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This paper presents an analytic study on the photonic states of a two-dimensional photonic crystal. Degen-
erate states in the absence of spatial modulation are systematically classified and the states within the same
class behave similarly when the spatial modulation or the material’s anisotropy is switched on. In addition,
employing reduced plane-wave basis, we illustrate a simple yet powerful approach to analytically approximate
the splitting of the degenerate states in the presence of the spatial modulation and the material’s anisotropy.
Using hexagonal lattice photonic crystal as an example, we illustrate the accuracy and the applications of the
approach.
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I. INTRODUCTION

There are various existing methods such as plane-wave
expansion method �PWM�,1–3 finite difference time do-
main,4,5 transfer-matrix method,6,7 and scattering matrix
method8–10 available for modeling of photonic crystals
�PCs�. Among these methods, PWM is the most widely used
method in handling PC problems.11 PWM has been used in
computations of photonic band gaps,1–3 equal frequency sur-
faces for the theory of light refraction12–14 and diffrac-
tion,15,16 Bragg transmittance and reflectance,17,18 and spon-
taneous emission in a PC.19,20 In the photonic band-structure
calculation, the conventional PWM �Refs. 2 and 3� is also
quite often modified �or extended� to handle specific PC
structures or to increase the rate of convergence.11,21–24 This
includes the use of supercell techniques in modeling defects
in PC,21,22 the extension to include the effect of the
interface,23 augmented PWM for PCs with spherical and cy-
lindrical motifs,24 and the use of fast factorization rules in
PWM.11

Unfortunately, none of these modifications in PWM or
those of other methods is simple, as they all involve numeri-
cal methods without any analytical details or formulalike de-
scription. For example, the solution in PWM is found by
diagonalizing a very large matrix with the size determined by
the number of plane waves. The typical number of plane
waves used in PWM calculations for PCs with large modu-
lation ranges from �102 to �103.2,3,12,25 For structures with
small �but finite� spatial modulation, though they consume a
slightly smaller number of plane waves, the approach still
fails to provide any useful analytical details. In this paper, we
present a systematic and generalized solution with analytical
details based on PWM for two-dimensional �2D� PCs. In
order to illustrate the approach, without losing generality, a
hexagonal lattice 2D PC is used in this paper. We first ana-
lyze the photonic states in the limit of zero modulation �i.e.,
free photon relationship� for a 2D PC with isotropic materi-
als and we have introduced a systematic classification system
based on integers for the states with distinct frequencies.
These integers can be factored and states with the same fac-

tor can be categorized as they have the same form of solution
when the spatial modulation or/and the material’s anisotropy
is switched on. As we shall show, such states can be easily
solved with a reduced matrix size and typically lead to ana-
lytical equations within a small �however a finite� spatial
modulation approximation.

The presented method is useful in the applications which
exploit the unusual conducting behavior of a PC, where con-
ductions such as superprisms, supercolimation, beam split-
ting, etc. are only well pronounced in PCs will small spatial
modulation.26–29 Further in such PC structures, the method
can be applied to obtain a fairly accurate solution for the
insulating properties �i.e., band gaps�. In a large refractive
index contrast PC, the presented method likely leads to a
deviated result, but the method surely serves a good approxi-
mation and produces necessary analytical details such as de-
generacy of the state and the properties of a free photon
behavior at the band edges.

II. EIGEN-EQUATIONS

Maxwell equations for periodic structures can be reduced
to a time-independent eigen-equation,1,11,30,31

� �
1

�̃�r�
� � Hk�r� = ��k�Hk�r� , �1�

where ��k� is the eigenvalue, �̃�r� is the position-dependent
dielectric tensor,30–32

�̃�r� = ��11�r� �12�r� �13�r�
�21�r� �22�r� �23�r�
�31�r� �32�r� �33�r�

� , �2�

and Hk�r� is the magnetic field in the Bloch form with a
wave vector k. Equation �1� is a set of coupled differential
equations and decoupling of the equations depends on the
dimension of the PC and the material’s anisotropy. In a 2D
PC with isotropic material, Eq. �1� can be decoupled into two
independent equations corresponding to the two independent
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polarizations of light. If the material is anisotropic, then de-
coupling of the polarization requires one of the principal
axes of the anisotropic material to be perpendicular to the 2D
periodic plane.31,32 As such, �13�r�=�31�r�=�23�r�=�32�r�
=0, and consequently the Fourier coefficient matrix of the
inverse of �̃�r� is

