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Using the Lanczos exact-diagonalization and density-matrix renormalization-group methods, we study the
extended Hubbard model at quarter filling defined on the anisotropic triangular lattice. We focus on charge
ordering �CO� phenomena induced by onsite and intersite Coulomb interactions. We determine the ground-state
phase diagram including three CO phases, i.e., diagonal, vertical, and threefold CO phases, based on the
calculated results of the hole density and double occupancy. We also calculate the dynamical density-density
correlation functions and find possible coexistence of the diagonal and threefold charge fluctuations in a certain
parameter region where the onsite and intersite interactions compete. Furthermore, the characteristic features of
the optical conductivity for each CO phase are discussed.
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I. INTRODUCTION

In a number of correlated electron systems, ordering of
charge degrees of freedom of electrons or charge ordering
�CO�, is a key feature to understanding their physical prop-
erties because it is intimately related to the electronic trans-
port and magnetic phenomena.1 The concept of CO was
originally introduced to interpret an array order of Fe2+ and
Fe3+ ions in magnetite Fe3O4, which is known as the Verwey
transition.2 For several years, the importance of CO has been
increasingly recognized in conjunction with spatial localiza-
tion of charge carriers observed in manganese oxide
La1−xCaxMnO3 �x�0.5�,3 copper oxide La1.6−xNd0.4SrxCuO4
�x=0.12�,4 etc. Especially, in the field of low-dimensional
organic materials, the CO itself has been one of the main
issues for discussion.5,6 Quite recently, peculiar charge fluc-
tuations have been found in the CO state of quasi-two-
dimensional �2D� organic conductors �− �BEDT−TTF�2X
�hereafter, BEDT-TTF is abbreviated as ET� and they have
attracted much attention due to their intriguing relation to the
superconducting �SC� state.

The crystal structure of �− �ET�2X are built with an alter-
nating stack of ET conducting and anion �X� insulating lay-
ers. In the conducting layer, the ET molecules form an an-
isotropic triangular-lattice structure �see Fig. 1� and the band
is 3

4 filled in terms of electrons or 1
4 filled in terms of holes.

In experiments, the transfer integrals �tp , tc� are controllable
by altering a dihedral angle ��� with the substitution of anion
and/or adjustment of pressure.7,8 A decrease in the dihedral
angle corresponds to an increase in tp and therefore a de-
crease in tc / tp. At low temperatures �T�250 K�, the com-
pounds exhibit a variety of phases, such as CO insulator,
paramagnetic metal, and SC, as a function of the dihedral
angle. Overall, the metal-insulator transition temperature
�TCO� decreases with decreasing dihedral angle. Only �
− �ET�2I3 that has the smallest dihedral angle �=100° in the
�-ET family shows SC in place of CO below T�3.6 K.9

Thus far, the CO pattern in each compound has been in-
vestigated by x-ray diffraction and 13C-NMR measurements.
In the series of X=MM��SCN�4 with M�=Co and Zn and
M =Tl and Rb, a stripe-type CO which has a twofold period-

icity along the c axis is observed below TCO.10–14 The com-
pounds with M =Tl and Rb is known to have an average
dihedral angle of �=120°−110°. Using the estimated ratio of
the transfer integrals tc / tp�0.5−0.4, the stripe-type CO was
successfully reproduced by the mean-field theory.15 However
then, the x-ray diffusion scattering experiments16,17 demon-
strated the presence of peculiar charge fluctuations in �
− �ET�CsM��SCN�4 with M�=Co and Zn; two diffuse peaks
with the wave numbers q1= �qa ,qb ,qc�= �0,k ,1 /2� and q2
= �2 /3,k ,1 /3� were found. The wave number q1 is the same
as that of the stripe-type CO observed in the compounds with
M =Tl and Rb, but the other wave number q2 corresponds to
a threefold periodicity. The compounds with M =Cs have
relatively small dihedral angle �=104° and are located in the
vicinity of the quantum critical point TCO�0 K. Accord-
ingly, the ratio of the transfer integrals is expected to be
rather small, i.e., tc / tp�1, which is different from the case of
M =Tl and Rb. Thus, a very absorbing subject, i.e., the co-
existence of charge fluctuations with different wave num-
bers, has been provided.

