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A many-flavor electron gas �MFEG� is analyzed, such as could be found in a multivalley semiconductor or
semimetal. Using the rederived polarizability for the MFEG, an exact expression for the total energy of a
uniform MFEG in the many-flavor approximation is found; the interacting energy per particle is shown to be
−0.574 447�Eha0

3/4m�3/4�n1/4, with Eh being the Hartree energy, a0 being the Bohr radius, and m� being the
particle effective mass. The short characteristic length scale of the MFEG motivates a local-density approxi-
mation, allowing a gradient expansion in the energy density and the expansion scheme is applied to electron-
hole drops, finding a new form for the density profile and its surface scaling properties.
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I. INTRODUCTION

For some semiconductors, at low temperatures and high
density, electrons and holes condense into electron-hole
drops, which provide a good testing ground for understand-
ing the effects of electron-electron interactions.1 Some of the
semiconductors �and also semimetals� that electron-hole
drops form in,2,3 such as Si, Ge, and diamond, have
conduction-band minima near the Brillouin-zone boundary.
For example, Si has six degenerate valleys �see Fig. 1�, a
Ge-Si alloy has ten degenerate valleys, and Pb1−x−ySnxMnyTe
has twelve valleys in the � band.5 When the material is
strained, valley degeneracy reduces,6–10 which can be experi-
mentally probed,11–20 meaning that valley degeneracy could
be regarded as a control parameter. Because of this, as well
as degeneracy being large in some semiconductors, valley
degeneracy might be a good parameter with which to formu-
late a theory of electron-hole drops.

Previous theoretical analyses of electron-hole drops9,21–26

used an expansion of the energy density with parameters
found from separate energy calculations.10 An alternative ap-
proach is to assume that each valley contains a different type
of fermion, denoted by an additional quantum number, which
we shall call the flavor. The total number of flavors �valleys�
is �. Further motivation to study flavors stems from the fact
that in some previous studies of multiply degenerate systems,
the number of flavors has not been well defined, for example
heavy fermions,27–29 charged domain walls,30 a superstrong
magnetic field,2 and spin instabilities.31,32 Cold atom systems
in optical lattices33–35 have a well-defined number of flavors
but weak interactions between particles. In electron-hole
drops, however, the number of flavors is well defined and
interactions are strong.

The ground-state energy and pair-correlation function of a
free many-flavor electron gas �MFEG� were examined using
a numerical self-consistent approach for the local-field cor-
rection by Gold36 and superconductivity was studied by
Cohen.37 Following the method of Keldysh and
Onishchenko,2 Andryushin et al.3 studied the behavior of the
free MFEG by summing over all orders of Green’s function
contributions. They found an exact expression for the corre-
lation energy of a MFEG, which dominates the interacting

energy in the extreme many-flavor limit. This paper de-
scribes the derivation of a more versatile formalism based on
a path integral, which gives an exact expression for the total
energy of the MFEG. The theory could apply with as few as
six flavors, where the exchange energy that was assumed
small by Andryushin et al.3 would be significant.

As well as studying the uniform case, the previously un-
studied density response of a MFEG that is not constrained
to be uniform is investigated. The screening length scales of
the MFEG are shown to be short relative to the inverse Fermi
momentum, suggesting that a local-density approximation
�LDA� might be a good approximation, motivating a gradient
approximation. This gradient expansion is then applied to
analyze the electron-hole drop density profile, and to simu-
late the effects of strain the scaling of drop surface thickness
and tension with number of flavors is examined.

In a MFEG with � flavors at low temperatures, the rela-
tionship between the number density of electrons n and
Fermi momentum pF is
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FIG. 1. The Si band structure in the �100� direction generated
with a LDA-DFT approximation by a plane-wave pseudopotential
method �Ref. 4�. The Fermi energy is E=0 eV. Below are valence
bands with holes at H; above are conduction bands; and the bold
parabolic curve signifies the first conduction-band valley with elec-
trons at E.
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n =
�pF

3

3�2 . �1�

When the electrons have multiple flavors, each Fermi surface
encloses fewer states, so pF��−1/3. The local band curvature
governs the electron effective mass. The band structure is
often such that the holes relax into a single valence-band
minimum at the � point �see Fig. 1�. Here holes are assumed
to be heavy and spread out uniformly, providing a jellium
background.

The Thomas-Fermi approximation predicts a screening
length �−1= �4�e2g�−1/2, where g is the density of states
�DOS� at the Fermi surface. The DOS is dependent on the
number of flavors as g���EF��2/3 and so �−1��−1/3. The
ratio of the inverse Fermi momentum length scale to the
screening length varies with number of flavors as pF /�
��−2/3. This paper takes the many-flavor limit ��1, in
which the screening length is smaller than the inverse Fermi
momentum �−1� pF

−1. The many-flavor limit, therefore,
means that the wave vectors of the strongest electron-
electron interactions obey q� pF. This is the opposite limit to
the random-phase approximation �RPA�, which assumes that
pF��. Physically this means that the characteristic length
scales of the MFEG are short, so a LDA can be used in Sec.
III to develop a gradient expansion.

The conduction-band energy spectrum is characterized by
two spectra, E�q� and 	i�p�, as shown in Fig. 2. There are
two energy functions; E�q� gives the energy in the band
structure at momentum q and 	i�p�= p2 /2m denotes the ki-
netic energy at momentum p with respect to the center of the
ith valley. The dispersions of all valleys are assumed to be
the same and isotropic so that 	i�p�=	�p�. Andryushin et al.3

have outlined a method of calculating a scalar effective mass
for anisotropic valleys.

