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Symmetry-induced tunneling in one-dimensional disordered potentials
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A nontraditional mechanism of tunneling at macroscopic distances is proposed for a wave packet localized
in a one-dimensional disordered potential with mirror symmetry, V(-x)=V(x). Unlike quantum tunneling
through a regular potential barrier, which occurs only at the energies lower than the barrier height, the proposed
mechanism of tunneling exists even for weak white-noise-like scattering potentials. It also exists in classical
circuits of resonant contours with random resonant frequencies. The latter property may be used as a new

method of secure communication, which does not require coding and decoding of the transmitting signal.
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I. INTRODUCTION

It is well known that all quantum states in a one-
dimensional white-noise potential are strongly localized and
quantum transport is limited by the localization length I(E).
Statistical correlations in the disordered potential may give
rise to a discrete set' or to a continuum of delocalized
states>® for short- or long-range correlation, respectively.
Correlations are a manifestation of the local properties of a
random potential. The symmetry is a global property; there-
fore, its effect on the transport may be even stronger.

Here we propose a symmetry-driven mechanism of tun-
neling, which is specific for the random potentials only. Usu-
ally, the symmetry is considered to be an irrelevant property
since a localized state is formed due to some local fluctua-
tions and it is insensitive to global behavior of the potential
outside the radius of localization. However, the symmetry of
the potential, V(-x)=V(x), leads to a definite parity of the
wave functions. Even or odd parity means that the wave
function has two equal peaks with half-width ~/(E) centered
at the symmetric points. A symmetry-induced correlation be-
tween these peaks gives rise to the mechanism of tunneling
of a wave packet (or excitation), independently of how far
apart the peaks are. Due to this mechanism, a wave packet
injected at some point tunnels at macroscopic distances to-
ward the symmetric point. Natural disorder usually does not
exhibit the mirror symmetry. Nevertheless, the proposed
mechanism of tunneling is not of pure academic interest,
since it may be observed also in a classical system—a ran-
dom electrical circuit where the symmetry can be artificially
introduced. In what follows, we propose a method of secure
communications based on the symmetry-induced mechanism
of tunneling. The merit of this method is that it does not
require a coding-decoding procedure.

To demonstrate the main idea of the symmetry-induced
tunneling, we consider the tight-binding Anderson model*

l//n+l + l;bn—l = (E+ Gn)ll/n’ (1

where E is the eigenenergy and ¢, is the on-site energy.
Schrodinger Eq. (1) gives an exact description of the elec-
trical circuit of classical impedances Z, and z,, shown in Fig.
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1. Application of Kirchhoff’s loop rule to three successive
unit cells of the circuit leads to the following linear relation
between the currents circulating in the (n—1)th, nth, and (n
+1)th cells:

ZnIn+1 + Zn—lIn—l = (Zn +27,+ Zn+1)In' (2)

If the vertical impedances are all the same, z,=z,, this equa-
tion is reduced to the tight-binding model with diagonal dis-
order [Eq. (1)] with €,=8,/z, and E=2+Z,/z,. Here the im-
pedance Z, is split into mean value Zy,=(Z,) and fluctuating
part 6,=Z,-Z.

This exact correspondence allows testing of quantum ef-
fects of Anderson localization using classical electrical cir-
cuits with random elements. In fact, during the last decade,
chaotic resonant cavities have been successfully used for
testing the predictions of quantum chaos.’ It is worth men-
tioning that electrical circuits have been widely used for
modeling different physical phenomena. The first application
of the method of equivalent circuits probably goes back to
Lord Kelvin who used a discrete RC chain to study a signal
transmission through a transatlantic cable. Many bright ex-
amples of electrical circuits that model quantum-mechanical
behavior for simple but fundamental systems are given in the
book by Pippard.® Recently, it was proposed that the electro-
magnetic waveguide can be used to model such an exotic
effect as Hawking black-hole radiation.” Some effects of cor-
related disorder have been studied in the experiments with
microwave propagation through disordered waveguides® and
subterahertz response of superconducting multilayers.” Ex-
perimental realization of a system with desirable correlations
and observation of the localized and extended states is much
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FIG. 2. (Color online) Two eigenstates with different parity (W
is even and W, is odd) in random symmetric potential €_,=¢€, with
(€,)=0 and <62n)=eé=0.l. These states belong to a doublet with
energy splitting AE. Insets: (a) Blow up of the right peaks of the
eigenfunctions showing that they possess different parity. (b) Nu-
merical result for the localization length as compared to the energy-
independent function /(E)=40. The compensation of the energy de-
pendence in [y(E) is not of principal importance and is done only to
simplify the discussion of the numerical results.

easier in electromagnetic devices®® than in heterostructures
with intentionally introduced disorder.!”