The appearance of the spatially inhomogeneous CO
has also been suggested by the dielectric response,18

ac resistivity,19 1H-NMR, EPR, and static magnetic
susceptibility20,21 measurements. Furthermore, a power-law
behavior of the current-voltage characteristics over a wide
range of currents22 and a current-induced melting of insulat-
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FIG. 1. �Color online� Schematic representation of the aniso-
tropic triangular-lattice Hubbard model. Each circle denotes an ET
molecule and � is an angle between the ET molecular planes of the
adjacent stacks. We take tp=1 as the unit of energy.
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ing CO domains23 have been observed. In addition, the opti-
cal conductivity spectra show a transition from short-ranged
to long-range CO around T=TCO �Refs. 24–27� and stronger
insulating features appear in MM�=CsZn than in MM�
=RbZn.28,29 A number of theoretical studies have then been
carried out in order to clarify the nature of the CO and charge
fluctuations.30–42

Motivated by such developments in the field, we consider
in this paper the extended Hubbard model at quarter filling
defined on the anisotropic triangular lattices. We employ the
density-matrix renormalization-group �DMRG� and Lanczos
exact-diagonalization methods to investigate the electronic
states of the model. First, we calculate the hole density and
double occupancy to determine the ground-state phase dia-
gram. Next, the dynamical density-density correlation func-
tions are calculated to study the low-energy charge excita-
tions. We also calculate the single-particle excitation
spectrum to elaborate the anomalous metallic states seen in
the low-energy charge excitations of the threefold CO phase.
We finally obtain the optical conductivity for each phase and
clarify the behavior of the charge degrees of freedom of the
model by focusing on the threefold charge fluctuations.

This paper is organized as follows. In Sec. II, the 2D
extended Hubbard model on the anisotropic triangular lat-
tices is introduced. We also define some physical quantities
and explain the applied methods for the calculations. In Sec.
III, we present the ground-state phase diagram of the ex-
tended Hubbard model and discuss the physical properties
related to the CO in each phase. Section IV contains conclu-
sions and discussions including comparison with the experi-
mental results.

II. MODEL AND METHOD

A. Hamiltonian

The Hamiltonian of the extended Hubbard model defined
on the anisotropic triangular lattice is given by

H = − �
�ij��

tij�ci�
† cj� + H . c.� + U�

i

ni↑ni↓ + �
�ij�

Vijninj ,

�1�

where ci�
† �ci�� is the creation �annihilation� operator of a hole

with spin � at site i, ni�=ci�
† ci� is the number operator, and

ni=ni↑+ni↓. The sum �ij� runs over nearest-neighbor pairs. tij
and Vij are hopping integral and intersite Coulomb repulsion
between sites i and j; here we retain two kinds of nearest-
neighbor hopping integrals �repulsions� tp�Vp� and tc�Vc�, as
shown in Fig. 1. U is the onsite Coulomb repulsion. We
restrict ourselves to the case at quarter filling; i.e., �ni�=0.5
where �¯� denotes the ground-state expectation value. In
this paper, we consider the case of U / tp=10 and tc / tp=0 as a
typical set of parameter for X=CsCo�SCN�4.7 Hereafter, we
take tp=1 as the unit of energy.

B. Physical quantities

We employ two kinds of numerical methods, i.e., the
DMRG and Lanczos methods. Either of these methods is

chosen for the calculation of each physical quantity. The de-
tails are explained in the following.

1. Static quantities

We are interested in the CO phenomena in the subject
materials so that it is useful, first of all, to make the ground-
state phase diagram associated with the charge degrees of
freedom. To this end, we calculate the hole density �ni� and
double occupancy �di� �di=ni↑ni↓� for all sites i to investigate
the charge distribution. A large size system is required for
reproducing all possible CO patterns and for an accurate es-
timation of these quantities. We thus study a finite-size clus-
ter of La=8 and Lc=6 using the DMRG method. The peri-
odic boundary conditions �PBC� are applied for the
c-direction, whereas the open-end boundary conditions
�OBC� are applied for the a direction. This choice of the
boundary conditions enables us to detect the CO state clearly
�see Sec. III A�. We keep up to m�1400 density-matrix
eigenstates in the DMRG procedure and thus the maximum
truncation error, i.e., the discarded weight, is less than 1
�10−4. In this way, the maximum error in the ground-state
energy is estimated to be �E0 /N�10−2 for the most inaccu-
rate case Vp=Vc=0. Based on the results of the hole density
and double occupancy, we determine the ground-state phase
diagram on the parameter space �Vp ,Vc�.

