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We study the Kondo-Heisenberg model using a fermionic representation for the localized spins. The mean-
field phase diagram exhibits a zero-temperature quantum critical point separating a spin liquid phase where the
f-conduction hybridization vanishes and a Kondo phase where it does not. Two solutions can be stabilized in
the Kondo phase, namely, a uniform hybridization when the band masses of the conduction electrons and the
f spinons have the same sign and a modulated one when they have opposite sign. For the uniform case, we
show that above a very small Fermi-liquid temperature scale, the critical fluctuations associated with the
vanishing hybridization have dynamical exponent z=3, giving rise to a specific-heat coefficient that diverges
logarithmically in temperature, as well as a conduction-electron inverse lifetime that has a T log T behavior.
Because the f spinons do not carry current, but act as an effective bath for the relaxation of the current carried
by the conduction electrons, the latter result also gives rise to a T log T behavior in the resistivity. This
behavior is consistent with observations in a number of heavy fermion metals.
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I. INTRODUCTION

A large number of experiments have been performed
on metallic heavy fermion compounds close to a zero-
temperature phase transition �a quantum critical point
�QCP�� driven by applied magnetic field, chemical doping,
or pressure.1,2 In the quantum critical regime, the thermody-
namics and transport properties indicate a breakdown of the
Fermi liquid. In many cases, the resistivity is quasilinear in
temperature over several decades, and the specific-heat coef-
ficient diverges logarithmically. The spin susceptibility typi-
cally exhibits an anomalous exponent in temperature. Neu-
tron scattering experiments on some of these materials have
revealed that the anomalous exponent in the dynamical sus-
ceptibility is identical for all points in the Brillouin zone,3,4

suggesting a local character for the fluctuations. de Haas–van
Alphen �dHvA� experiments also find a divergence of the
effective mass when approaching the critical point, along
with a change in the Fermi-surface topology when going
through it.5

These unusual observations have motivated many theoret-
ical studies that have attempted to capture these effects. Most
theories2,6–9 are based on the assumption that at the QCP, a
spin-density wave forms, and therefore the critical fluctua-
tions that destabilize the Fermi liquid are magnetic in
nature.2,6–9 In three dimensions, these theories fail to capture
simultaneously the linear temperature dependence of the re-
sistivity, the logarithmic divergence of the specific-heat
coefficient,10 and the anomalous exponent of the spin
susceptibility.11 For an antiferromagnetic spin-density wave
transition, a central problem is that the critical fluctuations
are confined to an inverse coherence length about the spin-
density ordering vector, and consequently, only parts of the
Fermi surface couple effectively with the critical bosonic
modes.

More recently, the problem has been approached from an-
other perspective which takes the point of view that at the

QCP, magnetic fluctuations suppress the formation of the
heavy Fermi liquid, driving the effective Kondo temperature
of the lattice �TK� to zero.10 This has studied from a variety
of approaches, including extended dynamical mean-field
theory,12 cluster dynamical mean-field theory,13,14 and a slave
boson approach.15,16 In this picture, the QCP is a fractional-
ized critical point at which the heavy quasiparticle decon-
fines into a spinon and holon. One feature that distinguishes
between these two classes of theories is that the first predicts
the Fermi surface to change smoothly across the QCP, while
the second predicts an abrupt change.10 Recent results of the
Hall effect for YbRh2Si2,17 as well as the earlier mentioned
dHvA data,5 have lent support to theories of the second type.

Here, we explore the possibility that in the quantum criti-
cal regime, the magnetic fluctuations are not the dominant
ones at the QCP and that the unusual behavior in thermody-
namics and transport is due to critical fluctuations of a non-
magnetic order parameter associated with the vanishing en-
ergy scale TK. One motivation for this point of view is the
fact that in some compounds such as YbRh2Si2, the gain in
entropy inside the magnetically ordered phase represents
only a few percent of the total entropy per localized spin.18

The order parameter we advocate is the field � associated
with the hybridization between the localized spins and the
conduction electrons.19,20 At the QCP, the effective Kondo
temperature for the lattice goes to zero, leading to a “Kondo
breakdown” of the heavy Fermi liquid. The critical fluctua-
tions of � are gapless excitations, and we study how these
fluctuations influence the properties of the metal using the
formalism of the large N Kondo-Heisenberg model.

There have been several earlier studies of this
model.15,16,21 Beyond the mean-field level, the Kondo-
Heisenberg model can be treated as a lattice gauge theory.
Senthil et al.15 examined the effect of the gauge fluctuations
in this model, while Coleman et al.16 studied the zero-
temperature transport anomalies. Although our work closely
follows that of Ref. 15, we find a number of effects associ-
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ated with the fluctuations of the � field which were not dis-
covered in these earlier studies.

