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The model of crystalline arrays of quantum dots is studied with dynamical mean-field theory. Low-
temperature transport coefficients are calculated. The material is found to be metallic with a large Seebeck
coefficient, which has a good promise for thermoelectric applications.
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I. INTRODUCTION

Heavy-fermion systems have been shown to have promise
for thermoelectric applications both experimentally1 and
theoretically.1,2 The advantage of such materials lies in the
high thermoelectric coefficient due to the Kondo effect. A
similar Kondo effect is present and widely studied in the
quantum dots.3–8 Nanoengineering can build new materials
with arrays of quantum dots9–11 that may take advantage of
their Kondo effect for high thermoelectric coefficient. Other
properties of the materials, including conductivity and ther-
mal conductivity, can be tailored to improve the overall per-
formance. An example of such nanoengineered materials,
crystalline arrays of quantum dots connected by conducting
chains of linkers, is proposed in a previous paper.12 A proto-
type of such material is under study in Yuan et al.13 The
possible advantages of this material include better electrical
conductivity due to the linker atoms, lower thermal conduc-
tivity due to the heavy mass of quantum dots, and higher
thermoelectric coefficient due to the Kondo effect. These
possible properties make the material interesting for thermo-
electric applications.

In our theoretical model, we treat every quantum dot as an
Anderson impurity in the periodic Anderson model
�PAM�.3–5 Electrons in these sites are strongly correlated due
to the on-site Coulomb interaction. These sites are called
correlated sites. In the linker sites between quantum dots,
such Coulomb interaction is absent. So they are treated as
sites in a simple tight-binding model. This theoretical model
can be considered as an extension of the Hubbard model by
adding to it non interacting linker sites. This extension makes
our model very different from the Hubbard model. The ex-
change interaction between two neighboring correlated sites
in the Hubbard model is replaced by superexchange in our
model. This results in different magnetic properties for our
model, which may be the topic for future study. Another
obvious difference is the metal-insulator transition, which
appears in both the Hubbard model and the PAM,14 does not
appear in our model as shown below. Our model shows im-
proved conductivity and Seebeck coefficient. The difference
between our model and PAM has been discussed in length in
a previous paper.12

The model is studied in the infinite-dimensional cubic lat-
tice with dynamical mean-field theory �DMFT�. The DMFT
becomes exact for such infinite-dimensional lattice model15

and is widely used for lattice models with strong
interactions.15,16 For our study, the infinite-dimensional cubic

lattice is divided into two sublattices, which can be con-
structed according to following rule: the nearest neighbors of
any given site are assigned to the opposite lattice. The two-
dimensional example is shown in Fig. 1. One sublattice is
occupied by conducting linkers. The other sublattice is occu-
pied by the correlated sites. The effective single-impurity
Anderson model �SIAM� from the mapping of this lattice
model is solved by Wilson’s numerical renormalization
group �NRG�.17 The advantage of this impurity solver lies in
its accuracy for the low-energy properties,18 which is essen-
tial for this study. The self-consistency calculation is done at
zero temperature. Transport properties at finite temperature
are interesting. At temperatures much lower than the Kondo
temperature TK, the spectral functions and self energies can
be approximated by the corresponding zero-temperature re-
sults. With such approximations, we can discuss the transport
properties for our model using Kubo formulas at low tem-
perature. The details of the theory are given in the next sec-
tion.

We work in the paramagnetic phase. The local spectral
function, optical conductivity, and Seebeck coefficient are
studied. This study highlights the possibility of quantum dot
arrays for thermoelectric applications.