Physical manifestations of the many-flavor limit include
effects where the DOS at the Fermi surface �energy EF� is
important. From Eq. �1�, the DOS of a particular flavor i
shrinks as gi�EF�� pF��−1/3, whereas the DOS of all flavors

grow since g�EF�=�i=1
� gi�EF�=�g1�EF���2/3. With increas-

ing flavors, more electrons are within �kBT of the Fermi
surface, hence, they are able to be thermally excited. There-
fore, the heat capacity of the MFEG C
=12kB

2T�� /3�2n�2/3 /5 increases with number of flavors. The
Stoner criterion38,39 for band ferromagnetism states that for
opposite spin electrons interacting with positive exchange
energy U, ferromagnetism occurs when g�EF�U
1. With in-
creasing number of flavors, the total DOS g�EF���2/3 in-
creases so that the Stoner criterion becomes more favorable.
However, this analysis does not take into account the curva-
ture of the DOS at the Fermi surface, which can be an im-
portant factor in determining whether ferromagnetism
occurs.40,41 The effect of the total DOS is also seen in the
paramagnetic susceptibility. This is proportional to the total
DOS at the Fermi surface that is expected to increase with
the number of flavors. Analogously one can compare a tran-
sition metal with narrow d bands that lead to a large DOS at
the Fermi surface with a simple metal that has broader free-
electron conduction bands that lead to a lower DOS at the
Fermi surface. Similar to many-flavor systems, transition
metals are experimentally observed42 to have a significantly
higher specific-heat capacity and greater magnetic suscepti-
bility than typical simple metals. The simple scaling relation-
ships with number of flavors for heat capacity and magneti-
zation provide additional motivation to analyze a MFEG in
more detail.

This paper uses the atomic system of units, that is e2=�
=m=1 / �4�	0�=1, but is modified so that m denotes an ap-
propriate effective mass for the electron-hole bands, which is
the same for all valleys. This mass m=mem

� can be ex-
pressed as a multiple of the electron mass me and the dimen-
sionless effective mass m�. The units of length are then a0

�

=a0 /m�, where a0 is the Bohr radius. Units of energy are
those of an exciton Eh

�=Ehm�, where Eh is the Hartree en-
ergy. These six quantities, defined to be unity, give the stan-
dard atomic units when m�=1. For the important relation-
ships that are derived in this paper, particular to the MFEG,
the full units are shown explicitly for clarity. Throughout this
paper, density is denoted by both n �number density of par-
ticles� and rs �Wigner-Seitz radius�.

In this paper, a new formalism for the uniform system is
first derived. In Sec. I A the system polarizability is found; in
Sec. II A the general quantum partition function is derived;
and in Sec. II B the uniform MFEG total energy is calcu-
lated. Second, we examine the system with nonuniform den-
sity. In Sec. III a gradient expansion in the density for the
total energy is found and is applied to electron-hole drops in
Sec. IV, whose density profile and surface properties are cal-
culated.

A. Polarizability

In this section, the MFEG polarizability is derived.
Though the result for the polarizability is the same as previ-
ous work,3,43 the derivation is presented here since an as-
sumption made leads to an applicability constraint on the
many-flavor theory �in Sec. II C� and the MFEG polarizabil-
ity is an important quantity that will feature prominently the
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FIG. 2. The dark gray ellipsoids show Fermi surfaces of elec-
trons in the six degenerate conduction-band valleys in Si. E�q� is
the energy with momentum q, measured with respect to the � point.
	i�p� is energy with momentum p, measured with respect to the
center of the ith valley.

G. J. CONDUIT PHYSICAL REVIEW B 78, 035111 �2008�

035111-2



two main results of this paper; the Sec. II derivation of the
MFEG interacting energy and the derivation of the gradient
expansion �see Sec. III�.

The polarizability �0
MF�q ,
�, which the superscript “MF”

�many flavor� denotes, is only for a MFEG at wave vector q
and Matsubara frequency 
 is given by the standard
Lindhard form,

�0
MF�q,
� = �

i,j=1

�
�i,j

4�3� nF�	i�p�� − nF�	 j�p + q��
i
 + 	i�p� − 	 j�p + q�

dp , �2�

where nF�	i�=1 / �e��	i−��+1� is the Fermi-Dirac distribution,
�=1 /kBT, and � is the chemical potential. In the standard
expression for the polarizability, the Fermi-Dirac distribution
would contain the energy spectrum E�p�. However, in the
MFEG, each electron is in a particular valley so the polariz-
ability should be re-expressed in terms of the energy disper-
sion of each valley 	i�p� �see Fig. 2� and the contributions
must be summed over the valleys i and j. Equation �13�
shows that a large Coulomb potential-energy penalty V�q�
�1 /q2 inhibits exchange between different valleys so that
the Kronecker delta �i,j removes cross-flavor terms and since
all of the conduction valleys have the same dispersion, a
factor of � will replace the remaining summation over val-
leys. Supposing each conduction valley has a locally qua-
dratic isotropic dispersion relationship �with effective mass
m�, symmetrizing results in

�0
MF�q,
� =

�

4�3� nF�	 1
2q − p	2/2� − nF�	 1

2q + p	2/2�
i
 − p · q

dp .