At the Kondo breakdown QCP, the metal passes from a
magnetic phase �which we approximate, as in earlier work,15

as a uniform spin liquid� to a Kondo phase. In the spin liquid
phase, the f spinons are characterized by a “Fermi surface”
which generically differs in size from the conduction-
electron Fermi surface. In the Kondo phase, these two sur-
faces become coupled due to the nonzero expectation value
of �. In our study, we observe two phenomena associated
with this. First, for the case where the spinon and
conduction-electron masses have opposite sign, � can order
at a finite wave vector, leading to spatial modulations of the
Kondo hybridization analogous to the Larkin-Ovchinnikov-
Fulde-Ferrell �LOFF� state of superconductivity.22,23 Second,
we find the presence of multiple energy scales, spread over a
very large range in energy, due to the mismatch between the
two Fermi surfaces. The lowest scale, below which Fermi-
liquid behavior is restored, is extremely small, above which,
up to an ultraviolet cutoff of order the single-ion Kondo tem-
perature, the critical fluctuations of � exhibit a dynamical
exponent z=3. This gives rise to a marginal Fermi-liquid-like
behavior in d=3 for the conduction electrons along the entire
Fermi surface, due to scattering with the critical fluctuations.
This property is to be contrasted with antiferromagnetic spin-
density wave models, where only on parts of the Fermi sur-
face the scattering of the electrons with the critical mode is
effective. Next, since the f spinons do not carry current, but
act as an effective bath for the relaxation of the current car-
ried by the conduction electrons, the marginal Fermi-liquid
behavior also gives rise to a resistivity that goes as T log T.
This behavior is unlike either that of ferromagnetic spin-
density wave models in which the transport lifetime is less
singular than the single-particle lifetime �i.e., in the latter
models, forward scattering does not degrade the current� or
that of antiferromagnetic spin-density wave models in which
the “cold” parts of the Fermi surface dominate the transport
properties.24 Moreover, a logarithmic dependence is found
for the specific-heat coefficient from both the gauge15 and �
fluctuations. The latter also give rise to an anomalous tem-
perature exponent of 4/3 in the uniform spin susceptibility. A
summary of our results has been presented in a shorter
paper.25

The phenomenon of the breakdown of the Kondo effect at
a QCP can also be studied in the more general context of a
periodic Anderson model. This generalization is discussed in
other works.14,26

II. MODEL AND FORMALISM

The starting point of our theory is the microscopic
Kondo-Heisenberg model in three dimensions,27 which de-
scribes a broad band of conduction electrons interacting with
a periodic array of localized spins through antiferromagnetic
Kondo coupling JK�0. Additionally, the localized spins in-
teract with one another via nearest-neighbor exchange JH
�0. The Hamiltonian for the large N version of this model,
where N denotes the enlarged spin symmetry group SU�N�,
is given by

H = − t �
�ij�,�

ci�
† cj� +

JK

N
�

i,�,�
ci�

† ci�f i�
† f i� +

JH

N
�

�ij�,�,�
f i�

† f i�f j�
† f j�.

�1�

Here ci�
† �ci�� are creation �annihilation� operators for the

conduction electrons with spin index �= �1,N� at site i and
�ij� refers to nearest-neighbor sites. t is the hopping matrix
element between neighboring sites for the conduction elec-
trons. The SU�N� generalization of the localized spins Si

a,
with a= �1, . . . ,N2−1� at each site i, is expressed in terms
of Abrikosov pseudofermions �or spinons� by Si

a

=���f i�
† ����

a /N�f i�, where �a are the generators of the
SU�N� group in the fundamental representation. This fermi-
onic representation of the spin operator gives rise to a local
constraint at each site, i,

�
�

f i�
† f i� =

N

2
, ∀ i . �2�

We note that in the context of the heavy fermion systems, the
Heisenberg exchange term is often equated to the Ruderman-
Kittel-Kasuya-Yosida �RKKY� interaction between the local-
ized spins which is mediated by the mobile conduction elec-
trons. In such a scenario, the Heisenberg coupling JH��0JK

2 ,
where �0 is the density of states of the conduction electrons
at the Fermi level. However, for the purpose of the present
study, it is convenient to consider JH as a parameter indepen-
dent of JK. Microscopically this can be justified by noting
that, in principle, there can be other sources which generate
this coupling, such as superexchange within the narrow band
of f electrons.