2. Dynamical density-density correlation

Next, we consider the dynamical density-density correla-
tion function defined as

N�q,	� = �



	��

Nh	n̂q	�0

Nh�	2��	 − E
 + E0� �2�

in order to study the low-energy charge excitations. Here,
	�


Nh� and E

Nh are the 
th eingenstate and eigenenergy of the

system with Nh holes �
=0 corresponds to the ground state�.
Since the exact definition of the momentum-dependent op-
erators with the OBC is quite difficult, we choose the PBC
for a quantitative estimation of the spectrum; we therefore
use the PBC for both the x and y directions �or the a and c
directions�. With this PBC, the density operators n̂q can be
precisely defined by

n̂q =
1


N
�

i

eiq·rini, �3�

where N is the number of lattice sites Lx�Ly �or La�Lc� and
ri is the position of site i. However, in this case, it is quite
difficult to carry out sufficiently accurate calculations with
the DMRG method so that we here use the Lanczos method
on small clusters with 16 �Lx=4 and Ly =4� and 18 �La=6,
Lc=3� sites. Consequently, the system size is restricted but
the result is numerically exact. Note that the momentum is
defined as q= �qx ,qy� hereafter.

3. Single-particle excitation spectrum

Of interest are also the evolution of the fundamental ex-
citations in the systems with strongly frustrated correlations.
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To see this, we calculate the single-particle excitation spec-
trum, which is obtained as

A�q,	� = A−�q,− 	� + A+�q,	� , �4�

with the photoemission �PES� spectrum

A−�q,	� = �

�

	��

Nh−1	ĉq�	�0

Nh�	2��	 − E

Nh−1 + E0

Nh� , �5�

and inverse photoemission �IPES� spectrum

A+�q,	� = �

�

	��

Nh+1	ĉq�

† 	�0
Nh�	2��	 − E


Nh+1 + E0
Nh� , �6�

where ĉq�
† �ĉq�� is the Fourier transform of the creation �an-

nihilation� operator ĉi�
† �ĉi��. For the same reason as the cal-

culation of the dynamical density-density correlation func-
tion, we employ the Lanczos method with the PBC where the
operator is defined by

ĉq� =
1


N
�

i

eiq·riĉi�. �7�

The calculation is carried out with a 18-site �La=6 and Lc
=3� cluster.

4. Optical conductivity

Finally, for more elaborate study on the behavior of the
charge degrees of freedom and direct comparison with ex-
periments, we calculate the optical conductivity defined by

��	� =
�

N
�




		��
	D̂	�0�	2��	 − E
 + E0� , �8�

with a component of the dipole operator,

D̂ = − e�
i

ri · v�ni −
1

2
� , �9�

where v is a unit vector parallel to the  direction. It is
known that the OBC is more feasible for calculation of the
optical conductivity spectra because finite-size effects have
much smaller influence on the results in comparison with a
case using the PBC.43 Hence, we apply the OBC for both the
a and c directions and study a finite-size cluster La=8 and
Lc=6 with the dynamical DMRG �DDMRG� method. The
DDMRG method is an extension of the standard DMRG
method for the calculation of dynamical properties. In the
DDMRG calculation, a required CPU time increases rapidly
with the number of the density-matrix eigenstates m so that
we try to keep it as few as possible. Because the DMRG
approach is based on a variational principle, we have to pre-
pare a “good trial function” of the ground state with the
density-matrix eigenstates as much as possible. We therefore
keep m�600 to obtain the true ground state in the first five
DDMRG sweeps and keep m�350 to calculate the spectrum
of the system. As a result, the maximum truncation error, i.e.,
the discarded weight, is about 1�10−3, while the maximum
error in the ground state is about �E0 /N�2�10−2.

III. RESULTS

A. Ground-state phase diagram

In recent years, several theoretical studies have been sug-
gested that the system defined by Eq. �1� has three types of
CO phases, depending on the values of the intersite Coulomb
repulsions. The CO patterns for each phase are shown in the
inset of Fig. 2: �a� vertical stripe for Vc�Vp, �b� diagonal
stripe for Vc�Vp, and �c� threefold alignment for Vc�Vp
� tp. Other likely patterns are also shown: �d� horizontal and
�e� randomly aligned stripes, which are not realized in the
ground state. A random alignment CO pattern is formed with
any combination of alternately occupied chains parallel to
the c axis. Hence, the diagonal CO pattern is a special case
of the random alignment ones.