�3�

In Sec. II B it is shown that the typical momentum exchange
q���a0

−1/4�n1/4 is large relative to the Fermi momentum,
therefore, the two volumes in momentum space of integra-
tion variable p, defined by the two Fermi-Dirac distributions,
are far apart relative to their radii q /2� pF and the tempera-
ture is sufficiently low so that the high-energy tails of the
two distributions have negligible overlap. Within these ap-
proximations, the simple form for the polarizability is

�0
MF�q,
� = −

n

�
/q�2 + q2/4
. �4�

This expression agrees with the many-flavor polarizability
found by Andryushin et al.3 and Beni and Rice.43

The standard Lindhard form for the polarizability, when
taken in the same q� pF limit as imposed by the many-flavor
system, agrees with Eq. �4�. In the static limit where frequen-
cies are small compared to the momentum transfer q2

� ��3 /a0
�2Eh

��
, the polarizability varies as q−2. In this limit,
one Green’s function is restricted by the sum over Matsubara
frequencies to lie inside the Fermi surface, while the other
gives the polarizability dependence of 1 /	�q��q−2 due to
the excited electron’s kinetic energy.

The derivation of the polarizability accounted only for
intravalley scattering, which means that in the MFEG, the
same terms contribute3 as in the RPA for the standard elec-
tron gas. Therefore, diagrammatically, in the polarizability,
all electron loops are empty. The polarizability contains only

reducible diagrams, which is denoted by the polarizability
subscript “0.”

II. ANALYTIC FORMULATION

Having reviewed the derivation of the polarizability of the
system, it is now used to formulate two complementary com-
ponents of the many-flavor theory. The first is the derivation
of the energy of a uniform system. We begin by calculating
the general quantum partition function in Sec. II A and con-
tinue for the homogeneous case in Sec. II B. The validity of
the many-flavor approach for a uniform MFEG is investi-
gated in Sec. II C. The second part of the formalism is a
gradient expansion of the energy density, looked at in Sec.
III. Finally, the uniform and gradient expansion parts of the
formalism will be brought together to study the model sys-
tem of electron-hole drops in Sec. IV.

A. Partition function

To derive an expression for the total energy of the system,
a functional path-integral method is followed, which is a
flexible approach that should be extendable to investigate
further possibilities such as modulated states and intervalley
scattering. Fermion field variables � are used to describe the
electrons, irrespective of flavor in the dispersion E�p̂�. Over-
all the system is electrically neutral, so in momentum repre-
sentation, the q=0 element is ignored. The repulsive charge-
charge interaction acting between electrons is V�r�=e2 /r. We
explicitly include the dependence on electron charge e �even
though it is defined to be unity� so that the charge can be set
equal to zero to recover the noninteracting theory. For gen-
erality we consider stationary charges Q�r� embedded in the
MFEG, which have a corresponding static potential U�r�.
The quantum partition function for the MFEG that is written
as a Feynman path integral is then

Z =� � exp
� � �̄�r,���− i
̂ + E�p̂� − ����r,��drd��

�exp�1

2
� � � ��̄�r�,����r�,�� − Q�r���V�r − r��

���̄�r,����r,�� − Q�r��dr�drd�
D�̄D� . �5�

This expression for the quantum partition function differs
from that used for an electron gas �which has just a single
flavor� only by the operator E�p̂�, which gives the appropri-
ate energy dispersion. To recover the standard electron-gas
result, which has a free particle dispersion relationship cen-
tered at the � point, one should set E�p�= p2 /2me. For the
MFEG, as outlined in Fig. 2, E�p� represents the dispersion
relationship of the whole conduction band, but no approxi-
mation concerning the flavors has yet been made, so the
formalism applies for any number of flavors with a suitable
energy dispersion relationship.

To make the action quadratic in the fermion variable �,
the Hubbard-Stratonovich transformation44 introduces an
auxiliary boson field ��r ,��,

MANY-FLAVOR ELECTRON GAS APPROACH TO… PHYSICAL REVIEW B 78, 035111 �2008�

035111-3



Z =� exp �− ��

2 �
q�0,�

��q,���q2/4����− q,− �� +
�e2�n

2 �
q�0

4�

q2

†

�� �exp � � �̄�r,���− i�̂ + E�p̂� + Û − 	 + ie�̂���r,��drd� D�̄D�D� .

�

�6�

The direct decoupling channel44 was chosen as the relevant
contributions come from a RPA-type contraction of opera-
tors.

The term labeled with a †, exclusive of both fermion vari-
ables � and the auxiliary field �, physically removes the
electron self-interaction included when expressing the auxil-
iary field in a Fourier representation. Integrating over the

fermion variables � and using ln�det Â�=tr�ln Â�, gives Z
=�e−S���D�, where the action S��� is

S��� =
��

2�
�

q�0,�
��q,���q2/4����− q,− ��

− 2�e2�n �
q�0

1

q2

− tr�ln�− i�̂ + E�p̂� + ie�̂ + Û − ��

Ĝ�
−1

� .

�7�

Due to its similarity to an inverse Green function, Ĝ�
−1 is

used to denote the argument of the logarithm. The subscripts
“�” or “0” denote whether the inverse Green’s function in-
cludes the auxiliary field or is free.