In order to perform a systematic large N study28 of the
system defined by Eqs. �1� and �2�, the first step is to de-
couple the interaction terms which are quartic in fermionic
operators using a Hubbard-Stratonovich transformation. The
Heisenberg exchange term is decoupled using a bosonic link
variable 	ij→��f i�

† f j�, while the Kondo interaction is de-
coupled by introducing a complex bosonic field �i

†

→��f i�
† ci�. In the next step, following Ref. 15, we assume

that in three dimensions, 	ij condenses in a uniform spin
liquid phase, i.e., �	ij�=	0 at the mean-field level.29 This
provides a dispersion to the spinon band which, as we will
show later, is an essential ingredient to obtain the breakdown
of the Kondo effect. We note that there is no clear evidence
of a spin liquid phase in any heavy fermion system near its
quantum critical point. Rather, the typical phase diagram ex-
hibits a QCP that separates a magnetic ground state �typically
an antiferromagnet� from a paramagnetic heavy Fermi liquid.
Consequently, it is useful to discuss the motivation for our
choice of a uniform spin liquid phase for the Heisenberg link
variable 	ij. This choice is partly guided by convenience:
since our main purpose is to study the consequences of the
breakdown of the Kondo effect, the choice of a uniform spin
liquid can be viewed as the simplest device which allows the
vanishing of the Kondo energy scale �indicating the break-
down of the Kondo effect� at the mean-field level.29 More
physically, one can view the uniform spin liquid as a mean-
field description of the short-range magnetic correlations that
persist when a magnetic ground state is destroyed by quan-
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tum fluctuations. However, to demonstrate this point con-
cretely is not simple and beyond the scope of the present
study. The key point is that the spin liquid provides a band-
width for the f electrons. Other approaches, for instance, one
where the bandwidth is due to direct f-f hopping, should
yield similar results with regards to the breakdown of the
Kondo effect that we describe here.

The system can now be described by the Lagrangian,16,30

L = �
�ij��

�ci�
† ��
�ij − t�cj� + f i�

† ���
 − �i��ij − 	0eiaij�f j�	

+
N

2 �
i

�i +
N

JK
�

i

�i
†�i +

N	0
2

JH
+ �

i�

�ci�
† f i��i + H.c.� ,

�3�

where V �the volume of the system� is set to 1. In the above,
�i are Lagrange multipliers �scalar potential� that enforce the
local constraint of N /2 spinons per site. Now, given a many-
body wave function that satisfies this constraint, a single hop
of a spinon takes the state out of the physical subspace. Con-
sequently, for the kinematics of the spinons, only simulta-
neous opposite hops between two neighboring sites are
physically allowed process. This implies that the local spinon

current operator J� fi=0 at every site i. The gauge fields aij
�vector potential�, associated with the phase of 	ij, ensure
that this constraint is satisfied. The appearance of the scalar
and vector potentials can also be understood by noting that L
is invariant �up to a term which is a total derivative of imagi-
nary time� under a local U�1� gauge transformation f i�
→ f i�e

ii, �i→�ie
−ii, �i→�i+ i�
i, and aij→aij −i+ j, a

consequence of the fermionic representation of the spin and
the constraint �Eq. �2��.31

In the following we examine the above Lagrangian, first
in a mean-field approximation, and then consider Gaussian
fluctuations of the action around the mean-field solution.
This involves studying the possibility of hybridization be-
tween the conduction and the spinon bands �for ��i��0� as
well as calculating the hybridization fluctuation which is an
interband particle-hole excitation. As such, one needs to
characterize the dispersions of the conduction and the spinon
bands. We do this by assuming that the bands have a para-
bolic dispersion �to facilitate calculations�, and we introduce
the following two important parameters. First, �
	0 /D is
the ratio of the spinon bandwidth 	0 and the conduction
bandwidth D. As we will see in Sec. III, at the Kondo break-
down QCP 	0�JH�TK

0 , where TK
0 
De−1/��0JK� is the single-

ion Kondo energy scale of the system, which is typically of
order 10 K in heavy fermion systems. Assuming D
�104 K, we get ��10−3. Second, while the spinon band is
half filled due to the constraint �for N=2�, the conduction-
band filling is generic. Without any loss of generality, we
take the conduction band to be less than half filled. This
implies that the Fermi wave vector of the conduction band kF
is different from that of the spinon band kF0. We denote this
mismatch by q�
kF0−kF and assume that the fraction
�q� /kF� is of the order 0.1.32 This would mean that while kF
and kF0 are of the order of the Brillouin-zone dimension, the
mismatch wave vector q� is 1 order of magnitude smaller.

The parameters � and �q� /kF� affect the important energy
scales of the system. This is illustrated in Fig. 1 where we
show the conduction and spinon dispersions.