First of all, we note that the CO is observed as a state with
a broken translational symmetry in our calculations: actually,
there are two or more degenerate ground states and one of
the degenerate states is picked out as the ground state by an
initial condition of the DMRG calculation as we here apply
the OBC in the a direction. Thus, a CO state includes more
than two kinds of sites with different hole densities, i.e.,
hole-rich and hole-poor sites. In Fig. 2, we show DMRG
results of the hole density �ni�rich� and double occupancy
�di�rich� at the hole-rich sites i� rich for �a� Vc=1, �b� Vp
=1, and �c� Vp=Vc. When both Vp and Vc are small, the
analysis shows that the hole density is uniform over the sys-
tem, i.e., �ni�=0.5 for all sites i, and the system is in the
metallic state. As Vp and/or Vc increases, the charge fluctua-
tions toward the CO states are enhanced and we find that
�ni�rich� starts to increase at the CO phase boundary. In the
CO phase, the charge fluctuations are weakened again as the
CO state is stabilized, where �ni�rich� approaches a value in
the atomic limit tp→0.

FIG. 2. �Color online� Hole density �ni� and double occupancy
�di� at the hole-rich sites for �a� Vp=1, �b� Vc=1, and �c� Vp=Vc.
The inset shows the schematic representation of �a� the vertical
stripe, �b� diagonal stripe, and �c� threefold CO patterns. The solid
circle denotes a site where the hole predominantly resides. The
other configurations are also shown: �d� horizontal and �e� an ex-
ample of randomly aligned CO patterns.
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Let us now evaluate the phase boundaries between the
metallic and CO phases. When we increase Vp from zero
with fixing Vc=1 see Fig. 2�a��, �ni�rich� begins to increase
around Vp=2.5; accordingly, a critical strength of the vertical
CO state is obtained as �Vp

c ,Vc
c���2.5,1�. At Vp�Vp

c,
�ni�rich� increases rapidly to unity but the double occupancy
remains almost zero. This means that �nearly� half-filled
chains are alternated with �nearly� empty chains and the
charge fluctuations are totally suppressed in the entire region
of vertical CO phase. In analogy with the case of the vertical
CO state, we can estimate a critical strength of the diagonal
CO state as �Vp

c ,Vc
c���1,2.75� see Fig. 2�b��. We should

however note that �ni�Rich� seems to approach unity more
slowly than that in the vertical CO phase. This implies that
the charge fluctuations in the diagonal CO state are rather
stronger than those in the vertical CO state. The reason of
this strong charge fluctuation in the diagonal CO phase is the
existence of nearly energetically degenerate states, i.e., the
horizontal and an infinite number of the randomly aligned
CO patterns, which are shown in Figs. 2�d� and 2�e�, respec-
tively. This situation has also been confirmed by the mean-
field approximation,31 variational Monte Carlo �VMC�
method,32 and strong-coupling study of the spinless model.33

The energies of those CO patterns including the diagonal one
are exactly equal to each other in the atomic limit tp→0. We
note that the PBC in the c direction is mandatory to distin-
guish energetically between the diagonal CO state and the
other nearly degenerate CO states. However, the CO phase
boundary is hardly affected by the choice of the boundary
conditions.

As for the threefold CO phase, the situation is somewhat
different from the other CO phases. If a relation Vc=Vp is
kept, the threefold CO instability begins to appear around a
critical point �Vp

c ,Vc
c���3,3� see Fig. 2�c��. Above the criti-

cal point, we find the rapid increase not only in the hole
density but also in the double occupancy at the hole-rich
sites. This implies that the competition between the effects of
U and V’s is essential for the presence of the threefold CO
phase. We also note that the threefold CO state is metallic in
the sense that the Drude weight is nonzero.44 The presence of
metallic CO phase has previously been suggested for the
extended square-lattice Hubbard models; simply, the pocket-
like small Fermi surface appears by doping the long-range
CO phases with holes or electrons without destroying the
long-range CO.45 Note that the ground state has both the
onsite hole-pairing and CO, which may be essentially the
same as the coexistence of the s-wave superconducting and
CO states in the two-dimensional negative-U Hubbard
model.46

In Fig. 3, we determine the ground-state phase diagram
from the results of the hole density, where the phase bound-
aries are drawn with dashed curves. The phase boundary is
obtained as crossing points with �ni�rich�−0.5�0.25. We can
see that a metallic phase exists widely between the vertical
and diagonal CO phases, which has been essentially found in
the two-dimensional Hubbard model with the nearest-
neighbor and next-nearest-neighbor Coulomb interactions.30

However, in the present model �1� we also make it certain
that the threefold CO metallic phase can be distinguished
from the metallic phase with uniform charge distribution.