FIG. 1. �Color online� The two-dimensional version of the lat-
tice considered in this study. The lattice we studied in the paper is
the infinite-dimensional extension of it.
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II. THEORY

The Hamiltonian for our model is given by

H = �
i�
��� f − ��f i�

† f i� +
U

2
f i�

† f i�f i−�
† f i−��

+ �
i�

��c − ��Ci�
† Ci� + �

i�
��

�

t�Ci+��
† f i� + H.c.� ,

�1�

where f i��f i�
† � destroys �creates� an electron with spin � and

binding energy � f at correlated site i. � is the chemical po-
tential. U denotes the on-site Coulomb interaction. Similarly,
Ci��Ci�

† � destroys �creates� an electron with spin � and bind-
ing energy �c at linker site i. The last term describes the
coupling between correlated sites and linker sites with matrix
element t�. For correlated site i, i+� denotes the nearest
linker sites. The two-dimensional version of this lattice is
shown in Fig. 1. In order to have a nontrivial density of
states, t� must scale with 1 /�d,15 where d is the dimension of
the lattice. We set t�= t /�2d in this study. We assume the
presence of some external bath that keeps the chemical-
potential constant. This constant can be absorbed in � f and
�c, and � is dropped in the following formulas.

We take the distance between the nearest-neighbor sites to
be the unit for distance. The nearest sites for site
i�x1 ,x2 ,x3 , . . .� can be set as

i + ��1 = �x1,x2,x3, . . .� + ��1,0,0, . . .� ,

i + ��2 = �x1,x2,x3, . . .� + �0, � 1,0, . . .� ,

i + ��j = �x1,x2,x3, . . .� + �0,0, . . . , � 1�jth�, . . .�, . . . .

The vectors between neighbors define all possible lattice
vectors.

a1 = �−2 − �−1 = �1,− 1,0, . . .� ,

a2 = �+2 − �−1 = �1,1,0, . . .� ,

aj = �+j − �−1 = �1,0, . . . ,1�jth�, . . .� .

The unit vectors bi in momentum space �reciprocal lattice�
are determined by

bi · aj = 2��i,j . �2�

With the above formulas, the noninteracting Hamiltonian in
momentum space is

H0 = �
k,�

	� f fk�
† fk� + �cCk�

† Ck� + �VkCk�
† fk� + H.c.�
 , �3�

k = �
i

kibi

2�
; ki =

1

N
,

2

N
,

3

N
, . . . , �4�

Vk = t��1 + ei�k1+k2� + �
j=1

�

eikj + �
j=3

�

ei�k1+k2−kj��
= t��eik1 + eik2 + ei�k1+k2�/2��eik1+k2/2 + �

j=3

�

eik1+k2−2kj/2�
+ H.c.�� . �5�

Here N is the number of unit cells in one axis. Considering ki
as random numbers between 0 and 1, 
Vk
 obeys Gaussian
distribution function,

P�
Vk
� =
1

�2�t2
e−
Vk
2/2t2. �6�

The exact lattice Green’s functions can be expressed as

Gkf��� =
1

� − � f − 	 f�k� −

Vk
2

� − �c

, �7�

Gkc��� =
1

� − �c −

Vk
2

� − � f − 	 f�k�

, �8�

where 	 f�k� is the f electron self-energy resulting from the
Coulomb interaction. Within DMFT, 	 f�k� is approximated
by the interaction induced self energy 	 f of the effective
SIAM. The Green’s function for the corresponding effective
SIAM is given by

Gef��� =
1

� − � f − 	 f − 
���
, �9�

where 
��� is the hybridization function, which is deter-
mined by the self-consistency condition of DMFT. The self-
consistency condition states the on-site �local� Green’s func-
tion for the model should be equal to the Green’s function of
the effective SIAM,

Gef��� =
1

N
�

k

Gfk��� =� P�
Vk
�d
Vk


� − � f − 	 f + i� −

Vk
2

� − �c

.

�10�

For numerical reasons,2,23 an extra small imaginary self-
energy � has been added to the f electron Green’s function in
the above formula for particle-hole asymmetrical cases. This
extra self-energy � can be considered as the self-energy due
to impurity scattering. This term turns out to affect the trans-
port properties, as suggested by its physical explanation.