�̃�G� = ��11�G� �12�G� 0

�21�G� �22�G� 0

0 0 �33�G�
� . �3�

Using Eq. �3� and further expanding the fields in the plane-
wave bases, Eq. �1� can be written in a normalized form
as30–32

�
j

MijHj = �2Hi, �4�

where Mij = �k+Gi��k+G j��ei · �̃H�Gi−G j� ·e j	 and Mij
=�E�Gi−G j��k+Gi��k+G j� for H �magnetic field perpen-
dicular to the periodic plane� and E �electric field perpen-
dicular to the periodic plane� polarization, respectively. In
these equations, Hi denotes a component of magnetic field,
Gi is a reciprocal lattice vector, ei is the unit vector perpen-
dicular to both k+Gi and electric field of E polarization,
�E�G�=�33�G� and �̃H�G� takes the definition32

�̃H�G� = 
�11�G� �12�G�
�21�G� �22�G�

� . �5�

If all the materials are isotropic, we have �11�G�=�22�G�
=�33�G�=��G� and �12�G�=�21�G�=0. In Eq. �4�, � is the
normalized frequency �i.e., ratio between period of the PC, a,
and the free space wavelength� and both k and G have a unit
of 2� /a. The reciprocal lattice vector, G, of any two-
dimensional lattice can be written in terms of unit vectors b1
and b2 as G=n1b1+n2b2, with n1 and n2 being any integers.
The angle between k+G vector and kx axis of the reciprocal
space is denoted as �k, whereas the angle between b1�b2�
vector with kx axis is denoted as �b1��b2�. For the hexagonal
lattice, b1= �1,−1 /�3�, b2= �0,2 /�3�, �b1=−30° and �b2
=90°.

III. ABSENCE OF SPATIAL MODULATION

In the absence of a spatial modulation �i.e., a vanishingly
small refractive index modulation�, the photonic band struc-
ture must reduce to a free photon dispersion with the band
folding effect taken into account.1,12 In this case, only the

Fourier coefficient, �̃�0� �Eq. �3�	 is nonzero. Therefore, Eq.
�4� reduces to

�2 = �k + G� · �̃H�0� · �k + G� �6a�

and

�2 = �33�0��k + G�2 �6b�

for the H and E polarization, respectively. If all materials are
isotropic, then for both E and H polarizations, we have the
same dispersion relation in the absence of the spatial modu-
lation, �o�2= �k+G�2, where �o=1 /��0�. This relation for a
symmetrical k vector in a square or a hexagonal lattice can
be written as

�o�2 = �k + G�2 = ckmk, �7�

where mk is an integer and ck is a constant.33 The expres-
sions for symmetrical points of a hexagonal lattice, k�k ,��
=	�0,0�, K�2 /3,0�, and M�1 /�3,90°� are tabulated in Table
I. The integer mk in Eq. �7� takes only specific values and
allows us to label the state of a distinct � with an integer
label, mk. The degeneracy of the state, n�mk�, can then be
taken as the number of possible combinations of n1 and n2
that lead to the same mk. Using the angle, �k we can write
mk either in n1 or n2 alone. As such mk decomposes into �see
Ref. 34 for a general proof�

mk = q��k,�bi�pk�nj� , �8�

where i, j=1,2 or 2, 1, pk is independent of �k but depends
on either n1 or n2, and

q��k,�bi� = cosec2��k − �bi�, �k � �bi, �9�

in which i=1 or 2. Equation �8� allows us to categorize a set
of parallel k+G vectors with the same �k �and hence the
same q�. Therefore, the expressions for distinct mk’s of the
same �k will be similar with the differences only in pk, rep-
resenting the relative differences in the length of the k+G
vectors. If we define pk,s and mk,s to be the smallest value
among the values of pk and mk of the same �k, then we can
define a useful ratio, p�k

=�pk / pk,s=�mk /mk,s to define any
vector k+G with angle �k as k+G= p�k

�k+G�s, where �k
+G�s is the shortest among the k+G vectors with an angle
�k. On the other hand, it is worth mentioning that states with
the same �k will have the same symmetry, which means the
symmetry representation of these states is made of an iden-
tical composition of irreducible representations.35