This DMRG phase diagram is basically consistent with that
from the VMC calculation.32 The main difference is that a
metallic region is sandwiched between the vertical and three-
fold CO phases in our results. On the other hand, the diago-
nal and threefold CO phases are contiguous, in agreement
with the VMC result. The appearance of the metallic region
in between may be explained as follows. The diagonal and
threefold CO phases may be contiguous because the transi-
tion can be derived by the flow of charges only via the
nearest-neighbor hopping integrals tp �see Fig. 4�, whereas a
drastic charge redistribution is required in the transition from
the vertical CO pattern to the threefold CO pattern and there-
fore the ground state needs to go through the metallic one.
We may also suggest that this “charge-flowing” transition
between the diagonal and threefold CO phases occurs in the
presence of the threefold �diagonal� charge fluctuations in the
diagonal �threefold� CO phase as is evident in the calculated
dynamical density-density correlation functions �see Sec.
II B�. We also note that the threefold CO phase is shrunk
with increasing U.

� � �

�

� � �

�

� � �

�

� � �

�

� � �

�

� � �

� � � � � � � � � � � � � � � � � � � � � � � � ��

�

� 	 
 � �  
 � � �

� � � � � � � � � � � �

� � � � 	 � 
 � � �

�

�

�

�

FIG. 3. �Color online� Ground-state phase diagram of the ex-
tended Hubbard model defined on the anisotropic triangular lattice.
We assume the values tc=0 and U=10. The result is obtained from
the DMRG calculations for the charge distributions with a broken
translational symmetry. The diameter of the circles is taken to be
proportional to �ni�rich�−0.5.

FIG. 4. �Color online� Transition between diagonal and three-
fold CO states. The solid circle denotes a site where hole predomi-
nantly resides. The arrows denote the flow of charges toward the
other CO state.
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B. Dynamical density-density correlation

The dynamical density-density correlation functions cal-
culated by the Lanczos method for several sets of Vp and Vc
values are shown in Fig. 5. Each parameter set corresponds
to a different phase as follows: �Vp ,Vc�= �1,5� to the diago-
nal CO phase, �5,1� e vertical CO phase, �5,5� e threefold CO
phase, and �0,0� e uniform metallic phase. In addition, we
plot the results for �Vp ,Vc�= �3,3�, where the system is in the
non-CO metallic phase but with strong threefold CO fluctua-
tions. When �Vp ,Vc�= �0,0�, model �1� is equivalent to the
square-lattice Hubbard model at quarter filling and no par-
ticular modes of charge fluctuations are developed; we there-
fore find the broad spectral features for all the momenta,
which come basically from the particle-hole transition in the
corresponding noninteracting system. With increasing the in-
tersite interactions, however, the broad features change to the
low-energy sharp peaks, indicating that the excitations turn
to be collective-mode-like.

Generally, the enhancement of low-lying peak at a par-
ticular momentum must be expected for the CO instability.
When the system is unstable to the vertical �diagonal� CO
phase, the particular momentum is located at q= �� ,��q
= �� ,0��. Looking at the spectra for �Vp ,Vc�= �5,1�, a sharp

peak appears around 	=0 at q= �� ,�� and there are nearly
no peaks at the other momenta. This means that the system is
unstable to the vertical CO state with �almost� complete
charge disproportionation. This result is consistent with the
results of the hole density given in Sec. III A. On the other
hand, in the spectra at �Vp ,Vc�= �1,5�, we see not only a
low-energy peak at �� ,0� but also relatively high-energy
peaks at the other momenta; most of the high-energy peaks
concentrate at momenta with qxqy �0 and few peaks appear
at momenta with qxqy �0. By the axes rotation, we find the
charge fluctuations mostly occur along the c axis, which are
associated with the nearly degenerate states, i.e., horizontal
and randomly aligned CO phases. It is moreover striking that
the intensity around q= �2� /3,2� /3� is significantly large,
which means that the threefold charge fluctuations are rather
strong although the system is in the diagonal CO phase.

Let us now discuss the spectral features for the threefold
CO metallic state, of which the particular momentum is lo-
cated at q= �2� /3,2� /3�. The charge excitation spectra in
the CO metallic state are currently not well understood so
that a good opportunity for studying them may be offered
here. We thus investigate a process of gradual change in the
spectra with increasing intersite Coulomb interactions V’s.
Since the threefold CO phase lies around Vp�Vc�3, we
increase Vp�Vc� from 0 to 5 with keeping a condition Vp
=Vc. The spectra for �Vp ,Vc�= �0,0� have the broad spectral
features for all the momenta as mentioned above and these
features basically remain unchanged as far as Vp and Vc are
less than �2. Only around �Vp ,Vc�= �3,3�, we can recognize
the changes clearly in the calculated spectra: the low-energy
spectrum at q= �2� /3,2� /3� is particularly enhanced as an-
ticipated but those at q= �� ,0� and q= �� ,�� are also en-
larged, while the spectral weights for the other momenta are
strongly suppressed. We understand that these changes sug-
gest that the three types of CO instability are simultaneously
developed and that, considering that the energies of the
lowest-lying excitations for the three momenta are nearly
equal, the charge fluctuations for the three CO patterns are
strongly competing.