The self-consistent calculations are conducted as follows.
For a given self-energy 	 f, the hybridization function 
���
is determined by the self-consistency equation �10�. Then
NRG �Refs. 19–22� is applied to calculate the spectral func-
tions. The real part of the Green’s functions are obtained
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from standard Kramers-Kronig transformation. The self-
energy 	 f is determined by the ratio of two Green’s functions
as23

	 f = U
F���

Gef���
, �11�

where F���= ��f�f−�
† f−� 
 f�

†�����. The self-consistency condi-
tion and self-energy are used to update the hybridization
function 
���. The above steps are repeated until the self-
consistency is achieved.

The current operator is24

j� = − it��
i,�

��f i+�
† Ci + �Ci+�

† f i� , �12�

where �s are the same as those in the Hamiltonian. The op-
erator can be written in momentum space as

j� = �
xi
�− 2t�

k

sin�k · xi�ei�k·x0+��fk
†Ck + H.c.�x̂i, �13�

where xi= 	0,0 , ¯ ,1�ith� , ¯
. x̂i is the unit vector in xi
direction. x0 and � are two constants.

The optical conductivity can be expressed as the current-
current correlation as25

d���� =
1

i�N
�
xi

��jxi

jxi

�� �14�

In the d→� limit, the current operator vertex corrections
vanish. The correlation function can be evaluated
straightforwardly.25 The following formula is derived for the
optical conductivity,

���� =
2�

d
t2� dk� d�P�
Vk
�Af�
Vk
,��

�
1

2
�Ac�
Vk
,� + ��

nF��� − nF�� + ��
�

+ Ac�k,� − ��
nF��� − nF�� − ��

− �
� , �15�

where Af�
Vk
 ,��=−Im Gkf��� /� and Ac�
Vk
 ,��
=−Im Gkc��� /� are spectral functions. nF is the Fermi dis-
tribution function. P�
Vk
� is defined in Eq. �6�. The transport
distribution function as defined in the Ref. 26 �also known as
generalized relaxation time� can be identified with the above
equation to be


��� =
2�

d
t2�

−�

�

P�
Vk
�Af�
Vk
,��Ac�
Vk
,��dk . �16�

The Seebeck coefficient can be expressed as the ratio be-
tween two linear transport coefficients as2

L11 =
e2

�
�

−�

� �−
dnF���

d�
�
���d� , �17�

L12 =
e

�
�

−�

� �−
dnF���

d�
��
���d� , �18�

S =
kB

e

eL12

kBT

1

L11
= 86

eL12

kBT

1

L11
��V/K� . �19�

The absolute value of Seebeck coefficient can be derived
from the above formulas as long as 
��� is known.

As indicated by the above formulas, transport properties
can be discussed only at nonzero temperature. At tempera-
tures much lower than the Kondo temperature TK, it is rea-
sonable to believe the spectral functions and self energies
can be approximated by the corresponding zero-temperature
results. The model we consider has a very high Kondo tem-
perature, which can be estimated by20

kBTK = �
�0�U/2�1/2e��f��f+U�/2
�0�U. �20�

As all terms, including 
�0�, are of the same order, kBTK is
roughly of the order 0.1U. We can calculate the transport
coefficients with Kubo formulas for temperature much lower
than 0.1U. Typically, a temperature smaller than 0.01U is
used for following calculations.

III. RESULTS

The calculation was done for different sets of parameters
�� f ,�c ,U�. The parameters are chosen to satisfy
�� f +Re 	 f�0���c�0. Such a parameter set avoids a gap
across the chemical potential in the hybridization function

���. The cases with a gap across the chemical potential in
the hybridization function require extra complicated treat-
ments, which is left out of this paper. The results shown
below are typical for our calculations.

A. Spectral function

A typical f electron local spectral function for the particle-
hole symmetrical case is shown in Fig. 2. t=1 and U=4 have
been chosen for the plot. The local spectral function for Hub-
bard model with the same parameters is shown for compari-
son. For the Hubbard model, the one-particle spectrum de-
velops the typical three-peak structure with a quasiparticle
peak at �=0 and the two Hubbard bands at �U /2. Three-
peak structure is also obtained for our model. However, the
quasiparticle peak is broadened. The two Hubbard bands
shrunk and shifted outward. The Hubbard bands start at
�U /2, instead of having a maximum there. This increases

�1.0 �0.5 0.0 0.5 1.0
0

1

2

3

Ω

A
�Ω
�

FIG. 2. �Color online� The on-site spectral function for the
particle-hole symmetrical case. The black curve is for our model.
The blue �gray� curve is for Hubbard model. The parameters are
t=1 and U=4. Unit for � is 10t.
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the weight of the quasiparticle in our model, which is impor-
tant for getting better conductivity.

