�� �h��hc of
magnetic fields below the saturation field. We now restrict
ourselves to this regime without explicitly calculating the

magnetic-field dependence of the coefficient Ā−�0. If h is
not very close to the threshold fields h� and hc, we expect by

dimensional analysis that Ā− /a2 is a number of the order of
unity. The energy conservation then implies that the allowed
vectors q are almost parallel to the direction of k and satisfy
q�k. In fact, it is easy to show that the angle � between k

and q is ��
6Ā−�k−q� due to energy conservation, so that

for Ā−k2�1 we may approximate


�Ẽk− − Ẽk−q− − Ẽq−� �

�� − 
6Ā−�k − q��


6Ā−c−kq
, �5.40�

and
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�k − q� � k − q +
kq

k − q
�1 − cos �� � �k − q��1 + 3Ā−kq� .

�5.41�

Keeping in mind that Ā−kq�1 we obtain from Eq. �5.37�,

W�k,q�
k

� 9kq�k − q� . �5.42�

The integrations in Eq. �5.39� are now elementary and we
obtain for the damping of magnons with wave vectors in the
regime �k�!h /c0�a−1 at zero temperature in D dimensions,

�k−

Ek−
=
�D

S
� h

hc
�2

�
6Ā−�D−3aD+1�k�2D−2, �5.43�

where

�D =
9

64
D
KD−1�

0

1

dx�x�1 − x��D−1

=
9

64
D
KD−121−2D


���D�
��D + 1

2� . �5.44�

In two dimensions we have �2=3 / �128
2�� and

�k− =
�2

S
� h

hc
�2 c̃−�k�3a3


6Ā−

. �5.45�

The �k�3 dependence of the magnon damping has been ob-
tained previously by Zhitomirsky and Chernyshev.10

VI. SUMMARY AND CONCLUSIONS

The main result of this work is the discovery that in quan-
tum Heisenberg antiferromagnets subject to a weak uniform
external field, the leading 1 /S correction to the self-energy of
the gapless magnon is a nonanalytic function of h2 in dimen-
sions D�3. We have explicitly calculated the leading
magnetic-field dependence of the spin-wave velocity and the
momentum-dependent quasiparticle residue of the gapless
magnon. At first sight it is surprising that for quantum anti-
ferromagnets in a uniform magnetic field at zero tempera-
ture, the dimension D=3 plays the role of a critical dimen-
sion, below which fluctuations lead to a nonanalytic
magnetic-field dependence of the magnon spectrum. How-
ever, the gapless magnons in our model can be viewed as an
interacting Bose gas in the condensed phase,23 where the
Bogoliubov mean-field theory is known24,25 to break down in
dimensions D�3.

Finally, let us point out that our hybrid approach between
1 /S expansion and NLSM is a very convenient parameter-
ization of the spin-wave expansion, which should also be
useful in other contexts. While the calculations presented
here can �with some effort� also be carried out using the
conventional parameterization of the 1 /S expansion, our hy-
brid approach greatly facilitates the identification of the
frequency-dependent contributions to the magnon self-
energies which give rise to the dominant magnetic-field de-
pendent corrections to the magnon spectrum.
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APPENDIX A: QUARTIC SPIN-WAVE INTERACTION IN
HERMITIAN FIELD PARAMETERIZATION