After increasing the intersite Coulomb interactions to
�Vp ,Vc�= �5,5�, even greater changes are seen in the spectral
features. At q= �2� /3,2� /3�, we find the enhancement of a
sharp peak around 	=0, which indicates the strong charge
fluctuations of the threefold periodicity and is consistent with
the results of the hole density. It is particularly worth noting
that the low-energy spectral intensities at �� ,0� is continu-
ously enhanced and those at �� ,�� are suppressed�.

Let us discuss some experimental situations here. We may
point out first that the wave vectors q1 and q2 of the two
diffuse peaks observed experimentally16,17 in the CO phase
of �-�ET�MM��SCN�4 �M =Cs and M�=Co or Zn� should be
equivalent to our momenta �� ,0� and �2� /3,2� /3�, respec-
tively. We may therefore suggest that the appearance of the
two enhanced peaks in our calculations correspond to the
coexistence of the two different charge fluctuations. Note
that these enhanced peaks are already obtained for more re-
alistic parameter values �Vp ,Vc�= �3,3� in our calculations. It
is also striking that the low-energy peaks appear in the entire
Brillouin zone and the charge fluctuations are induced in all
the momentum transfers. This situation is quite different
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FIG. 5. �Color online� Charge excitation spectra calculated for
the 18-site cluster with the Lanczos exact-diagonalization method.
Only the results of �� ,0� are obtained for the 16-site cluster. Spec-
tra at �Vp ,Vc�= �1,5� and �5,1� �left panel� and �0,0�, �3,3�, and
�5,5� �right panel� are shown.
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from those for the diagonal and vertical CO stripes where the
low-energy peak appears only at the particular momenta.

C. Single-particle excitation spectrum

In the diagonal and vertical CO phases, we just find the
insulating band structures reflecting the CO states in our cal-
culations; namely, the PES and IPES peaks are separated by
the charge gap and the Fermi level lies between the two
spectra. We thus focus on the spectral features in the three-
fold CO phases here. In Fig. 6, we show the single-particle
excitation spectra calculated with the Lanczos method for
�Vp ,Vc�= �0,0�, �3,3�, and �5,5�. At �Vp ,Vc�= �0,0�, we can
clearly see the spectral weight separated into two bands due
to the onsite Coulomb interaction, i.e., lower Hubbard band
�LHB� and upper Hubbard band �UHB� with the distance
�10 �=U�. The LHB, which corresponds to the conduction
band, can be approximately expressed by the dispersion of
noninteracting holes,

�q = − 2tp cos qx − 2tp cos qy . �10�

On the other hand, the UHB has relatively small spectral
weight and narrow band width, which are general features in
the strong-coupling regime. At �Vp ,Vc�= �3,3�, the shape of
conduction band remains almost unchanged from that at
�Vp ,Vc�= �0,0�. However, we can see that an overlap be-
tween the LHB and UHB occurs due to the competition be-
tween the onsite and nearest-neighbor Coulomb interactions.
As a result, the band structure is seen to be reduced to a
single dispersion line. The interaction between holes is effec-
tively weakened �or vanished� by the frustration of the Cou-

lomb interactions so that the dispersion relation looks as if it
were for the single-orbital model or the noninteracting case.

Surprisingly, the spectral features are drastically changed
at �Vp ,Vc�= �5,5�. The spectral weight appears to be sepa-
rated to form several bands again. It is particularly worth
noting that the width of conduction band is much narrower
than that at �Vp ,Vc�= �3,3�. In the threefold CO phase, the
holes can conduct only through the hole-rich sites but the
hole-rich sites are not connected by direct hopping integrals;
in other words, the carriers form a small Fermi surface.45

Thus, the conduction band is centered at 	�10�=U� and the
band width should be very narrow. It is consistent with a
non-Fermi-liquid behavior with the enhancement of the elec-
tron effective mass, which was proposed in Ref. 37. It may
be also related to the appearance of low-energy peaks in the
entire Brillouin zone observed in the dynamical density-
density correlation function as discussed above. Let us then
consider the peaks in the higher-energy range, 	�15. These
peaks are essentially formed in connection with the empty
�hole-poor� sites. An empty site is surrounded by three hole-
rich sites and a hole-rich site is occupied by one or two
holes. When a hole is added on an empty site, the excitation
energy is 	�2Vp+Vc=15 if the surrounding three hole-rich
sites are singly occupied and it is 	�4Vp+2Vc=30 if the
surrounding three hole-rich sites are doubly occupied. This is
the reason why there are continuum weights from 	�15 to
30 in the spectra for all the momenta. In addition, we can
find the dispersion with bandwidth �4 around 	=20. This
dispersion is formed from a empty zigzag chain along the a
axis, which is nearly separated from each other by the hole-
rich sites.