A typical self-consistent f electron local spectral function
for the particle-hole asymmetrical case is shown in Fig. 3.
t=1, U=3, � f =−2.5, and �c=−0.5 have been chosen for the
parameters. The spectral function has a five-peak structure.
Three peaks are similar to the peaks of the single-impurity
Anderson model or Hubbard model. The negative peak
around chemical potential is the quasiparticle peak due to the
Kondo effect. Similar to the symmetrical case the Hubbard
bands start at band energy � f ,� f +U, instead of having a
maximum there. There are two extra peaks corresponding to
the peaks in the hybridization function. The hybridization
function is shown in the inset of Fig. 3. The two extra peaks
are produced by the peaks of the electron bands. For single-
impurity Anderson model, the coupling between the impurity
and the band is weak. The structure of the band does not
show up in the f electrons spectral function. In our model,
the coupling is comparable to the band width and Coulomb
interaction. There are two extra peaks due to the structure of
the bands.

B. Optical conductivity

The optical conductivity for the symmetrical case is
shown in Fig. 4. In the same plot, the optical conductivity for
the Hubbard model is shown. The peak at nonzero frequency
corresponds to the transition between quasiparticle peak and
the Hubbard bands. The positions agree with the peaks in
spectral functions. The peaks around the zero frequency are
Drude peaks, corresponding to the transitions inside the qua-
siparticle peaks. The presence of Drude peaks suggest the
solutions for the models are metallic. As indicated by the
higher Drude peak, the conductivity of our model should be
better than that of Hubbard model. This suggests that the
inclusion of the linker sites does increase the conductivity of
the material. The optical conductivity for an asymmetrical
case is shown in Fig. 5. The basic feature is the same as the
symmetrical case.

The Hubbard model is well known to show a metal-
insulator transition with increasing interaction U.15,23,27 We
do not find such transition in our model with particle-hole
symmetry. The Drude peaks are always present in the calcu-
lation of our model. Based on our calculation and the follow-
ing theoretical arguments, we believe there is no metal-
insulator transition for our model in the symmetrical case.
For the symmetrical case, we have

�c = 0, �21�

− � f − 	 f = c1� + ic2�2, �22�

where c1 and c2 are two constants. The second equation re-
sults from the exact relation for f electron’s self-energy
around the chemical potential.28 The linker’s lattice Green’s
function is reduced to
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FIG. 3. The on-site spectral function for the particle-hole asym-
metrical case. The inset is the imaginary part of hybridization func-
tion 
���. The parameters are t=1, U=3, � f =−2.5, and �c=−0.5.
Unit for � is 5t.
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FIG. 4. �Color online� The optical conductivity for the particle-
hole symmetrical case. The black dots are for our model. The blue
�gray� dots are for the Hubbard model. The parameters are t=1 and
U=4. Unit for � is 10t.
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FIG. 5. The optical conductivity for the particle-hole asymmetri-
cal case. The inset shows the same plot with y axis changed to
logarithmic scale. The parameters are t=1, U=3, � f =−2, and
�c=−0.5. Unit for � is 5t.
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Gkc =
1

� −

Vk
2

��1 + c1� + ic2�2

. �23�

For 
�
� �1+c1� /c2, the imaginary part of the self-energy
can be neglected. It is obvious that the poles near the chemi-
cal potential for the linker’s lattice Green’s function just get
normalized by the interaction. These poles form an energy
band around chemical potential. Due to the particle-hole
symmetry, this band is half filled. According to band theory,
this half-filled band is a conducting band. So the model we
are considering must always be metallic. If the metal-
insulator transition took place, in the insulator phase the f
electron’s self-energy can be approximated by −� f −	 f
�c1 /�+ i	c2�2+����
 according to Bulla et al.23 Substitut-
ing the above self energy in Eq. �23�, we will still get a
conducting band with similar arguments. This result contra-
dicts the assumption that the solution is in the insulator
phase. This contradiction means that metal-insulator should
not take place at all. The above arguments justify the follow-
ing physical picture: the electron’s spectral function in the
linker sites is just broaden by coupling to other sites. These
linker sites still behave as periodic potential wells for elec-
trons as in the tight-binding model. An extended conduction
band should be expected for the model.