Finally, we note �for use later� that the ground-state total
energy per particle EG=Eint+E0 can be split into two com-
ponents. The interacting energy is Eint �found in Sec. II B�
and the noninteracting energy is

E0 =
3

10
�3�2n

�
�2/3

, �8�

which is the energy with interaction between charges
switched off �e=0�. It falls with increasing number of elec-
tron flavors due to the shrinking Fermi surface.

B. Homogeneous Coulomb gas

So far, up to Eq. �7�, the formalism is exact, however, to
perform the functional integral over bosonic variable �, an
approximation must be made. To proceed one notes that with
no external potential U�r�=0, the saddle-point auxiliary field
of the action �Eq. �7�� is �=0. Fluctuations in the action are
expanded about the saddle-point solution in �, giving the
expression

S��� = ln�Ĝ0
−1� + tr � �̂V̂−1�̂ −

1

2
�̂Ĝ0�̂Ĝ0

‡

�
−

1

4
tr��̂Ĝ0�̂Ĝ0�̂Ĝ0�̂Ĝ0� + O��6� −

e2

2
�n �

q�0

4�

q2 .

�9�
Terms are now kept to quadratic order in �, which is equiva-
lent to the RPA, analogous to the terms kept in the derivation
of the many-flavor polarizability �see Sec. I A�. This ap-
proximation will place a constraint on the validity of the
formalism that is further examined in Sec. II C.

The product of two Green’s functions in the quadratic
term in �, labeled as ‡, is identified with the polarizability
�0. This is still expressed in terms of the general energy
spectrum E�p�, so it is not yet necessarily many flavor and
does not carry the superscript MF used in Sec. I A. Follow-
ing a multidimensional Gaussian integral over the fluctuating
field � �to quadratic order�, the quantum partition function is

Z = �
q,


�q2/4� − e2�0
�q,
��−1/2exp��

2 �
q�0

4�e2

q2 n� .

�10�

In the low-temperature limit, we consider the free energy
EG=−lim�→��ln�Z� /��=E0+Eint to get the interacting en-
ergy per particle normalized so that Eint=0 with no interac-
tions �e=0�,

Eint =
1

2n�� � ln�1 −
4�e2

q2 �0
�q,
��d
dq

�2��4

− e2n �
q�0

4�

q2 
 . �11�

This equation remains general and is not necessarily in the
many-flavor limit. It is in agreement with previous expres-
sions for the interacting energy6 that are studied not in the
many-flavor limit, but which use alternative forms for the
polarizability. If the standard �single flavor� electron gas
form for the polarizability �the Lindhard function� is used,
then it is possible to recover, in the high-density limit, the
Gell-Mann Brückner45 expression for the total energy.

However, to proceed, one should now assume many fla-
vors and use the appropriate polarizability �Eq. �4��. The
many-flavor polarizability summed over all Matsubara fre-
quencies in the zero-temperature limit �→� satisfies

G. J. CONDUIT PHYSICAL REVIEW B 78, 035111 �2008�

035111-4



1
��
�0

MF�q ,
�=−n. This is used to substitute for the elec-
tron density n in the final term in Eq. �11� to yield the many-
flavor result

Eint =
1

2n
� � �ln�1 −

4�e2

q2 �0

MF
�q,
��

+
4�e2

q2 �0

MF
�q,
�
d
dq

�2��4 . �12�

To evaluate the interacting energy, one first substitutes for
the many-flavor polarization using Eq. �4�, makes the change
of variables �=
 /q2 and Q=q /n1/4 and rearranges to get

Eint = − n1/4

�
1

�2��3� � 16�e2

1 + 4�2 − Q4 ln�1 +
16�e2/Q4

1 + 4�2 �d�dQ

A3D

.

�13�
The integral is independent of density and number of flavors,
so is the numerical factor A3D= �Eh

�a0
�3/4���

−5 /4���3 /4� / �2�5/4��0.574447�Eh
�a0

�3/4� that was evaluated
analytically.46 The interacting energy is, therefore,

Eint = − A3Dn1/4, �14�

which is independent of the number of flavors. In evaluating
Eq. �13�, the main contribution to the integral over Q
=q /n1/4 is at a momentum q� ��a0

�−1/4�n1/4, so the interaction
and screening length scale in a MFEG is ��� /q
�a0

�1/4n−1/4�� / pF, which is shorter than the Fermi momen-
tum length scale.

The interacting energy Eint=Eex+Ecorr can be split into
exchange energy Eex and correlation energy Ecorr. The inter-
acting energy is independent of number of flavors, the ex-
change energy Eex=−�3 /2��3n /���1/3 �Ref. 36� falls with
number of flavors, therefore, the correlation energy domi-
nates over the exchange energy in the interacting energy in
the many-flavor limit. In terms of the total energy, the corre-
lation energy also dominates over the noninteracting energy,
which is the kinetic energy that falls with number of flavors
as E0��−2/3. The increasing importance of the correlation
energy can be understood further by considering the electron
pair-correlation function. With increasing number of flavors,
the length scales between electrons of the same flavor in-
crease as ��1/3rs and, thus, exchange energy and kinetic en-
ergy reduce. Whereas the correlation energy depends only on
the distance rs between electrons, so it is unaffected by the
number of flavors present. Andryushin et al.3 and Keldysh
and Onishchenko2 found the Eq. �14� to be the correlation
rather than interacting energy, neglecting the exchange en-
ergy, which is small in the extreme many-flavor limit. In Sec.
II C the expression for the interacting energy is compared
with self-consistent numerical calculations36 on a MFEG
with up to six flavors.