III. MEAN-FIELD TREATMENT

At the level of the mean-field approximation, we replace
the bosonic Hubbard-Stratonovich fields and the Lagrange
multipliers by their expectation values, and we study the ap-
proximate Lagrangian given by

LMF = �
�ij��

�ci�
† ��
�ij − t�cj� + f i�

† ���
 − ��i���ij − 	0�f j�	

+
N

2 �
i

��i� +
N

JK
�

i

���i��2 +
N	0

2

JH

+ �
i�

�ci�
† f i���i� + H.c.� . �4�

In the following we write the dispersion ��k� of the conduc-
tion band as

�k = � +
�2

D
, �5�

where �=vF�k−kF�, k is the magnitude of k, and vF is the
Fermi velocity of the conduction electrons. The dispersion
��k

0� of the spinon band is similarly written as

�k
0 = ��� − vFq�� +

�� − vFq��2

D
� . �6�

We note that, in the above, both the bands are taken as elec-
tronlike, for which we find that the mean-field equations
yield a spatially uniform solution, namely, ��i�=�0 and
��i�=�0. In the case where one of the bands is chosen to be
holelike, we find a spatially modulated solution25 which we
discuss in Appendix A 1. The free energy corresponding to
Eq. �4� is given by

E

k

c

f

E
x

q*
µ

FIG. 1. �Color online� Dispersion of conduction and spinon
bands, with the mismatch wave vector, q�, and the mismatch en-
ergy, Ex
�vFq�, indicated, where � is the ratio of the spinon and
conduction bandwidths. An artificially large value of � was used in
this plot �0.5� so as to better illustrate the origin of Ex.
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FMF

N
= −

1

�
Tr�ln�− Ga

−1�i�n,k�� + ln�− Gb
−1�i�n,k��	

+
�0

2

JK
+
	0

2

JH
+
�0

2
, �7�

where � is the inverse temperature, �n is the fermionic Mat-
subara frequency, and Tr corresponds to a trace over space-
time coordinates. In the above

Ga,b
−1 �i�n,k� = i�n − �k

a,b, �8�

where

�k
a,b =

1

2
��k + �k

0 � ���k − �k
0�2 + 4�0

2� . �9�

We evaluate the free energy given by Eq. �7� at zero tem-
perature �T=0� in the limit �q� /kF�→0. The detail of this
evaluation is given in Appendix A 2. As a function of � and
�0 and to O��0

4� accuracy, we find ���1�

FMF

N
=
�0D2

2
 �2

2�0JH
−
�

3
� + �0�0

2 1

�0JK
� − ln� 1

�
��

+
�0�0

4

�2D2 + const, �10�

where the constant part has explicit �0 dependence. Since the
precise value of �0 is of no importance for our results, in the
following we ignore the mean-field equation for �0. Mini-
mizing FMF with respect to � and �0 we get

�0D2

2
� �

�0JH
−

1

3
� +

2�0
2

�D2 −
4�0

4

�3D4� = 0, �11�

2�0�0� 1

�0JK
− ln� 1

�
�� +

2�0
2

�2D2� = 0, �12�

respectively. We study these equations by keeping the
Heisenberg parameter JH fixed, while varying the Kondo pa-
rameter JK, and find two solutions corresponding to two
mean-field ground states. �i� First, a uniform spin liquid
phase where �0=0, which implies that in this phase, the
Kondo effect fails to occur and the localized spins remain
unscreened in a uniform spin liquid state. In this phase, �
=�0
��0JH� /3, which implies that the Heisenberg coupling
sets the scale for the spinon dispersion, since 	0
= ��0DJH� /6�JH. It is simple to check that this solution is
stable for JK�JKc

, where

1

�0JKc

= ln� 1

�
� . �13�

�ii� For JK�JKc
the stable mean-field solution corresponds to

�0�0, indicating a ground state where the local moments
are screened by the Kondo effect and a heavy Fermi liquid is
established below an energy scale TK���0�0

2. The growth
of the Kondo order parameter in this phase is given by

�0 � JH ln� 1

�0
� JK − JKc

D
��, �14�

where �=1 /2 is the typical mean-field exponent. We also
find that the spin liquid order parameter decreases in this
phase and is given by

� = �0 −
6�0

2

D2 + O��0
4� . �15�

Thus, from the above mean-field study, we find that, in the
presence of a finite bandwidth of the spinons, the Kondo
effect takes place only when the Kondo coupling JK is larger
than a finite value JKc

. This establishes the Kondo breakdown
QCP where the lattice Kondo energy scale TK vanishes. In
the current formulation of the mean-field theory, the Kondo
breakdown QCP separates a uniform spin liquid ground state
�JK�JKc

� from a heavy Fermi-liquid ground state �JK

�JKc
�. It is important to note that if we define a single-ion

Kondo scale �TK
0 � as a function of JK for the system by

TK
0 �JK� 
 De−1/��0JK�, �16�

using Eq. �13� we conclude that at the QCP

JH � TK
0 �JKc

� . �17�

This shows that the Kondo breakdown QCP is established as
a result of a competition between the Kondo energy scale
and the magnetic energy scale, even though there is no long-
range magnetic order in the present study. The reduction in
the spin liquid order parameter, given by Eq. �15�, provides
further evidence for this competition. Therefore, this mean-
field study can be viewed as a microscopic realization of the
energetic argument that Doniach33 proposed several decades
ago for the existence of a QCP in heavy fermion systems.