II. TIGHT-BINDING MODEL WITH SYMMETRIC
POTENTIAL

If the potential in Eq. (1) is an even function, €,=€_,, the
eigenfunction W is either an even or odd function of n. If an
eigenfunction W' is localized near a site n, the amplitude of
this state at the origin is exponentially suppressed, ¥,_,
cexpl—|ng|/I(E,)], provided |ng|>I(E,). However, due to
definite parity of the wave function, another peak appears at
the symmetric point n=-n,. Strong localization of any exci-
tation in the random potential is a result of destructive inter-
ference between propagating and backscattered waves. The
appearance of the symmetric peak can be explained as a
result of constructive interference. It leads to exponential in-
crease of the amplitude of the wave, i.e., to antilocalization.!!

In Fig. 2, we show two quasidegenerate eigenstates cal-
culated for the symmetric potential of 1000 sites (i.e., only
500 of these sites are independent). The inverse localization
length (the Lyapunov exponent) can be estimated from the
formula®

o]

@(p) = 1+22 &k)cos(2uk).
k=1

IFYE) = ;' (E)e(w),

(3)

Here, [;'(E)=€}/(8 sin® u) is the Thouless'? result for the
white-noise disorder, the function ¢(u) accounts for the con-
tribution of correlations with correlation function (e,€,.,;)
=620§(k), and the dispersion relation is E=2 cos u. The re-
sults shown in Fig. 2 are obtained not for white noise but for
slightly correlated disorder with correlator &1)=-1/2 and
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&(k>1)=0. These short-range correlations are introduced in
order to compensate for the smooth energy dependence of
Io(E). It is easy to see that the contribution of the term with
k=1 in Eq. (3) provides a flat dependence l_l(E)=(:‘20/4
=const. Inset (b) in Fig. 2 shows the numerical values of
I(E), fluctuating around 40, in agreement with Eq. (3).

The energy spectrum of Eq. (1) with symmetric random
potential is similar to the spectrum of a double-well poten-
tial. It consists of discrete levels, most of them lying within
the interval —2<<E<2. The energy levels are arranged in
doublets of states with different parity. The energy S(E) be-
tween the doublets scales with the length of the system N as
1/N. The energy splitting AE in the doublet is exponentially
small, A(E)«<exp[-2|ny|/I(E)], i.e., the states are quaside-
generate. Both &(E) and A(E) fluctuate with energy.

The symmetry-induced tunneling can be observed in the
dynamics of an excitation. Let a perturbation be applied at
one of the sites of the symmetric random sequence. In the
simplest case, the perturbation is a & excitation at the site ny,
#,(1=0)=46,, . Since this excitation is not an eigenfunction
of the system, its temporal evolution is represented as a su-
perposition,

Un(1)= 2 C W,y exp(=iE ). 4)

The sum in Eq. (4) runs over the eigenstates, which are all
localized. The eigenstates that are centered closer to the ini-
tial excitation contribute more because the coefficient Cﬁ‘o

=(V| ,(t=0))= ‘I’,‘fo is the overlapping integral between the
initial excitation and the eigenstate W, Let the eigenstates
with maximum overlapping be W, and W They form a

doublet with the central energy E=(E,+Eg)/2 and splitting
AE=E,—E;. Taking into account only these two terms in Eq.
(4), the following approximate result for the evolution of the
initial excitation can be easily obtained:

\ ]( E) 2 2 - '

Here, V. (n)=(VsxW¥,)/ V2. Each of these linear combina-
tions is a single-peak function. The peak of W, is always
close to the point of initial excitation. For the eigenfunctions
shown in Fig. 2, the peak W, is localized in the region of
negative n.