TABLE I. The expressions ck, mk, �k, and pk for symmetrical k-points of a hexagonal lattice. Key: m
=n1

2+n2
2−n1n2.

pk

k ck mk sin��k� pk�n1� pk�n2�

	 4 / 3 m �2n2−n1� / �3c	m	 �3 / 4 �n1
2 �3 / 4 �n2

2

K 4 / 9 3�m+n1�+1 �2n2−n1� / �3cKmK �1 / 4 ��2+3n1�2 �1 / 4 ��1+3n2�2

M 1 / 3 2�2m+2n2−n1�+1 �2n2−n1+1� / �3cMmM 3n1
2 �3 / 4 ��1+2n2�2
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For the hexagonal lattice, the expressions for �k, q, and
pk are tabulated in Table I. Figure 1 gives a visualization of
the states �with indices mk, n�mk�, and �k	 using Eq. �7� in
the absence of a spatial modulation for the 	 point of the
hexagonal lattice. By multiplying pk in Table I with the q,
and forcing the result to be an integer, we could systemati-
cally rewrite the expressions for mk of the same q in terms of
a free integer, hk �i.e., independent of n1 and n2�. The result
of such analysis is presented in Tables II–IV for 	, M, and K
points, respectively. Possible values of sin��k� and �k are
calculated using the expressions in Table I and due to the
symmetry of both lattice and the k vector �i.e., point group of
k�,35 the �k angles in Tables II–IV are restricted between 0

�	
30°, 0
�K
60°, and 0
�M 
90° for 	, K, and M
points, respectively. Considering the state of a	=10.9°, the
result of m	= p	�n1�q��b2� and m	= p	�n2�q��b1� yields
7n1

2 /9 and 7n2
2 /4, respectively. However by forcing n1=3h	

and n2=2h	, both p	�n1�q��b2� and p	�n2�q��b1� reduce to
7h	

2 �Table II�.
Figures 2�a�–2�c� show examples of k+G vectors for the

states of 	 point with �	=30°, 0, and 10.9°, respectively.

The vectors connecting the origin �green marker� and the
edges of each closed polygon in these figures represent the
k+G vectors. Edges of the same polygon necessarily have
the same mk �i.e., same length�, and hence correspond to a
single state. Within each figure, we have many isomorphic
but scaled polygons, with different values of h	. Though
each edge of the same polygon represents a symmetrical k
+G vector with different �k, due to the symmetry of k vec-
tor, we limit �	 to be 0
�	
30°. For example, in Fig. 2�a�,
the angle of k+G vectors can be 30°, 90°, 150°, 210°, 270°
or 330°, but �	 is fixed as 30°.

IV. PRESENCE OF SPATIAL MODULATION

A. Solution at symmetrical points

The solution at the symmetrical points is crucial as band
gap openings1–3 and unusual conductions like super-
prism26–28 and negative refractions12 occur near the band
edges �i.e., symmetrical points�. Further, once the solution at
a symmetrical k-point is known, then the solution for k vec-
tors in the neighborhood of the symmetrical point can be
easily obtained by means of other methods such as perturba-
tion theory.36 In this section, we introduce a simple yet pow-
erful method to approximate the solutions at symmetrical
k-points of a 2D PC with isotropic materials and in the sub-
sequent sections, the nonsymmetrical k vectors will be
handled and the influence of the material’s anisotropy will be
considered.

From Eq. �4�, we write

Hi =

�
i�j

MijHj

�2 − Mii�
, �10�

where the size of matrix, M, is ideally infinite. For the 2D PC
with all isotropic materials, we have

TABLE II. The expressions for m	 in terms of a free integer, h	

�h	=1,2 ,3 , . . .�.

sin��	� 1 / 2 0 1 / �2�7� 1 / �13 1 / �2�19�

�	�°� 30 0 10.9 16.1 6.6

q��b1� 4/3 4 7/3 52/27 76/27

q��b2� 4/3 1 28/27 13/12 76/75

m	 h	
2 3h	

2 7h	
2 13h	

2 19h	
2

TABLE III. The expressions for mM in terms of a free integer, hM �hM =1,2 ,3 , ...�. Key: ND—not
defined.