In Hermitian field parameterization, the quartic part of the

Hamiltonian Ĥ4� defined in Eqs. �2.72� and �2.73� is

Ĥ4� =
2

N
�

k1k2k3k4


k1+k2+k3+k4,0

�  1

4!
��++++

PPPP�k1,k2,k3,k4�P̂k1+P̂k2+P̂k3+P̂k4+

+ �−−−−
PPPP�k1,k2,k3,k4�P̂k1−P̂k2−P̂k3−P̂k4−�

+
1

4!
��−−−−

XXXX�k1,k2,k3,k4�X̂k1−X̂k2−X̂k3−X̂k4−

+ �++++
XXXX�k1,k2,k3,k4�X̂k1+X̂k2+X̂k3+X̂k4+�

+
1

�2!�2 ��++−−
PPPP�k1,k2;k3,k4�P̂k1+P̂k2+P̂k3−P̂k4−

+ �−−++
XXXX�k1,k2;k3,k4�X̂k1−X̂k2−X̂k3+X̂k4+�

+
1

�2!�2 ��++−−
PPXX�k1,k2;k3,k4�P̂k1+P̂k2+X̂k3−X̂k4−

+ �−−++
PPXX�k1,k2;k3,k4�P̂k1−P̂k2−X̂k3+X̂k4+�

+
1

�2!�2 ��++++
PPXX�k1,k2;k3,k4��P̂k1+P̂k2+X̂k3+X̂k4+�

+ �−−−−
PPXX�k1,k2;k3,k4��P̂k1−P̂k2−X̂k3−X̂k4−��

+ �++−−
PXPX�k1;k2;k3;k4��P̂k1+X̂k2+��P̂k3−X̂k4−�� , �A1�

where the symmetrization symbol �. . .� is defined in Eq.
�2.66� and we have used

�P̂1P̂2X̂3X̂4� =
1

2
�P̂1P̂2,X̂3X̂4�+ +

1

4
�
1+3,0
2+4,0 + 
1+4,0
2+3,0� .

�A2�

For convenience we now introduce the short notation
�k1

��1, �k2
��2 �and similarly for the other labels� and

symmetrize the vertices whenever the interaction is symmet-
ric with respect to the exchange of the field labels. For the
vertices involving four fields of the same type, we obtain

�−−−−
XXXX�k1,k2,k3,k4� =

hc

16S
��1 + �2 + �3 + �4 − 2���1+2

+ �3+4� + �2 ↔ 3� + �2 ↔ 4�� , �A3�
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�++++
XXXX�k1,k2,k3,k4� =

hc

16S
����1 + �2 + �3 + �4� − 2���1+2

+ �3+4� + �2 ↔ 3� + �2 ↔ 4�� , �A4�

�++++
PPPP�k1,k2;k3,k4� =

hc

16S
�− �1 − �2 − �3 − �4 − 2���1+2

+ �3+4� + �2 ↔ 3� + �2 ↔ 4�� , �A5�

�−−−−
PPPP�k1,k2,k3,k4� =

hc

16S
�− ���1 + �2 + �3 + �4� − 2���1+2

+ �3+4� + �2 ↔ 3� + �2 ↔ 4�� . �A6�

The vertices involving two pairs of fields of the same type
can be written as

�−−++
XXXX�k1,k2;k3,k4� =

hc

16S
��1 + �2 + ���3 + �4� − 2���1+2

+ �3+4�� , �A7�

�++−−
PPPP�k1,k2;k3,k4� =

hc

16S
�− �1 − �2 − ���3 + �4� − 2���1+2

+ �3+4�� , �A8�

�++−−
PPXX�k1,k2;k3,k4� =

hc

16S
�3�− �1 − �2 + �3 + �4� − 2���1+2

+ �3+4 − �1+3 − �2+4 − �2+3 − �1+4�� ,

�A9�

�−−++
PPXX�k1,k2;k3,k4� =

hc

16S
�3��− �1 − �2 + �3 + �4� − 2���1+2

+ �3+4 − �1+3 − �2+4 − �2+3 − �1+4�� ,

�A10�

�++++
PPXX�k1,k2;k3,k4� =

hc

16S
�− �1 − �2 + ���3 + �4� − 2���1+2

+ �3+4�� , �A11�

�−−−−
PPXX�k1,k2;k3,k4� =

hc

16S
�− ���1 + �2� + �3 + �4 − 2���1+2

+ �3+4�� . �A12�

Finally, there is one vertex without permutation symmetry
connecting four different field types,26

�++−−
PXPX�k1;k2;k3;k4� =

hc

16S
��1 + ��− �2 + �3� − �4 − 2���1+4

+ �2+3�� . �A13�

Note that the above vertices are analytic functions of the
external momenta and of h2. On the other hand, if we express