The interacting energy of a standard electron gas with a
single flavor36 is more negative than that of a MFEG, which
in turn is more negative than that of a Bose condensate.47

This could be due to the reducing negativity of the exchange
energy, which is important in the single-flavor system, but
zero in the Bose condensate. In these two extreme systems
�the single-flavor electron gas and the Bose condensate�,
there is no notion of valley degeneracy and therefore the
intermediate system �the MFEG� might be expected at most
to have only a weak dependence on number of valleys. In
fact, the interacting energy of the MFEG, over the range of
density found in Sec. II C, contains no dependence on the
number of valleys. The absence of flavor dependence is also
present in the universal behavior for the exchange-
correlation energy in electron-hole liquids proposed by Vash-
ishta and Kalia.48

The noninteracting energy term E0� �n /��2/3 favors low
electron density, the interacting term Eint=−A3Dn1/4 favors
high electron density, therefore, the total energy per particle
has a minimum, as a function of density, of EG min�−�2/5 at
nmin��8/5. The presence of a minimum in energy with den-
sity of the MFEG is consistent with the results of Andryushin
et al.3 and Brinkman and Rice,6 who analyzed conduction
electrons in a semiconductor. One consequence of this mini-
mum is the possibility of a low-density phase coexisting with
excitons.

Before analyzing the nonuniform system in detail in Sec.
III, we can make qualitative arguments about its expected
behavior within a potential well. According to Thomas-Fermi
theory, an electron gas in a slowly varying attractive poten-
tial has a constant chemical potential. The electron gas is
least dense at the edges of the potential and is densest at the
center of the well. In a MFEG, due to the negative interact-
ing energy Eint=−A3Dn1/4 favoring high electron density, the
density is expected to further reduce at the edges of the at-
tractive potential and increase at the center of the well. In a
repulsive potential, the opposite should occur.

C. Density limits

In this section, we will derive approximate expressions
for the upper and lower density limits over which the many-
flavor limit applies. These will be used to check the theory
against numerical results36 and to predict a lower bound on
the number of flavors required for the theory to apply.

To find the upper density limit, one notes that Eq. �13�
implies that an acceptable upper limit to the momentum in-
tegral would scale as q=���a0

�−1/4�n1/4, the constant ��4
was determined numerically and was chosen to give the q
upper limit on the integral that recovered 95% of the inter-
acting energy. Additionally, the two regions of integration,
defined by the Fermi-Dirac distributions in Eq. �3�, must not
overlap, requiring that q /2
 pF. Combining these requires
that for the many-flavor limit to apply, the density must sat-
isfy na0

�3� ��12�4� / �21234�8�. Physically the breakdown at
high density is due to the strongest interactions taking place
on length scales longer than the inverse length pF

−1.
The low-density limit is derived by considering the ex-

pansion of the action in the auxiliary boson field � �Eq. �9��.
In order to evaluate the Gaussian functional integral over the
bosonic variable �, it is necessary to neglect the quartic term
in �, which is valid only when investigating the system with

MANY-FLAVOR ELECTRON GAS APPROACH TO… PHYSICAL REVIEW B 78, 035111 �2008�

035111-5



respect to its long-range behavior, that is pF�a0
��1 �Ref. 44�

and, therefore, na0
�3�� /3�2. The breakdown at low density

can be understood because the MFEG is effectively a boson
gas, all electrons will be in the � state �k=0� and there is no
exchange energy.

The upper and lower critical density limits can be com-
bined to conclude that the many-flavor limit result for inter-
acting energy applies for densities that obey 0.03��na0

�3

�0.005�4. This density range increases as �4, the scaling
relationship is the same as the applicable density range of the
correlation energy found by Andryushin et al.,3 though they
did not provide estimates of numerical factors.

Using the above high- and low-density limits, it is pos-
sible to estimate the minimum number of flavors required for
the theory to apply. This is done by setting the lower and
upper estimates for the allowable density to be equal, which
gives ��2. This estimate is approximate due to the possible
inaccuracies in the upper and lower critical densities used in
its derivation. As the upper and lower critical densities were
set equal, the many-flavor theory will apply here only over a
very narrow range of densities, but this range widens with
increasing number of flavors as �4. An alternative limit can
be found by comparing the interaction energy predicted by
the theory over the expected density range of applicability
with the results of Gold.36 Their numerical self-consistent
approach gives interaction energies that are accurate to ap-
proximately 3% when compared with single-flavor electron-
gas quantum Monte Carlo �QMC� calculations49,50 and some
initial many-flavor QMC calculations.51 At two flavors, the
interacting energy that is predicted by the many-flavor theory
is �10% more positive than the self-consistent numerical
results,36 indicating the many-flavor theory does not apply at
two flavors. For six flavors, over the predicted allowed den-
sity range, the many-flavor theory is between �0% and
�4% more positive than the numerical results, which indi-
cates that the many-flavor theory can be applied within the
predicted range of applicability �0.5�rs /a0

��1�. The theory
should be applicable in common multivalley compounds,
such as silicon, which has six conduction-band valleys, and
to those with more valleys.5 This result is corroborated by
the results of initial QMC calculations51 on systems with
between 6 and 24 flavors.