sin��M� 1 0 2 / �7 1 / �13 4 / �19

�M�°� 90 0 49.1 16.1 66.6

q��b1� 4/3 4 28/27 52/27 76/75

q��b2� ND 1 7/3 13/12 19/3

mM �2hM +1�2 3�2hM +1�2 7�2hM +1�2 13�2hM +1�2 19�2hM +1�2

FIG. 1. �Color online� Degenerate states in the absence of the
spatial modulation and material’s anisotropy at the 	 point of a
hexagonal lattice. The states are indexed as m	�n�m	�	, �	. Each
state with the same �	 appears with the same color. The �	 is
calculated based on Table I with an accuracy up to 1 decimal place.
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Hi =

�
i�j

MijHj

�2 − �0�k + Gi�2
=

�o�
i�j

MijHj

�o�2 − ckmk�
. �11�

At symmetrical k-points with small spatial modulation,
�o�2�ckmk �see Eq. �7�	 and hence, only n�mk�—number of

Hi will be dominant �since there are n�mk� combinations of
G leading to the same mk	, and therefore Eq. �4� can be
approximately written as

�
j=1

n�mk�

MijHj = �2Hi. �12�

Equation �12� is a secular equation that solves each state, mk
with a matrix size n�mk� by n�mk�. In formulating the matrix
elements of Eq. �12�, the vector G must be chosen such that
they all have the same mk �i.e., equal length of k+G�. Equa-
tion �8� enables us to generalize the form of solution for Eq.
�12� with a particular mk, available for other states with the
same �k.

If we define a set of G vectors as a set of fundamental
vectors that leads to the smallest mk within the states having
the same �k �i.e., pk= pk,s and mk=mk,s�, then the secular
equation �i.e., Eq. �12�	 becomes

�
j=1

n��k�

Mij
�kHj = 
 �k

ckmk
�2

Hi, �13�

where we have assumed states with the same �k have the
same degeneracy n�mk�=n��k�, and the definition of Mij

�k

takes the forms of

Mij
�k =�ei · �̃H�p�k

�Gi − G j�	 · e j , H polarization,

�E�p�k
�Gi − G j�	 , E polarization,

�
�14�

where the vector Gi with i=1,2 , . . . ,n��k� denotes a set of
fundamental vectors with the smallest mk among the set of
vectors with the same �k. For instance, the set of fundamen-
tal vectors for a state with �	=30° will be the vectors indi-
cated by the edges of the smallest polygon in Fig. 2�a�. These
vectors G1, G2, G3, G4, G5, and G6 have �n1 ,n2� indices
�0,−1�, �1,0�, �1,1�, �0,1� �−1,0�, and �−1,−1�, respectively.
The solution to Eq. �13� can be easily obtained and typical
analytical solutions can be obtained for n��k�=2, 3, 4 or 6.

For the hexagonal lattice, we have p�k
=h	, 2hM +1, and

3hK+1 �Tables II–IV� for 	, M and K points, respectively,
and the states with n��k�=2, 3, 4, and 6 are analytically
solvable. Throughout this paper, we will use the state �	

=30° �m	=h	
2 ,n��	�=6	 as an example unless otherwise

stated. In the absence of modulation, these states are indi-
cated as blue lines in Fig. 1 and they are the most frequently
occurring states in the first ten states at 	 point �see Fig. 1�.
The particular interest at 	 point is also due to the fact that

TABLE IV. The expressions for mK in terms of a free integer, hK �or hK� � �hK=0,1 ,2 ,3 , . . ., hK� =−1,
−2,−3, . . .�.

sin��K� 0 �3 / 2 �1 / 2 ��3 / 7 �3 / 2 ��3 / 13 �3 / 19

�K�°� 0 60 19.1 46.1 23.4

q��b1� 4 1 7/4 52/49 76/49

q��b2� 1 4 28/25 52/25 19/16

mK �3hK+1�2 �3hK� +1�2 7�3hK+1�2 13�3hK+1�2 19�3hK+1�2

FIG. 2. �Color online� k+G vectors for the states at the 	 point
of a hexagonal lattice. The states are labeled with the angle �k �i.e.,
the angle made by the arrow with the kx axis	. The green marker is
taken as the origin of the reciprocal plane. �a�, �b�, and �c�—the
states for �	=30°, 0, and 10.9°, respectively.
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many interesting phenomena like circular equal frequency
surface �i.e., the origin for negative refractive index� and
cut-off conditions for diffractions at normal incidence are
based on the solutions at this point. Nevertheless, similar
analyses at other symmetrical k-points can be handled in a
similar manner and in fact the systems with n��k�=2, 3, and
4 �Tables II–IV� at other k-points have smaller matrix sizes
and are therefore easier to handle.