Ĥ4� in terms of the usual magnon creation and annihilation

operators, we obtain vertices which are singular for certain
combinations of external momenta.5,6,16

APPENDIX B: NUMERICAL CONFIRMATION
OF EQUATION (5.16a) IN TWO DIMENSIONS

In this appendix we briefly review the calculation of the
1 /S corrections to the field-dependent spin-wave dispersion
in two dimensions as obtained within the conventional 1 /S
expansion by Zhitomirsky and Chernyshev in Ref. 10. From
the numerical analysis of this expression we quantitatively
confirm our result given in Eq. �5.16a� for the linear
magnetic-field dependence of the spin-wave velocity associ-
ated with the gapless magnon. In our notation the expression

for the on-shell renormalized magnon energy Ẽk given in
Ref. 10 can be written as

Ẽk = Ek + Re �
1/S�k,Ek + i0� , �B1�

where the self-energy has the form

�
1/S�k,i�� = �1

1/S�k,i�� + �2
1/S�k,i�� + �3

1/S�k� + �4
1/S�k� .

�B2�

The frequency-dependent contributions to the self-energy are
given by

�1
1/S�k,i�� =

hc
2	2

16S

2

N�
q�

�1
2�k,q�,k − q��

i� − Eq� − Ek−q�
, �B3�

�2
1/S�k,i�� = −

hc
2	2

16S

2

N�
q�

�2
2�k,q�,k + q��

i� + Eq� + Ek+q�
, �B4�

where ̄=− denotes a sign change such that �=−�, and
the functions �1 and �2 are defined as

�1�k11,k22,k33� = 1�1�u11
+ 1v11

��3u22
v33

+ 2u33
v22

� + 2�2�u22
+ 2v22

�

��u11
u33

+ 31v33
v11

�

+ 3�3�u33
+ 3v33

��u22
u11

+ 12v11
v22

� , �B5�

�2�k11,k22,k33� = 1�1�u11
+ 1v11

��2u33
v22

+ 3u22
v33

� + 2�2�u22
+ 2v22

�

��1u33
v11

+ 3u11
v33

�

+ 3�3�u33
+ 3v33

��1u22
v11

+ 2u11
v22

� . �B6�

The frequency independent 1 /S contributions to the self-
energy are
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�3
1/S�k� =

hc

2S
�uk

2 + vk
2 ��− #1� + #2n2 − #3m2 + �k�− #3�

+ #4n2/2 − #1m2�� −
hc

2S
ukvk�#2m2 − #3n2

+ 2�k�#2� − #1n2 + #4m2/2�� , �B7�

�4
1/S�k� =

hc

S
m2�#2 − #1 + #3���uk

2 + vk
2 ��1 − �k�

− 2�kukvk� , �B8�

with

#1 =
2

N
�
k

vk
2 , �B9a�

#2 =
2

N
�
k

vkuk�k, �B9b�

#3 =
2

N
�
k

vk
2 �k, �B9c�

#4 =
2

N
�
k

vkuk. �B9d�

While the self-energy Eq. �B2� can be easily evaluated nu-
merically, it is not very accessible for analytical treatments,
and the leading small field behavior of the spin-wave disper-
sion is not easily extracted from it. The equivalent expression
Eq. �4.7� in the Hermitian field parametrization is more ame-
nable to an analytical investigation of the long-wavelength

physics. To calculate the self-energy given in Eq. �B2� we
performed a two-dimensional integration and used an ana-
lytical continuation to real frequencies. Performing a numeri-
cal derivative with respect to the momentum k at the point in
the Brillouin zone where the dispersion is gapless finally
yields the spin-wave velocity. In Fig. 4 we compare the nu-
merically obtained spin-wave velocity of the gapless mode at
small fields with the prediction of Eq. �5.16�. At very small
fields, the numerical solution indeed confirms the behavior
given in Eq. �5.16a�. For slightly larger fields, corrections
beyond the linear dependence are also visible.