In the first half of this paper, a new versatile formalism to
describe a MFEG that could apply in systems containing
approximately six or more degenerate conduction valleys has
been developed. An exact expression for the total energy of
the uniform MFEG was found and the applicable density
range was derived. The next step is to investigate the re-
sponse of the MFEG to an external potential. A gradient
approximation is developed in Sec. III and this is applied to
electron-hole drops in Sec. VI.

III. GRADIENT CORRECTION

In Sec. I it was shown that the typical length scales of the
MFEG are short q� pF, motivating a local-density approxi-
mation �LDA�. This motivation is in addition to the usual
reasons for the success of the LDA in density-functional
theory �DFT� �Ref. 52�—that the LDA exchange-correlation

hole only needs to provide a good approximation for the
spherical average of the exchange-correlation hole and obey
the sum rule.53 In this section, the LDA is used with the
polarizability derived in Sec. I A to develop a gradient cor-
rection to the energy density that allows the theory to be
applied to a nonuniform MFEG.

The typical momentum transfer in the MFEG is q
���a0

�−1/4�n1/4, hence, the shortest length scale over which
the LDA may be made is approximately �a0

�1/4 /��n−1/4 and
the maximum permissible gradients in electron density are
	�n	max�qn���a0

�−1/4�n5/4. The gradient expansion will
break down for short scale phenomena, for example a Mott
insulator transition. To derive an energy density gradient ex-
pansion, we follow Hohenberg and Kohn54 and Rice22 and
consider an external charge distribution next�q� that couples
to the induced charge distribution nind�q�, with Coulomb en-
ergy density

−
1

2�
q

4�e2

q2 next�q�nind�q� . �15�

One now substitutes for next�q� using the relative permittivity
1 /	�q�=1+nind�q� /next�q�=1 / �1−4��0

MF /q2� and the
many-flavor polarizability �Eq. �4��. The highest order term
in 1 /q2 gives the induced charge Coulomb energy, the term
of order q2 is associated with a gradient expansion. In real
space, this gives the expansion for the total energy per par-
ticle

EG +
��n�2

8n2 + O���n�4� . �16�

Here EG is the ground-state energy of the uniform system
found in Sec. II B. The form of the energy correction is simi-
lar to the von Weizsäcker term,55 although here it is larger,
having a coefficient of 1/8 rather than 1/72, as in the von
Weizsäcker case. The difference can be qualitatively under-
stood by considering the Fermi surfaces involved in the two
cases for a given wave vector q. In the many-flavor case, the
Fermi surfaces involved in the integral of Eq. �3� do not
overlap as q /2� pF so there is a large volume available in
Fermi space, hence, a large coefficient of 1/8. Whereas in the
ordinary electron gas �single flavor�, the same Fermi surfaces
do overlap, as now q /2� pF, reducing the volume available
for integration thus reducing the coefficient to 1/72.

The gradient correction for the energy could be used in
analytical approximations or as a DFT functional. This en-
ergy density expansion allows the MFEG to be applied to a
variety of systems. Its use for studying electron-hole drops is
demonstrated in Sec. IV.

IV. ELECTRON-HOLE DROPS

In this section, the MFEG is applied to a simple system to
investigate the properties of, electron-hole drops. An
electron-hole drop is a two-phase system, a spherical region
of a MFEG surrounded by an exciton gas.43 The density
profile, surface thickness, and surface tension of drops are
investigated; the scaling of surface thickness and tension
with number of flavors is also found, since this can be ex-
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perimentally probed through externally imposed strain re-
ducing the valley degeneracy.8

There have been four main theoretical methods used to
analyze an electron-hole drop in silicon and germanium,
semiconductors which have six and four flavors, respec-
tively. Rice23 fitted an analytic form to the energy density
minimum and included the lowest order of a local gradient
correction. From the equation for energy density, an analytic
form for the density profile was derived. A similar approach
was used by Sander et al.21 and Rice22 to study the surface
structure in more detail. The second approach,24,25 which
was also applicable to situations with an external magnetic
field and uniaxial strain, conserved momentum, particle
number, and pressure balance at the drop surface, the result-
ing equations were then solved numerically. A third approach
followed by Kalia and Vashishta9 used a Padé approximant
for the energy density10 derived specifically for silicon and
germanium, but did not include a gradient correction factor.
The fourth approach of Reinecke et al.26 again used a Padé
approximant for the energy density and also included a gra-
dient correction factor. The latter two approaches assumed an
exponential density profile for the drop. These four methods
all use approximate forms for the energy density. An advan-
tage of the many-flavor approach is that the exact form for
the analytic energy density �within the many-flavor assump-
tion� can be used to solve for the drop density profile. While
analytic forms for the inner and outer density profile, as well
as a model for the entire profile, can be derived, the general
problem must be solved numerically. With an exact form for
the density profile, electron-hole drop surface effects can be
studied.

Local charge neutrality is assumed so that the density of
electrons and holes are identically equal everywhere. A LDA
with gradient correction is used so that the drop energy den-
sity is written as the sum of the local noninteracting, local
interacting, and the lowest-order term in a gradient expan-
sion,

��r� =
3

10
�3�2

�
�2/3

n�r�5/3 − A3Dn�r�5/4 +
��n�r��2

8n�r�
.