For the state of �	=30°, Eqs. �13� and �14� result in two
6�6 matrices corresponding to the two different polariza-
tions. The matrix for E polarization can be diagonalized to
obtain normalized frequencies,

�o1
2 =

4

3
h	

2��0 − 2�1 + 2�2 − �3� �1� , �15a�

�o2
2 =

4

3
h	

2��0 + 2�1 + 2�2 + �3� �1� , �15b�

�o3
2 =

4

3
h	

2��0 − �1 − �2 + �3� �2� , �15c�

�o4
2 =

4

3
h	

2��0 + �1 − �2 − �3� �2� , �15d�

and similarly for H polarization,

�o1
2 =

4

3
h	

2��0 + �1 − �2 − �3� �1� , �16a�

�o2
2 =

4

3
h	

2��0 − �1 − �2 + �3� �1� , �16b�

�o3
2 =

4

3
h	

2��0 −
1

2
��1 − �2� − �3� �2� , �16c�

�o4
2 =

4

3
h	

2��0 +
1

2
��1 + �2� + �3� �2� , �16d�

with the degeneracy �indicated in the bracket� in the presence
of the spatial modulation. The degeneracy in the presence of
the spatial modulation is a consequence of the symmetry
possessed by the PC and has to be analyzed using group
theoretical tools.1,35 In Eqs. �15a�–�15d� and �16a�–�16d�,
�1=��h	�G1−G2�	, �2=��h	�G1−G3�	, and �3=��h	�G1
−G4�	. In the absence of the spatial modulation, �1=�2=�3
=0, and only �0 is nonzero and hence all the four solutions
for E and H polarizations are equal.

In order to test the accuracy of Eqs. �15a�–�15d� and
�16a�–�16d�, the solutions for the state with m	=1
��	=30°,h	=1� �Fig. 1� are analyzed for a 2D PC made of
circular air holes of a filling ratio f in a matrix medium of
refractive index n. Figures 3�a� and 3�b� show the result of
numerical evaluation employing 361 plane waves and the
result of analytical evaluation using Eqs. �15a�–�15d� and
�16a�–�16d� as a function of n for the E polarization with f
=15% and 23%, respectively. Figure 3�c� shows a similar
plot with f =15% for H polarization. As we can readily see

from these figures, Eqs. �15a�–�15d� and �16a�–�16d� provide
good approximation for the values of �	 for n even up to 3.0.
The accuracy of the approximation reduces as the spatial
modulation increases �i.e., when f or n is increased� and for
a given set of the same parameters, the approximation is
more accurate for E polarization than H polarization.

B. Solution for k vectors in the neighborhood
of symmetrical points

For k vectors in the neighborhood of symmetrical points,
we can assume �kn+k+Gi���k+Gi�, where k and kn stand
for a symmetrical wave vector and a wave vector close to it
�i.e., in the neighborhood region�, respectively. As such, Eq.
�4� can still be approximated using Eq. �13�. The matrix el-
ement, Mij

�k, takes the form of

FIG. 3. �Color online� The splitting of states in the presence of
the spatial modulation for the state �	=30° with h	=1 as a function
of n. Key: solid lines—numerically evaluated using 361 plane
waves; markers—analytically evaluated using Eqs. �15a�–�15d� and
Eqs. �16a�–�16d�. �a� E polarization with f =0.15, �b� E polarization
with f =0.23. �c� H polarization with f =0.15.
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Mij
�k = �kn + p�k

�k + Gi���kn + p�k
�k + G j��

�ei · ��p�k
�Gi − G j�	 · e j�/�ckmk� , �17a�

and

Mij
�k = ��p�k

�Gi − G j�	�kn + p�k
�k + Gi��

��kn + p�k
�k + G j��/�ckmk� , �17b�

for H and E polarizations, respectively. The size of the ma-
trix defined by Eqs. �17a� and �17b� is n��k�, and this sig-
nificantly reduces the computational time required for diago-
nalizations. The result is particularly useful in calculations of
an equal frequency surface, which typically involve dense k
vectors. Equal frequency surface is commonly employed in
calculating the dispersive effects of a PC such as superprism,
supercolimation, etc. Interestingly, these effects occur in PCs
with a small �however a finite� spatial modulation, and gen-
erally, the accuracy of the approximation provided by Eqs.
�13�, �17a�, and �17b� will be fairly sufficient. Further, de-
pending on n��k� and the k vector, Eqs. �17a� and �17b� can
be solved exactly. The full description of the solutions for
states with n��k�=2 and the corresponding equal frequency
surface have been presented by us in detail in Ref. 37.