IV. FLUCTUATIONS

In this section, we study the massless fluctuations in the
quantum critical regime. There are two such modes: �a� one
associated with the phase of 	ij which are the gauge fluctua-
tions and �b� the fluctuations of the complex order parameter
��i

† ,�i� which are gapless due to the vanishing of the Kondo
energy scale TK at the Kondo breakdown QCP.

A. Gauge fluctuations

Since the gauge fluctuations of the system have been stud-
ied earlier,15 here we just summarize the main points for the
sake of completeness. It is convenient to work in the Cou-

lomb gauge �� ·a� =0, where the vector gauge fields a� ��
=x ,y ,z� are purely transverse.31 In this gauge the fluctua-
tions of the scalar potential � decouple from a� and give rise
to a screened Coulomb interaction between the spinons
which can be neglected. Next, since the fields a� enter the
theory as vectorial Lagrange multipliers to satisfy the con-
straint that the local spinon current is zero, they behave as
“artificial photons” without any intrinsic dynamics of their
own. Their dynamics is entirely generated by their coupling
to the matter field, namely, the spinon band, and therefore
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these bosonic modes are overdamped. The propagator for the
transverse gauge fields is defined as D���x ,
�
= �T
�a��x ,
�a��0,0���, which in frequency-momentum
space has the standard form D���q , i�n�= ����
−q�q� /q2��−1�q , i�n�, with ��q , i�n�� ��q /2kF0�2

+ ��n� / ��vFq��. Here �n is a bosonic Matsubara frequency,
and the above expression for the gauge propagator
D���q , i�n� is valid for frequencies smaller than the spinon
bandwidth �D. As a result, the gauge excitations are charac-
terized by a dynamical exponent z=3, which in d=3 are
known34 to give a contribution to the specific-heat coefficient
�
−�2F /�T2� ln��D /T� and to the static spin susceptibility
��s�T2 ln��D /T�. Finally, it has been argued in the litera-
ture that the gauge fluctuations convert the finite temperature
mean-field phase-transition line into a crossover line.15,35

B. Fluctuations of the Kondo boson

At the QCP, where the Kondo coupling is tuned to its
critical value JKc

, the critical fluctuations of the continuous
phase transition are given by those of the complex order-
parameter fields ��† ,��. The propagator for these fluctua-
tions is defined by D��x ,
�= �T
��†�x ,
���0,0���. We get
D�

−1�q , i�n�=1 /JK+� fc�q , i�n�, where

� fc�q,i�n� =
1

�
�

k,i�n

Gc�k,i�n�Gf�k + q,i�n − i�n�

�18�

is the interband polarization bubble between the conduction
and the spinon bands �Fig. 2�. In the above Gc

−1�k , i�n�
= �i�n−�k� is the propagator for the conduction electrons,
while Gf

−1�k , i�n�= �i�n−�k
0� is the propagator for the

dispersive spinons. We write � fc�q , i�n�=� fc�q ,0�
+�� fc�q , i�n�, where � fc�q ,0� is the static part of the fluc-
tuations and �� fc�q , i�n� is the dynamic part. We first com-
pute the static part which can be written as

� fc�q,0� = �
k

nF��k� − nF��k+q
0 �

�k − �k+q
0 , �19�

where nF��� is the Fermi function. We find that � fc�q ,0� is
independent of momentum if the dispersions are linearized in
Eq. �19�. This implies that the momentum dependence is due
to k�kF in the k integral of Eq. �19�, for which it is impor-
tant to retain the quadratic dispersions of the bands. Further-

more, since the main contribution is for k�kF, the small
momentum scale q� is unimportant and can be set to zero to
facilitate the calculation, and we write �k= �k2−kF

2� / �2m� and
�k

0 = �k2−kF
2� / �2m0�. Then, in terms of �, the ratio of the two

bandwidths that we introduced earlier, we have �=m /m0.
Using k↔k+q inside the k summation we get

� fc�q,0� = �
k�kF

� 1

�k − �k+q
0 −

1

�k+q − �k
0�

= �
0

kF dkk2

4�2 �
−1

1

dz� 1

B −
qkz

m

−
1

C +
qkz

m0
�

= �
0

kF dkk

4�2q
m ln�B + qk/m

B − qk/m�
− m0 ln�C + qk/m0

C − qk/m0
�� ,

where B=A�kF
2 −k2�−q2 / �2m�, C=A�kF

2 −k2�−q2 / �2m0�, and
A= �1 / �2m�−1 / �2m0��. After performing the momentum in-
tegration, we expand the resulting expression in powers of
�q /kF�, and we use �0=mkF / �2�2�, the density of states per
spin of the conduction electrons at the Fermi level. To lead-
ing order in �q /kF� we get