At the early stage of evolution, the initial § peak at ng

quickly spreads over the region of width 2/(E) =~ 80 [see Fig.
3(a)]. Further spreading is suppressed by Anderson localiza-
tion. Equation (5) becomes valid at a much later stage of the
evolution when the essential part of the & packet tunnels at
the macroscopic distance 2|n| and the peak emerges at the
symmetrical point —|n|. Two instants of this slow tunneling
are shown in Figs. 3(b) and 3(c). The time of tunneling or the
period of oscillations of the density |#,(1)|* is T=2m/AE. If
the distance 2|n| between the peaks exceeds the localization
length, this time is large, Texp[2|ny|/{(E)] and the ampli-
tude of the wave function at the origin is small
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FIG. 3. (Color online) Spatial distribution of the probability
|, (t)|? at three instants: (a) Spreading of the initial peak at the
transient stage, r=9.6 X 107% T. The initial peak of amplitude 1 at
no=—153 is shown in gray. The secondary peak is not visible at this
stage. (b) The secondary peak at —ny=153 is well developed at ¢
=0.241 T. (c) The two peaks become almost equal at =0.607 T.

xexp[—|no|/I(E)]. The wave function, however, grows expo-
nentially toward the symmetrical point —n,. This increase is
a manifestation of the tunneling induced by the symmetry.
The dynamics of penetration of the initial excitation to the
symmetrical point is very similar to the tunneling through a
potential barrier, although there is no real barrier for weak
disorder 620< 1. Exponential behavior of the envelope of the
wave functions is due to multiple-scattering events. One can
speak about an effective double-well potential, which pro-
duces the same energy spectrum. Calculation of the param-
eters of this effective potential is a challenging inverse-
scattering problem. The dynamics of tunneling through a real
barrier with fluctuating parameters has been studied in Ref.
13. Tunneling processes without a real barrier are known in
dynamical systems, where quantum transitions occur either
between strongly localized states'* or between classically
separated regions in phase space.’ It is worth mentioning
that regular Bloch-type oscillations in a potential with corre-
lated disorder may also occur due to the presence of two
mobility edges in the energy spectrum.'®

III. SYMMETRIC RANDOM CIRCUIT

Application of the proposed ideas to random electrical
circuits is straightforward. In what follows, we demonstrate
the evolution of the signal in a circuit shown in Fig. 1, with
vertical impedances being equal to solenoids with gz,
=—iwL, and horizontal impedances being capacitors with
fluctuating Z,=i/(wC,)=(i/ wCy)(1-6C,/Cy). Here, C,
=Cy+dC, and C,=C_,. Propagation of an excitation in this
circuit follows the equation
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Cn+1Vn+l +Cpy ”n—l - 2CnVn =V,/Ly, (6)

where V,, is the voltage drop at the nth capacitor. This equa-
tion requires two initial conditions. Let the voltage drop V,,
be applied at =0 to the capacitor C"o’ inducing the initial

current IO=CnOV()' Stationary solutions [V, «exp(—iwt)] are
either even or odd functions and the spectrum of eigenfre-
quencies consists of a set of doublets. For an infinite chain,
the majority of the eigenfrequencies occupy an interval
[wy/2,%], where the resonant frequency wy=(LoCo)~"". As-
suming that the initial perturbation excites only the closest to
the site n, pair of eigenstates (V4 and V), the solution of Eq.
(6) can be written in a form similar to Eq. (5),

IZOERY. Coll(a_)) {Cnov0 sin(@r)

- IjOCOS((I)t):| sin(%t> V_(n) + {C,, V, cos(wr)
w 2 0

+ I—_OSin(LT)t)}cos(%t) V+(n)}. 7)
%) 2

Here, @ is the center of the doublet and Aw is the frequency
splitting. Single-peak functions V.(n)=(Vs*V,)/\2 play
the same role as W do in Eq. (5). Equation (7) shows that
the evolution of the initial signal in a random (symmetric)
electrical circuit is similar to the wave-packet evolution ob-
tained from the tight-binding model. There is an obvious
symmetry-induced tunneling of the initial signal at macro-
scopic distances.

The effect of tunneling can be used for secure communi-
cations. Instead of coding and decoding a signal, we propose
to suppress the transmitted signal by a filter containing a
circuit with random elements. The filter is inserted between
the emitter output and the transmitting line. The signal, sup-
pressed to the level of noise, can be safely transmitted to a
receiver over a transmitting line of arbitrary length. At the
input of the receiver, the signal is restored using another
filter, which is the symmetric counterpart of the output ran-
dom circuit. The input filter restores only the signal (not
noise), since constructive interference occurs only for the
coherent part, which has passed through the output filter at
the emitter. The noncoherent part (noise or any irrelevant
signal) will be exponentially suppressed by the receiving
random circuit. The two identical random circuits may be
fabricated as microchips, which are installed (or replaced)
simultaneously at the emitter and receiver. In the absence of
dissipation and asymmetry between the two random ele-
ments, the proposed method guarantees a robust restoration
of the signal. Inevitable Joule losses in the transmitting line
have to be compensated for by an amplifier, which does not
destroy the coherency of the signal.