Figures 4�a� and 4�b� show the approximated dispersion
relation for E and H polarizations, respectively, for the state
m	=1 ��	=30°,h	=1�. The kn was assumed to be along the
	-K direction of the hexagonal lattice and the PC was as-
sumed to have n=2 with f being 15% and 23%, the same as

in Figs. 4�a� and 4�b�, respectively. For a comparison, the
numerically evaluated dispersion curves using 361 plane
waves are also shown in these figures and we can readily see
that the agreement is generally good especially for kn vectors
close to the 	 point.

C. Influence of anisotropy

If �̃H �Eq. �5�	 is taken as a sum of an isotropic tensor and
an anisotropic tensor with smaller tensor components, then
Eq. �12� can be used to approximate the dispersion relation
in the presence of both anisotropy and spatial modulation.
Though any orientation of anisotropic material can be
handled by Eq. �12�, in the following, we will assume a
specific, yet typical orientation28,31,38 for which the solutions
can be analytically described.

Considering a 2D PC with alternating isotropic and aniso-
tropic material in a hexagonal lattice, the coordinate system
of the anisotropic material is assumed to be parallel with the
coordinate system of the PC, where the principal refractive
indices along the x and y axis of the PC are n+�n and n,
respectively. As such, the matrix �̃H in Eq. �5� can be written
as

�̃H�G� = 
��G� + ��G� 0

0 ��G�
� , �18�

where the matrix diag���G� ,��G�	 is the corresponding �̃H
matrix for a PC with �n=0. It is easy to see that if ��G� �the
coefficient representing the anisotropy� is small, then Eq.
�6a� approximately equals to Eq. �7�, and therefore the con-
dition for Eq. �12� is valid. For states m	=h	

2 ��	=30°�,
being consistent with definitions of �0 �1, �2 and �3, the
coefficients �0, �1, �2 and �3 can be respectively defined as
�0=��0�, �1=��h	�G1−G2�	, �2=��h	�G1−G3�	, and �3
=��h	�G1−G4�	. In the absence of modulation, only �0 and
�0 are nonzero.

With Eq. �18�, Eq. �12� �or Eq. �13�	 for the H polariza-
tion can be exactly solved and the solutions for states �	

=30° are

�a1 = �o1 +
1

2
��0 + �m

1 � − �12

+
1

6
�32�12

2 + �3��0 + �m
1 � + 2�12	2, �19a�

�a2 = �o2 +
1

2
��0 + �m

2 � + �12�

−
1

6
�32�12�

2 + �3��0 + �m
2 � − 2�12� 	2, �19b�

�a3 = �o3 + �0 + �m
3 , �19c�

�a4 = �o3 +
1

2
��0 + �m

1 � + �12

−
1

6
�32�12

2 + �3��0 + �m
1 � + 2�12	2, �19d�

kn (/a)

FIG. 4. �Color online� The dispersion for wave vectors in the
neighborhood of 	 point for the state �	=30° �h	=1�. The kn vec-
tors are along the 	-K direction. Key: solid lines—numerically
evaluated using 361 plane waves; markers—approximated using
Eq. �13� with the matrix element given by Eqs. �17a� and �17b� �a�
E polarization with f =0.23. �b� H polarization with f =0.15.
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�a5 = �o4 + �0 + �m
4 , �19e�

�a6 = �o4 +
1

2
��0 + �m

2 � − �12�

+
1

6
�32�12�

2 + �3��0 + �m
2 � − 2�12� 	2, �19f�

with �12� =�1+�2, �12=�1−�2, and the modulation terms re-
sulted from the anisotropy were summed together as �m

i �i
=1, 2, 3 or 4�,

�m
1 = �1 − �2 − �3,

�m
2 = − �1 − �2 + �3,

�m
3 = − �1 + �2 − �3,

�m
4 = �1 + �2 + �3. �20�

Equations �19a�–�19f� being a generalized version of Eqs.
�16a�–�16d� apply for states of �	=30° with any h	. The
equations provide an in-depth perspective toward the under-
standing of the splitting of states in the presence of aniso-
tropy and in the presence of modulation. When we switch off
the material’s anisotropy, Eqs. �19a�–�19f� accurately repro-
duce Eqs. �16a�–�16d� �H polarization� with two nondegen-
erate states and two doubly degenerate states. This can be
seen by setting �0=�m

i =0, which consequently leads to �a1
=�o1, �a2=�o2, �a3=�a4=�o3, and �a5=�a6=�o4. On the
other hand, if the spatial modulation is switched off com-
pletely �i.e., �1=�2=�3=�12� =�12=�m

i =0�, then we have �oi
�i=1, 2 , 3 , and 4�=�o �Eqs. �16a�–�16d�	 and conse-
quently, Eqs. �19a� and �19c�–�19e� reduce to �a1=�a3
=�a5=�a6=�o+�o, and Eqs. �19b� and �19f� reduce to �a2
=�a4=�o.

Figure 5 illustrates the results of Eqs. �19a�–�19f� and the
numerical method �using 361 plane waves� for the state h	

=1 ��	=30°� in the hexagonal lattice PC made of circular
cylinders of refractive index 2.5 in an anisotropic matrix me-

dium of n=1.4. The horizontal axis in the figure represents
the variation in �n and f . At point A, we have f =0.25 and
�n=0.6 and due to the large anisotropy, we have a deviation
between the analytical approximation and the numerically
evaluated curves. This deviation reduces when f �left of the
point A� or �n �right of the point A� is reduced. As we can
see from the figure, when the material’s anisotropy is re-
duced from �n=0.6 �at point A� to �n=0, the six nondegen-
erate states at A transform into four states composed of two
nondegenerate states and two doubly degenerate states. On
the other hand, when the spatial modulation is reduced from
f =0.25 �at point A� to f =0, the six nondegenerate states
transform into two states with degeneracies 4 and 2 �Fig. 5�.

V. CONCLUSION

In summary, we have systematically analyzed the photo-
nic states of a 2D PC. In particular, we have provided a new
insight to the states, by introducing a proper classification
system in the absence of a spatial modulation. States within
the same class can be solved in the same manner when the
modulation and the material’s anisotropy are switched on.

*exwsun@ntu.edu.sg
1 K. Sakoda, Optical Properties of Photonic Crystals �Spinger,

New York, 2001�, Chaps. 2 and 3.
2 P. R. Villeneuve and M. Piche, Phys. Rev. B 46, 4969 �1992�.
3 M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 �1991�.
4 A. Taflove and S. C. Hagness, Computational Electrodynamics:

The Finite-Difference Time-Domain Method, 2nd ed. �Artech
House, Boston, 2000�, Chap. 13.

5 M. Qiu and S. He, J. Appl. Phys. 87, 8268 �2000�.
6 J. B. Pendry and A. MacKinnon, Phys. Rev. Lett. 69, 2772

�1992�.
7 J. M. Lourtioz, H. Benisty, V. Berger, and J. M. Gerard, Pho-

tonic Crystals: Towards Nanoscale Photonic Devices �Springer,
New York, 2005�, Chap. 2.1.

8 N. A. Gippius, S. G. Tikhodeev, and T. Ishihara, Phys. Rev. B

72, 045138 �2005�.
9 S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gip-

pius, and Teruya Ishihara, Phys. Rev. B 66, 045102 �2002�.
10 D. M. Whittaker and I. S. Culshaw, Phys. Rev. B 60, 2610

�1999�.
11 A. David, H. Benisty, and C. Weisbuch, Phys. Rev. B 73,

075107 �2006�.
12 M. Notomi, Phys. Rev. B 62, 10696 �2000�.
13 S. Foteinopoulou and C. M. Soukoulis, Phys. Rev. B 72, 165112

�2005�.
14 W. Jiang, R. T. Chen, and X. Lu, Phys. Rev. B 71, 245115

�2005�.
15 F. García-Santamaría, J. F. G. López, P. V. Braun, and C. López,

Phys. Rev. B 71, 195112 �2005�.
16 G. Alagappan, X. W. Sun, M. B. Yu, and P. Shum, Phys. Rev. B

FIG. 5. �Color online� The splitting of states in the presence of
modulation and in the presence of the material’s anisotropy for the
state �	=30° �h	=1� for H polarization and n=1.4. Point A repre-
sents a configuration with f =0.25 and �n=0.6. Key: solid lines—
numerically evaluated using 361 plane waves; markers—
analytically evaluated using Eqs. �19a�–�19f�.