�17�

The total energy of a drop is ���r�dr and the total number of
electrons in the drop is �n�r�dr. The total energy is mini-
mized with respect to electron density n�r� while keeping a
constant number of electrons in the drop by applying the
Euler-Lagrange equation with a Lagrange multiplier �,
which represents the chemical potential. If the drop has
spherical symmetry, the density must satisfy

2rn
d2n

dr2 + 4n
dn

dr
− r�dn

dr
�2

= 16�3�2

�
�2/3

rn8/3 − 40A3Drn9/4 − 32�rn2. �18�

The boundary conditions are specified at the center of the
drop, where the density takes the equilibrium homogeneous
MFEG value and the density is smooth, namely n�0�= n̄ and
n��0�=0. The differential equation �Eq. �18�� cannot be

solved analytically for n�r�, but a solution n�r�= n̄ exists for
�=0, which corresponds to the homogeneous MFEG that is
a drop containing an infinite number of electrons. Before
solving the differential equation numerically, two approxi-
mate schemes are developed. One applies near the drop cen-
ter and the other near the drop edge and their predictions are
compared with existing density profile forms.

Near the center of the drop, a perturbation solution about
the equilibrium density n�r�= n̄+�n�r�, where �n�r�� n̄, is
considered. The solution to Eq. �18� for the density is then

n�r� = n̄ +
8�n̄

Q2 �1 −
sinh�Qr�

Qr
� . �19�

This density profile is characterized by an exponential reduc-
tion of the density away from n̄ at the center. The energy Q2

is physically the rate of change of energy per unit volume
with respect to changing particle density, with

Q2 =
64

3
�3�2

�
�2/3

n̄2/3 − 45A3Dn̄1/4 − 32� . �20�

The second approximation scheme applies in the drop tail
where electron density is low, n�r�� n̄. The term containing
the chemical potential is disregarded as it is arbitrarily small
for the large drops under investigation. The noninteracting
and interacting energy terms contain higher powers of den-
sity so they are negligibly small. In this regime, the solution
to Eq. �18� is

n�r� = �n0�1

r
−

1

r0
�2

r � r0,

0 r 
 r0.
� �21�

Here n0 and r0 are variational parameters, which must be
fitted to a numerical solution. This analytic form shows that
the electron-hole drop has a definite outer radius r0, which is
approached parabolically. It is also noted that in the drop tail,
the solution obeys the differential equation

1

r2

d

dr
�r2dn1/2

dr
� = �2n1/2 = 0. �22�

If electron density is mapped onto a wave function � through
n= 	�	2, then the solution to Eq. �21� obeys Schrödinger’s
equation at low energy, that is �2�=0. The implied
Schrödinger equation is for a low-density MFEG with neg-
ligible interaction between electrons due to their large sepa-
ration, which is consistent with the original assumption of
low density in the drop tail.

Previous studies of electron-hole drops9,23,26 had a solu-
tion with the same exponential form, both inside and outside
of the drop. Our inner functional form �an exponential�
agrees with previous work,9,23,26 but our outer functional
form �a quadraticlike polynomial� does not agree with the
exponential decay seen in the previous work. However, the
outside of the drop density is low and the arguments of Sec.
II C show the many-flavor theory, which requires that the
density satisfies n�0.03�, does not apply here. The other
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theories9,23,26 also do not apply in the low-density region, so
both the many-flavor and previous theories fail to agree only
where they are not applicable.

Using just the solution for the density in the drop tail �Eq.
�21��, a reasonable analytical approximation for the density
form of the whole drop is

n�r� = � 1

n0�1/r − 1/r0�
+

1

n̄
�−1

. �23�

This solution has the correct functional form at both the in-
side �n�r�→ n̄� and outside of the drop and extrapolates
smoothly in between. It can be fitted to the actual solution
using parameters n0 and r0. However, the general differential
equation is solved numerically, giving the density profile
shown in Fig. 3. The numerical solution is well approxi-
mated in the inner and outer regions by Eq. �19� and Eq.
�21�, respectively, and the model �Eq. �23�� provides a good
fit to the numerical solution, having just a slightly too shal-
low gradient around the median density but it agrees at both
the center and outside of the well.

To allow us to compare properties of electron-hole drops
that are predicted using many-flavor theory with other
work,9,26 one can characterize the electron-hole drop proper-
ties through its surface thickness D and tension �. The sur-
face thickness D is the width over which the density falls
from 90% to 10% of its homogeneous equilibrium value n̄.
The total surface energy is the difference between the energy
per unit area of the MFEG in the drop and the energy of the
same number of particles at equilibrium density in a homo-
geneous system. The surface tension � is the total surface
energy divided by the characteristic drop surface area, here
taken to be the area of the spherical surface at the median
density, which corresponds to a characteristic drop radius rm.
The results of numerical calculations in Fig. 4 show that both
the surface tension and surface thickness of the drop tend to
constant values as the drop size increases. For large drops,
the boundary becomes approximately flat so the surface
thickness becomes independent of drop radius, as does the

surface tension, since its major contribution comes from the
drop boundary. We now examine the surface thickness and
tension more carefully in turn.