� fc�q,0� = �0 ln �

�1 − ��
+

1 − �2 + 2� ln �

4�1 − ��3 � q

kF
�2�

� �0− ln� 1

�
� +

q2

4kF
2 � . �20�

Note that the �0 ln��� term in the above equation has been
derived in Appendix A 2 using a slightly different method for
the calculation of the mean-field free energy in Eq. �10�. This
term along with 1 /JK define the mass �1 /JK+�0 ln���� of the
Kondo boson, which goes to zero at the QCP.

Next we calculate the dynamic part of the fluctuations
which can be written as

�� fc�q,i�n� =� fc�q,i�n� −� fc�q,0� =
1

�
�
k,�n

Gc�k,i�n�

��Gf�k + q,i�n − i�n� − Gf�k + q,i�n�� .

�21�

Unlike in the case of the static part, here the dominant con-
tribution is from the interband particle-hole excitations
around the two Fermi surfaces, for which the spectra can be
linearized. We write �k=� for the dispersion of the conduc-
tion electrons and �k+q

0 =���−vFq�+vFqz� for the dispersion
of the spinons, where z is the cosine of the angle between
wave vectors k and q. Approximating the k summation by

�
k

→
�0

2
�

−�

�

d��
−1

1

dz ,

at zero temperature we get

c

σ

f

(a) (b)

FIG. 2. �a� Vertex for the interaction between the conduction
electrons �solid line� and the spinons �dashed line� mediated by the
hybridization fluctuations � �wiggly line�. �b� The interband polar-
ization involving conduction electrons and spinons, which generates
the dynamics of �. For momentum transfer q�q�, where q� is the
mismatch between the conduction and the spinon Fermi surfaces, �
is an overdamped critical mode with dynamical exponent z=3.
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�� fc�q,i�n� =
�0

2�1 − ��
�Y1 + Y2 + Y3 + Y4� , �22a�

where

Y1,2 = �1�
E1

vFq
�ln�E1� vFq� , �22b�

with E1=vFq�− i�n /� and

Y3,4 = − �1�
E2

vFq
�ln�E2� vFq� , �22c�

with E2=vFq�− i�n. From the above expression of the dy-
namic part given by Eqs. �22a�–�22c�, we next extract the
leading behavior in different regimes of frequency and mo-
mentum. For this we need to compare the momentum q with
q�, and the frequency �n �a continuous variable at T=0� with
the energy scales Ex
�vFq� and �vFq. Note that vFq�

�103 K is an energy scale much larger than the ultraviolet
cutoff of the theory �D�10 K �the spinon bandwidth�, and
therefore we need to consider only ��n��vFq�. We find five
distinct regimes which are as follows: �i� ��n��Ex and
q�q�, where

�
i

4

Yi � − 2�1 − ��
i�n

Ex
1 +

1

3
� q

q��2

+
1

2
�1 + ��

i�n

Ex
� .

�23a�

Note that in the above, we retained two subleading terms
because there are regimes where the subleading terms are
larger than the static �q /kF�2 term. �ii� ��n��Ex and q�q�,
where

�
i

4

Yi � − 2�1 − ��
i�n

�vFq
i
�

2
sgn��n� +

q�

q
� . �23b�

�iii� ��n��Ex and q�q�, where

�
i

4

Yi � 2ln�− i�n

Ex
� +

1

6
� q

q��2

−
Ex

i�n
� . �23c�

�iv� ��n���vFq�Ex and q�q�, where

�
i

4

Yi � 2ln�− i�n

�vFq
� + 1 + i

�

2
sgn��n�� . �23d�

�v� �vFq� ��n��Ex and q�q�, where

�
i

4

Yi � �1 − ��
i�n

�vFq
− i� sgn��n� + �1 + ��

i�n

�vFq
� .

�23e�

At the quantum critical point, the mass of the Kondo boson
goes to zero due to Eq. �13�. The leading frequency and
momentum dependences of D��q , i�n� are determined using
Eqs. �20� and �22a�. The details of the various asymptotic
structures of D��q , i�n� in different regimes of frequency
and momentum are discussed in Appendix B 1. Among the
forms of D��q , i�n� given in Eqs. �B1a�–�B1c�, �B2a�–
�B2d�, and �B3a�–�B3e�, only the following two asymptotic

structures are important for obtaining the leading contribu-
tion of the Kondo boson to thermodynamic and transport
properties.