D. Optical conductivity

The optical conductivity spectra calculated by the DMRG
method for several sets of Vp and Vc are shown in Fig. 7. For
all cases, the spectral intensity for the a direction seems to be
a few times larger than that for the c direction, which just
reflects the difference between the interatomic distances
da :dc=
3:1 in the a and c directions. This leads to the in-
tensity ratio Ia : Ic=3:1.

The most easily comprehensible result should be the ones
in the vertical CO phase, i.e., �Vp ,Vc�= �4,1� see Fig. 7�b��.
The shapes of spectra for the a and c directions are essen-
tially the same, although the intensities are different as men-
tioned above. For both of the spectra, the lowest excitation
appears around 	�2.5, which corresponds to the optical �in-
sulating� gap, and the other excitations lie in much higher
frequencies, 	�4. Also, the total weight of the spectrum is
smaller than that in the other CO phases. These results are
consistent with the fact that the vertical CO state is rather
solid and the charge fluctuations are quite small. The optical
gap in the vertical CO phase may be estimated as �3Vp
−2Vc−W with the bare bandwidth W=8.

Let us then turn to the diagonal CO phase, i.e., �Vp ,Vc�
= �1,4� see Fig. 7�a��. We find that the result for the a di-
rection is apparently different from that for the c direction.
The spectrum for the a direction consists of the first-
excitation peak at 	�2.2 and high-energy broad features,

FIG. 6. �Color online� Single-particle excitation spectra calcu-
lated for the 18-site cluster with the Lanczos exact-diagonalization
method. The dashed lines denote the Fermi levels and the thin lines
mark the dispersion of bands.
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which is similar to that in the vertical CO phase. This result
reflects the solid CO and weak charge fluctuations along the
a direction, as shown in the dynamical density-density cor-
relation functions. On the other hand, most of the spectral
features for the c direction appear in the lower-energy range.
The optical gap is of the order of �0.5, which is much
smaller than that of the vertical CO phase. This is so because
the diagonal CO state can be rearranged to the randomly
aligned �or horizontal� CO state with small excitation energy.
Thus, the charge fluctuations along the c axis are much stron-
ger than those along the a axis. Since the energy difference
between the diagonal CO phase and random alignment CO
state is hardly changed even if Vc increases, the low-energy
structure is expected to be seen for any Vc value.

Lastly, we discuss the spectral aspects in the metallic
regime around the threefold CO instability see Figs.
7�c�–7�e��. With the OBC, the optical conductivity at 	=0 is
ruled out and the lowest-energy scale is limited to an order of
4W /LaLb�0.67.47 Therefore, the Drude spectral weight ap-
pears around the minimum excitation energy. At �Vp ,Vc�
= �2,2�, the spectra for the a and c directions are quite simi-
lar. For each spectrum, small peak structure around 	�0.7
−0.8 should correspond to the Drude peaks. The spectral
weight exists continuously from the “Drude frequency” to
higher excitations and reaches the maximum around 	=2,
and very little spectral weight exists at higher-energy range,
	�3. This is similar to the spectra obtained by the exact-
diagonalization method.30,37 At �Vp ,Vc�= �3,3�, we can find
some tendencies to the threefold CO state; in the spectrum
along the a axis the intensity around 	=2 is about half of

that at �Vp ,Vc�= �2,2� and the high-energy broad features are
relatively large. A large peak around 	=2 at �Vp ,Vc�
= �2,2� splits into two peaks that indicate the appearance of
individual excitations associated with the COs. The spectrum
along the a axis remains almost unchanged, except the
Drude-type peak which becomes much smaller. At �Vp ,Vc�
= �4,4�, we can clearly see the characteristic features of the
threefold CO state: in the spectrum along the a axis the
weight is separated into the low-energy Drude-type peak at
	�0.7−0.8 and high-energy broad features. We can under-
stand that the former comes from the small Fermi surface in
the threefold CO phase and the latter comes from the exci-
tations due to the threefold charge fluctuations. On the other
hand, the weight of the Drude-type peak is nearly zero in the
spectrum along the c axis. This means that the CO is more
solid along the c axis than along the a axis. We can explain
this as follows: 3/2-filled chains are alternated with zigzag
empty chains along the c axis see the inset of Fig. 2�c��
whereas each chain along the c-axis is quarter filled, which
means that the holes distribute uniformly along the a axis. As
mentioned above, the optical conductivity along the a �c�
axis is concentrated in the lower-energy range when the
threefold �diagonal� charge fluctuations are enhanced. We
suggest that these features in the optical conductivity spectra
should give a good criterion to examine the CO patterns
experimentally.