STATES OF A TWO-DIMENSIONAL PHOTONIC CRYSTAL… PHYSICAL REVIEW B 78, 035112 �2008�

035112-7



75, 113104 �2007�.
17 K. Sakoda, Phys. Rev. B 52, 8992 �1995�.
18 A. E. Serebryannikov, T. Magath, and K. Schuenemann, Phys.

Rev. E 74, 066607 �2006�.
19 Z. Y. Li, L. L. Lin, and Z. Q. Zhang, Phys. Rev. Lett. 84, 4341

�2000�.
20 Y. S. Zhou, X. H. Wang, B. Y. Gu, and F. H. Wang, Phys. Rev. E

72, 017601 �2005�.
21 E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D.

Brommer, and J. D. Joannopoulos, Phys. Rev. Lett. 67, 3380
�1991�.

22 V. Kuzmiak and A. A. Maradudin, Phys. Rev. B 57, 15242
�1998�.

23 Y. C. Hsue, A. J. Freeman, and B. Y. Gu, Phys. Rev. B 72,
195118 �2005�.

24 W. C. Sailor, F. M. Mueller, and P. R. Villeneuve, Phys. Rev. B
57, 8819 �1998�.

25 R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos,
and O. L. Alerhand, Phys. Rev. B 48, 8434 �1993�.

26 M. S. Li, S. T. Wu, and A. Yi-. G. Fuh, Appl. Phys. Lett. 88,
091109 �2006�.

27 J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton,
M. Zoorob, and G. J. Parker, Appl. Phys. Lett. 85, 354 �2004�.

28 G. Alagappan, X. W. Sun, P. Shum, and M. B. Yu, Opt. Lett. 31,
1109 �2006�.

29 Y. J. Liu and X. W. Sun, Appl. Phys. Lett. 89, 171101 �2006�.
30 Z. Y. Li, J. Wang, and B. Y. Gu, Phys. Rev. B 58, 3721 �1998�.
31 H. Takeda and K. Yoshino, Phys. Rev. E 67, 056607 �2003�.
32 G. Alagappan, X. W. Sun, P. Shum, M. B. Yu, and D. den En-

gelsen, J. Opt. Soc. Am. A 23, 2002 �2006�.
33 The labeling system with integers mk for the states in the ab-

sence of spatial modulation in a hexagonal lattice 2D PC and the
corresponding symmetry analyses were introduced previously
by us. See G. Alagappan, X. W. Sun, and H. D. Sun, Phys. Rev.
B 77, 195117 �2008�.

34 Equation �8� can be derived for an arbitrary wave vector and a
general 2D lattice. To see this, assuming b1= �b1x ,b1y	, b2

= �b2x ,b2y	, and k= �kx ,ky	, consequently k+G= �kx+n1b1x

+n2b2x , ky +n1b1y +n2b2y	 and tan��k�=ky +n1b1y +n2b2y / �kx

+n1b1x+n2b2x�. Using tan��k�, we can write n2 in terms of n1

�or n1 in terms of n2�. For example by eliminating n2, �k+G�2
= kxb2y −kyb2z+n1�b1xb2y −b2xb1y��cosec2��k−�b2� / �b2�2.
Hence, q��b2�=cosec2��k−�b2� and ckpk�n1�
=

kxb2y−kyb2z+n1�b1xb2y−b2xb1y��
�b2�2 .

35 K. Sakoda, Phys. Rev. B 52, 7982 �1995�.
36 L. Marchildon, Quantum Mechanics �Springer, New York,

2002�, Chap. 10.
37 G. Alagappan, X. W. Sun, and M. B. Yu, J. Opt. Soc. Am. A 25,

219 �2008�.
38 C. Y. Liu and L. W. Chen, Phys. Rev. B 72, 045133 �2005�.

ALAGAPPAN, SUN, AND YU PHYSICAL REVIEW B 78, 035112 �2008�

035112-8