1 T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 �1940�.
2 F. J. Dyson, Phys. Rev. 102, 1217 �1956�.
3 S. V. Maleyev, Zh. Eksp. Teor. Fiz. 30, 1010 �1957�; �Sov. Phys.

JETP 64, 654 �1958��.
4 T. Oguchi, Phys. Rev. 117, 117 �1960�.
5 A. B. Harris, D. Kumar, B. I. Halperin, and P. C. Hohenberg,

Phys. Rev. B 3, 961 �1971�.
6 P. Kopietz, Phys. Rev. B 41, 9228 �1990�.
7 N. Hasselmann and P. Kopietz, Europhys. Lett. 74, 1067 �2006�.
8 S. V. Maleyev, Phys. Rev. Lett. 85, 3281 �2000�.
9 S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. B

39, 2344 �1989�.
10 M. E. Zhitomirsky and A. L. Chernyshev, Phys. Rev. Lett. 82,

4536 �1999�.
11 A. V. Syromyatnikov and S. V. Maleyev, Phys. Rev. B 65,

012401 �2001�.
12 D. S. Fisher, Phys. Rev. B 39, 11783 �1989�.
13 S. Sachdev, Quantum Phase Transitions �Cambridge University

Press, Cambridge, 1999�.
14 F. Schütz, M. Kollar, and P. Kopietz, Phys. Rev. Lett. 91,

017205 �2003�.
15 I. Spremo, F. Schütz, P. Kopietz, V. Pashchenko, B. Wolf, M.

Lang, J. W. Bats, C. Hu, and M. U. Schmidt, Phys. Rev. B 72,
174429 �2005�.

16 N. Hasselmann, F. Schütz, I. Spremo, and P. Kopietz, C. R.
Chim. 10, 60 �2007�.

17 P. W. Anderson, Phys. Rev. 86, 694 �1952�.
18 L. S. Schulman, Techniques and Applications of Path Integration

�Wiley, New York, 1981�.
19 J. W. Negele and H. Orland, Quantum Many-Particle Systems

�Addison-Wesley, Redwood City, 1988�.
20 T. Gollisch and C. Wetterich, Phys. Rev. Lett. 86, 1 �2001�; M.

Weyrauch and A. W. Schreiber, ibid. 88, 078901 �2002�.
21 M. E. Zhitomirsky and T. Nikuni, Phys. Rev. B 57, 5013 �1998�.
22 E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics II �Perga-

mon, Oxford, 1980�.
23 A. Kreisel, N. Hasselmann, and P. Kopietz, Phys. Rev. Lett. 98,

067203 �2007�.
24 C. Castellani, C. Di Castro, F. Pistolesi, and G. C. Strinati, Phys.

Rev. Lett. 78, 1612 �1997�; F. Pistolesi, C. Castellani, C. D.
Castro, and G. C. Strinati, Phys. Rev. B 69, 024513 �2004�.

25 C. Wetterich, arXiv:0712.1926 �unpublished�.
26 There is a mistake in Eq. �13e� of Ref. 7: the term �1−�2−�3

+�4 should be multiplied by a factor of 2. Taking into account
the different labeling of the fields in Ref. 7 as compared to the
labeling in Eq. �A1� �so that we should rename 3↔4�, in the
limit of vanishing magnetic field the vertices in Eqs. �A3�–�A13�
are then equivalent to the vertices given in Ref. 7.

FIG. 4. Evolution of the spin-wave velocity of the gapless mag-
non as a function of the external magnetic field for S=1 /2. The full
line shows the spin-wave velocity obtained numerically from Eq.
�B1� normalized by the zero-field value c̃0�1.16c0 for S=1 /2 �see
Ref. 4�. The dashed line shows the prediction of Eq. �5.16a�. Good
agreement is obtained in the limit of vanishing fields, which con-
firms that the leading field dependence is described by Eq. �5.16a�.

QUANTUM HEISENBERG ANTIFERROMAGNETS IN A… PHYSICAL REVIEW B 78, 035127 �2008�

035127-17