A disadvantage of this method is the low rate of transmis-
sion. It is the prize one always pays for security. If the output
signal is exponentially suppressed, the rate of transmission
becomes exponentially low. Finite resistance of each reso-
nant contour, which is neglected in the previous consider-
ation, also limits the transmission rate. Nevertheless, our nu-
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FIG. 4. (Color online) Distribution of charges (arbitrary units)
for two doublets with @~ 154 MHz, T=~60 ms, 2|n|=470 (thin
line) and @~ 162 MHz, T=39 us, 2|ng|=162 (thick line) in one
of the possible realizations of a random symmetrical circuit contain-
ing 500 pairs of resonant contours. Only one eigenstate for each
doublet is shown.

merical analysis shows that a reasonable compromise
between low rate and high security is possible.

Let us consider a symmetric circuit of 500 pairs of reso-
nant contours with Ly=50 uH, C,=30 pF, and (8C,)’
=200 (pF)%. Let the contours be fabricated of high quality
elements and possess the Q factor 5X 10°. The signal may
tunnel through the random circuit if the tunneling time T
does not exceed the decay time 27Q/ w,, where the resonant
frequency wy=25 MHz. This gives the low limit for the
splitting, Aw/wy=exp(=2|ny|/1)>1/Q=2X%10"* Now one
obtains that the distance 2|ny| between the centers of tunnel-
ing cannot exceed /(w)In Q= 8.5/(w). At the same time, 2|n,|
cannot be very short, otherwise the signal passes through the
filter without sufficient suppression. Assuming that the
power of the signal at the center of the symmetric circuit
(which is the point where the output signal enters into the
transmitting line) is reduced to not less than e*~55 times,
the following interval for 2|n| is obtained: 4/(w)<2|n,
< 8.5l(w). For the random circuit with aforementioned pa-
rameters, we found at least five doublets that satisfy this
inequality. They are centered at different sites and have dif-
ferent localization lengths that lead to different tunneling
times. In Fig. 4, we show the distributions of charges Q(n)
for two doublets with tunneling times of 39 us and 60 ms.
Since the overlapping between these eigenstates is weak,
they may provide different levels of security and rates of
transmission. Moreover, each realization of a finite set of
random values of 6C,, taken from the same statistical en-
semble, gives rise to different regimes. Thus, the appropriate
regime can always be found.

In our analysis, we ignored the decoherence effects,
which are inevitable at finite temperatures. In order for the
electron tunneling between the symmetric points to be ob-
servable, the distance 2|n | between them cannot be less than
the localization length I(E) and, at the same time, cannot
exceed the phase-breaking length /,,
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I(E) <2|ny| < 1. (8)

In truly one-dimensional systems, where only forward- and
backward-scattering processes are allowed, the localization
length is always of the order of the elastic mean free path,
[(E)~1,. Real estimates of the scattering mechanisms in
natural one-dimensional systems (e.g., molecular wires)
show that [,~ 14 at T=1-2 K. This means that Eq. (8) can
be hardly satisfied, at least at a few kelvin. However, in
artificial superlattices, such as those fabricated in Refs. 9 and
10, the localization length I(E) can be strongly reduced due
to correlated disorder.!® This mechanism of enhancement of
localization length may help in producing states with very
small /(E), thus giving a possibility for the condition (8) to
be realized in superlattices.

There are two more effects, temperature smearing'® and
hopping conductivity,”® that may destroy the localized re-
gime of electron transport. Fortunately, this is not the case
for photons with wavelength in the infrared region and
longer. There is also no decoherence caused by temperature
for electromagnetic waves, since its phase is not affected by
lattice fluctuations. The only essential result of temperature
on the propagation of electromagnetic waves (or electrical
signals) is damping due to Joule losses. This makes possible
observation of many quantum effects at room
temperatures.>®!8

IV. CONCLUSIONS

In conclusion, we demonstrate that in a symmetric ran-
dom potential, the localized quantum states have two peaks
as is required by the parity. Fast spreading of the initial &
excitation within localization length is followed by slow
growth due to tunneling at the symmetrical point. This effect
opens a possibility for secure communications that does not
require coding and decoding of the transmitting signal. The
random circuits may operate in a wide range of radio fre-
quencies, using commercial capacitors and inductors. They
can also be fabricated and operated in the near infrared re-
gion using the concept of plasmonic nanoelements proposed
in Ref. 21 or random optical resonators. In the latter case, the
Q factor may be as large as 10'°, i.e., dissipation does not
impose a limitation for the level of security, allowing very
strong suppression of the signal.
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