First, for ��n�� ��D / �2����q� /kF�3 and q�q�, we get

D�
−1�q,i�n� � �01

4
� q

kF
�2

−
i�n

Ex
� , �24�

which gives rise to an undamped propagating mode with
dynamical exponent z=2 �the dispersion of which is given
by setting Eq. �24� to zero�. The existence of this mode is a
direct consequence of the mismatch between the Fermi sur-
faces of the conduction and the spinon bands. Due to this
mismatch, a minimum momentum of q� is necessary to ex-
cite an interband particle-hole pair. Consequently, for mo-
mentum q�q�, the spectrum of the Kondo boson lies outside
the continuum of the interband particle-hole excitations and
thereby remains undamped. Note that this massless mode
corresponds to hybridization fluctuations about the QCP and
becomes massive for JK�JKc

�this is realized by adding a
constant term � in Eq. �24��. Since � fc at q=0 diverges loga-
rithmically at Ex, the mode energy never exceeds Ex. The
mode dispersion, which is quadratic about q=0, is more
complicated as q approaches q� due to logarithmic correc-
tions to � fc and is described in greater detail in Appendix B
2.

Second, for most of the phase space, the spectrum for the
fluctuations of � lies within the interband particle-hole con-
tinuum, and we get

D�
−1�q,i�n� � �01

4
� q

kF
�2

+
�

2

��n�
�vFq

� , �25�

i.e., an overdamped critical mode with dynamical exponent
z=3. Next we note that, since we assume q��kF, the over-
damped z=3 critical mode occupies most of the momentum
space and therefore almost always it provides the leading
contribution to thermodynamic and transport properties. In
this regime, the scaling of frequency is given by �n
����D� / �2����q /kF�3, and since this regime ends for q
�q�, one obtains the infrared energy scale,

E� � c�D�q�

kF
�3

, �26�

where c is 1 / �2��. The true value of c is slightly smaller
��0.1� since there are logarithmic corrections to � fc as q
approaches q�. A more detailed account is given in Appendix
B 2. We note that E� �which can be estimated to be �1 mK
for our choice of q�=0.1kF� appears as an infrared crossover
scale for any physical property that is affected by the exci-
tations of �. On the other hand, the ultraviolet cutoff scale is
provided by �D�10 K, which is the bandwidth of the
spinons or equivalently the single-ion Kondo scale by Eq.
�17�.

V. THERMODYNAMICS OF THE KONDO BOSON

In this section, we study the effect of the fluctuations of
the Kondo boson � on the thermodynamics of the system in
the quantum critical regime. In particular, we compute �a� the
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contribution to the free energy, �b� the temperature depen-
dence of the static spin susceptibility, and �c� the crossover
lines in temperature which demarcate the quantum critical
regime.

A. Free energy

The contribution of the fluctuations of � to the free energy
�per unit volume� is given by

F = �
q
�

−�

� d�

2�
coth� �

2T
�Im ln�D�

−1�q,� + i��� , �27�

where D��q ,�+ i�� denotes the retarded propagator for the
Kondo bosons. We find that, for all temperatures T��D, the
leading T dependence of the free energy F is given by that
part of phase space where the mode is overdamped �with
dynamical exponent z=3� and for which the expression for
the propagator is approximately given by Eq. �25�. The de-
tails of this demonstration, as well as the evaluation of the
subleading contribution from the other regimes, are given in
Appendix B 3. For T�E�, the leading T dependence of F is
given by

F � −
kF

3�D

2�3 �
0

�

d� coth� �
2T

��
qc

1

dqq2 tan−1�2��

q3 � .

�28�

Here q and qc are dimensionless momenta in units of kF and
� and T are dimensionless energies in units of �D. Since the
q integral is ultraviolet divergent, we use the Fermi momen-
tum as an upper cutoff. The infrared cutoff, qc, for the z=3
regime is dependent on the particular temperature range con-
sidered, since the leading T dependence comes from frequen-
cies ��T. For T�E�, q��1/3, for which we can approxi-
mate tan−1�x��x and replace the cutoff qc by �1/3.
Performing the integrals, we find

F�T� � − � kF
3

9
�ln��D

T
� T2

�D
, T� E�. �29�

We note that this contribution adds to a similar T2 ln�T� con-
tribution from the transverse gauge fluctuations �which are
massless z=3 excitations�. They give rise to a ln�T� behavior
for the specific-heat coefficient.