C. Seebeck coefficient

The Seebeck coefficient is determined by the transport
distribution function 
���.26 The Seebeck coefficient is re-
lated to the asymmetry of the electron bands.1 For the sym-
metrical case, there is no asymmetry in the band. The See-
beck coefficient is zero. For the asymmetrical case, a typical
transport distribution function of our model is shown in Fig.
6. As shown in the plot, 
��� is strongly affected by the extra
self-energy � in Eq. �11�. However, different reasonable
small �’s produced almost the same f electron spectral func-
tions. This agrees with the physical interpretation of � as
coming from impurity scattering, which just affect the trans-
port properties but not the electron bands. 
��� of our model
always show a single asymmetrical peak near the chemical
potential. As proved before by Mahan and Sofo,26 
��� in the

shape of Dirac delta function located at 2.4kBT above or
below the chemical potential can achieve the best efficiency
for the thermoelectric application. Based on that theory and
the shape of 
��� in our model, it is reasonable to believe
that high efficiency for thermoelectric applications can be
achieved in quantum dot arrays. The best operational tem-
perature is around �p /2.4kB, where �p is the position of the
peak in 
���.

The Seebeck coefficient is the ratio between two coeffi-
cients with proper units. The absolute value of Seebeck co-
efficient can be determined. For the example shown in Fig. 6,
�p�0.005. This model will give the highest figure of merit
around the temperature kBT=�p /2.4�0.002 according to
above arguments, which is much lower than the Kondo tem-
perature kBTK�0.06. The Seebeck coefficients calculated at
the above temperature are 42, 50, 64, and 106 �V /K, re-
spectively, for �=0.0057U , 0.0056U , 0.0055U , 0.0054U.
Obviously, smaller � is better for thermoelectric applications.
� should not depend much on the dimension of the model
under consideration, as it comes from impurity scattering,
which is a local incoherent process. A high Seebeck coeffi-
cients with small � can be achieved in real materials, such as
high-quality crystals made of quantum dot arrays with few
impurities.13 The low-temperature maximum Seebeck coeffi-
cient for the corresponding Hubbard model �with the same t,
� f, and U� is 51 �V /K, which agrees with previous a study
of the Hubbard model.29 Compared with the Hubbard model,
the Seebeck coefficients of our model increases when � is
small.

For a different set of parameters, the Seebeck coefficient
tends to increase when � f +Re 	 f�0� is closer to the chemical
potential. We found the Seebeck coefficient to be as high as
200 �V /K for the parameter set of t=1, U=2, � f =−1.5, and
�c=−0.5. As the self-energy � is used in these calculations,
the dependence of the Seebeck coefficient on the parameters
are not very conclusive. Further study is necessary to iden-
tify the parameter dependence of transport coefficients. How-
ever, it is safe to draw the conclusion that the Seebeck coef-
ficients are always quite high for the cases with small �c and

�c
� 
� f +Re 	 f�0�
. These data highlight the potential of
quantum dot arrays for thermoelectric applications.

IV. CONCLUSION

Based on above study, it is obvious that the model we
studied is quite different from the Hubbard model. This dif-
ference is nontrivial. The metal-insulator transition in other
strongly correlated models is absent in our model. Probably
the phase diagram of our model will also be quite different
from the Hubbard model due to different correlations in
nearby correlated sites. Our model shows a high Seebeck
coefficient and good conductivity, which indicates the pos-
sible good thermoelectric properties for arrays of quantum
dots.
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