To derive an approximate expression for the surface thick-
ness, we use the analytical approximation �Eq. �19�� to the
density profile of the inside of the drop, which gives the
density reduction from the drop center,

�n�r� = −
4�n̄

Q3/2r
eQr. �24�

From this, the surface thickness D over which density falls
from 90% to 10% is given in the large drop limit rm�D by,

D �
ln 9

Q
. �25�

In the given example in Fig. 3 �12 flavors�, this predicts that
the surface thickness is D�0.8a0

�, which is of similar size to
the result found by numerical solution of Eq. �18� of �1.1a0

�,
but indicates that the approximation for surface thickness in
Eq. �25� is not able to produce accurate results. The values
for surface thickness of drops found using the many-flavor
theory can be compared with results from other approxima-
tions. For the six-flavor gas in the large drop limit, the many-
flavor theory approximation �Eq. �25�� predicts a thickness of
1.2a0

� and exact numerical integration of the many-flavor
theory �Eq. �18�� predicts thickness 1.6a0

�. The silicon six-
flavor result of Kalia and Vashishta9 has a surface thickness
of 1.6a0

�, which is in good agreement with the many-flavor
result.

Having used many-flavor theory to predict the density
profile and surface thickness of an electron-hole drop, it is
interesting to examine their scaling relationships with num-
ber of flavors. This is because the scaling relationships can
be experimentally probed8 by comparing the surface thick-
ness before and after putting the material under a strain,
which reduces the valley degeneracy, for example, in silicon
from six to two flavors. These scaling relations will also
allow the many-flavor results to be further compared with
previous theoretical work. In Sec. II B it was shown that the
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FIG. 3. The density profile of a 12-flavor electron-hole drop
with density parameter rs=1. The numerical solution is shown by
the dotted line, analytical approximations to the inside �outside� of
the drop are shown by the dashed �dot dashed� lines, and a best fit
model fitted to the numerical solution is shown by the solid line.

0.005

0.006

0.007

0.008

0.009

1 10 100
1.1

1.2

1.3

1.4

γ D

rm

γ
D

FIG. 4. The surface tension � of the 12-flavor drop of radius rm

is shown using the solid line and pluses based on the left-hand y
axis. The variation of the surface thickness D is shown using the
dashed line and crosses based on the right-hand axis, each point
represents a separate simulation.
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expected MFEG uniform density is n̄��8/5 and from Eq.
�20�, Q2��2/5, which with Eq. �25� predicts surface thick-
ness to scale as D��−1/5. This scaling prediction for surface
thickness can be compared with numerical results for the
variation of surface thickness with number of flavors in Fig.
5, which is found by solving the differential equation Eq.
�18�. The coefficient for surface thickness D��� is �=
−0.199 95�7�, which is in good agreement with the predicted
value of −1 /5. We can also qualitatively compare our scaling
result with numerical results9,26 from studies of the electron-
hole drop in silicon. These studies compared results for sili-
con found at the unstrained six flavor with the results at two
flavors to attempt to model the effect of stress reducing val-
ley degeneracy. Though two-flavor calculations cannot be
accurately given by the many-flavor theory, the qualitative
variation of surface tension and surface thickness should be.
The variation of surface thickness with number of flavors
D��−1/5 is weak. For silicon from six to two flavors, the
many-flavor theory, assuming it is valid, predicts that the
thickness increases by a factor of 1.2. This compares reason-
ably with the numerical results of Ref. 9, which predicts an
increase in surface thickness by a factor of �1.1.

The dominating contribution to surface energy is at the
boundary of the drop, so the surface tension in large drops is
approximately the gradient term in the energy density �Eq.
�16�� �the main contribution to the surface tension� multi-
plied by the surface thickness D,

� �
��n�2

8n̄
D �

n̄

8D
, �26�

where we use the additional approximation �n� n̄ /D. Fi-
nally, with the relationship found above, D��−1/5 and n̄

��8/5, which are found in Sec. II B, this predicts that surface
tension varies with number of flavors as ���9/5. The numeri-
cal results of Fig. 5, found by exactly solving the differential
equation �18�, predict a coefficient for ���� of �
=1.8004�3�, which is in good agreement with the analytical
result 9/5. For silicon, reducing the number of flavors from
six to two, the above result predicts that surface tension re-
duces by a factor of seven. This qualitatively agrees with the
variation seen by Refs. 9 and 26 of a reduction by a factor of
three, though comparison is difficult due to the presence of
holes and having too few flavors present for the many-flavor
theory to be fully applicable.

V. CONCLUSIONS

This paper describes a new formalism for calculating the
behavior of a MFEG. In the many-flavor limit, the Fermi
momentum reduces as pF��−1/3, so it is small compared
with the momenta associated with the strongest interactions.
Intravalley interactions are more significant than intervalley.

The behavior of a homogeneous MFEG in the limit of
many flavors was derived. Specifically the exact interacting
energy per particle is Eint=−0.574 447�Eh

�a0
�3/4m�1/4�n1/4;

making it energetically favorable for the MFEG to be dense.
The formalism was found to apply with as few as six flavors
over the density range 0.03��na0

�3�0.005�4.
The MFEG has short characteristic length scales, which

motivates a LDA. A gradient expansion of the energy density
with the lowest-order term 	�n	2 /8n was derived, which was
applied to electron-hole drops to study their density profile
and surface properties. Surface thickness was found to scale
as D��−1/5 and surface tension was found to scale as �
��9/5.

It would be useful to compare our analytical results with
those from computer simulations to verify our findings for
the uniform MFEG, its polarizability, and the gradient expan-
sion. This would allow the limits over which the many-flavor
limit applies to be derived more accurately and allow the
formalism to be applied to more physical systems.
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