IV. CONCLUSIONS

The extended Hubbard model at quarter filling defined on
the anisotropic triangular lattice have been studied by the
Lanczos exact-diagonalization and DMRG methods. We de-
termine the ground-state phase diagram based on the results
of the hole density and double occupancy. In the phase dia-
gram, there exist three substantial CO phases �diagonal, ver-
tical, and threefold� and a metallic phase with uniform
charge distribution. We find that the charge fluctuations �or
instability to CO� with the threefold periodicity appear for
realistic parameters Vp�Vc�0.3U.

We suggest that the transition between the diagonal and
threefold CO phases is derived by the flow of charges only
via the nearest-neighbor hopping integrals, which may lead
to the coexistence of the diagonal and threefold charge fluc-
tuations near the phase boundary. The coexistence features
are also found in the density-density correlation functions; in
the diagonal �threefold� phase, not only the particular peak
but also the low-energy peaks corresponding to the threefold
�diagonal� charge fluctuations are enhanced. In the vertical
CO phase, only the low-energy peak at the particular mo-
mentum is visible and there is no charge fluctuations associ-
ated with the other CO states. Moreover, we find that there
appear the low-energy collective-mode-like excitations in
the entire Brillouin zone when the threefold charge fluctua-
tions are very strong. The wave numbers of the diagonal
and threefold charge fluctuations are equivalent to those of
the two x-ray diffuse peaks q1= �0,k ,1 /2� and q2
= �2 /3,k ,1 /3� measured in �-�ET�CsM� �SCN�4 with M�
=Co or Zn. If we could make the dihedral angle larger, the
value of Vp /Vc decreases and only the diagonal CO fluctua-
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FIG. 7. �Color online� Optical conductivity spectra calculated
with the DDMRG method. �=a ,c� is the direction of the electric
field defined in Fig. 1.
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tion remains. This is consistent with the fact that only a
diffuse peak with wave number q1 is observed in the com-
pounds with M =Tl and Rb which have a larger dihedral
angle than those with M =Cs.

We also study the single-particle excitation spectrum to
see the evolution of the fundamental low-lying excitations in
the presence of strongly frustrated correlations. When the
onsite and intersite Coulomb interactions compete �Vp�Vc
�U /3�, the interaction between holes is effectively dimin-
ished and the dispersion relation looks as if it is of the non-
interacting case. When the two intersite Coulomb interac-
tions compete �Vp�Vc�U /3�, the carriers form very narrow
conduction band with a small Fermi surface.

Furthermore, we examine the optical conductivity which
reflects the characteristic features for each CO phase. In the
vertical CO phase, the spectra for both the directions explic-
itly represent the insulating features and the optical gaps are
large, estimated as �3Vp−2Vc−8. In the diagonal CO phase,
the spectrum for the a direction is essentially the same as that
in the vertical CO phase but that for the c direction is located
in the lower-energy range. This is so because the diagonal
CO state can be rearranged to the randomly aligned �or hori-
zontal� CO state with small excitation energy. In the three-
fold CO phase, the spectra indicate the presence of the sepa-
rated low-energy Drude-type peak and high-energy broad

features, leading to the anomalous metallic states in the sys-
tem. The optical conductivity along the a �c� axis is concen-
trated in the lower-energy range when the threefold �diago-
nal� charge fluctuations. These spectral features may give a
good criterion to examine the CO patterns experimentally.
Finally, we make a comment on the difference in the experi-
mental spectra between MM�=CsZn and MM�=RbZn. Be-
cause we find that an increase in Vp /Vc makes the diagonal
CO state unstable, it is the smallness of tc that is essential for
the strong insulating features in the spectra of MM�=CsZn.
We hope that our studies will help us understand the mecha-
nism of charge fluctuations in the extended Hubbard model
defined on the anisotropic triangular lattices and hence will
offer useful suggestions to some aspects of the threefold
charge fluctuations observed in �-�ET�2X.
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