For T�E�, the leading contribution to the free energy is
again given by Eq. �28� with qc=q� /kF for the infrared cutoff
of the q integral. This is because for ��T�E�, the z=3
regime exists for q�q�. As a result, because �1/3�q� /kF in
this temperature regime, the lower cutoff remains at q� /kF.
This gives

F�T� � − � kF
3

3
�ln� kF

q�� T2

�D
, T� E�. �30�

This T2 dependence cannot be distinguished from ordinary
Fermi-liquid corrections, and in this temperature regime the
free energy is dominated by the T2 ln�T� contribution from
the transverse gauge fluctuations.34

The collective mode gives a magnonlike contribution to
the free energy �F�T5/2� and is subleading relative to the

z=3 contribution �see Appendix B 3�. We illustrate this by
showing in Fig. 3 a numerical determination of the contribu-
tion of the specific-heat coefficient, C /T, coming from the
Kondo boson, using the fc polarization bubble of Eq. �22a�.
In this plot, one sees the subleading contribution arising from
the z=2 region, the logarithmic contribution from the z=3
region which saturates for T�E�, and the small difference
between the positive and negative � contributions from the
z=3 region due to the chirality of the fc polarization bubble.

B. Static spin susceptibility

At the mean-field level, where the critical fluctuations of
� are ignored, the temperature dependence of the static spin
susceptibility �s�T� is entirely analytic, namely, a constant
�Pauli susceptibility� plus a T2 term, which is usual for band
fermions. Next, when we take the critical fluctuations into
account, we expect the correction to �s�T� to be nonsingular
�since the transition is nonmagnetic and the excitations of �
are in the singlet channel� but nonanalytic �due to the mass-
less excitations�. In order to evaluate this temperature depen-
dence, we first need to compute D��q , i�n� in the presence
of a magnetic field �B�. For a finite B, the effect of the
Zeeman term is to shift the Fermi wave vectors kF and kF

0 of
the conduction and the spinon bands, respectively. We get
kF

0 →kF
0 ��BgfB� / ��vF� and kF→kF ��BgcB� /vF, where

gf and gc are effective Landé g factors of the spinons and the
conduction electrons, respectively, �B is the Bohr magneton,
and  refers to the up and down spins, respectively. Since
��1, and in general gf�gc, we can ignore the coupling of B
to the c electrons and consider the effect of the Zeeman term
as a renormalization of the mismatch wave vector q�, which
is given by

q� → q� 
�BgfB

�vF
.

Next, we note that, in the presence of a finite q�, one expects
� fc�0,0� to have corrections of the type q� /kF and �q� /kF�2

�which are not calculated in Eq. �20�, since the evaluation
was performed in the limit q�→0�. This implies that, in the

0

0.05

0.1

0.15

0.2

0 0.005 0.01

z=3, -Ω
z=2
z=3, +Ω
total

C
/T

T/E
x

FIG. 3. �Color online� Numerical estimate of the contribution to
the specific-heat coefficient, C /T, coming from the Kondo boson.
Values of �=0.001 and q� /kF=0.1 were assumed, with the momen-
tum integral cutoff at kF and the frequency integral at 0.1Ex. Note
the logarithmic behavior of the z=3 contribution which is cutoff for
T�E� �with E��0.001Ex� and the subleading nature of the z=2
contribution.
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presence of a magnetic field, we expect a correction to
� fc�0,0� which is proportional to ���BgfB� / ��D��2 �since
the excitation of � is in the singlet channel, we do not expect
a linear term in B�. Adding such a term to D��q , i�n� and
noting that the leading temperature dependence is due to the
overdamped z=3 mode, we can generalize Eq. �28� to obtain
the B dependence of the free energy as

F�B,T� � −
kF

3�D

2�3 �
0

�

d� coth� �
2T

��
qc

1

dqq2

�tan−1� 2��

q3 + h2q
� . �31�

Here energy and momenta are in dimensionless units �as in
Eq. �28�� and h= ��BgfB� / ��D� is the dimensionless
magnetic field. Writing the correction to the static spin
susceptibility due to the fluctuations of � as ��s�T�

−��2F / ��B�2�B=0, we get for T�E�

��s�T� � − ��Bgf�224/3��4/3�!�4/3�
�5/333/2 kF

3� T4/3

��D�7/3 ,

�32�

while for T�E�, the lower cutoff is at q�, making the mode
effectively massive, and we get

��s�T� � − ��Bgf�21

3

kF
5

�q��2� T2

��D�3 . �33�

As in the case of the free energy, the nonanalyticity in the
leading temperature dependence is cutoff below E� due to
the mismatch wave vector q�. As noted before, the gauge
bosons give rise to a T2 ln�T� contribution to �s.

C. Crossover lines defining the quantum critical regime

The crossover lines in temperature that demarcate the
quantum critical regime are symmetric about the QCP �
=�c=0, where �=1 / ��0JK�−1 / ��0JKc

� is the dimensionless
tuning parameter of the theory �for fixed JH�. On the heavy
Fermi-liquid side of the QCP, such a line usually defines the
boundary of the finite temperature phase transition. However,
it has been argued in the literature that the gauge fluctuations
convert the finite temperature mean-field phase-transition
line into a crossover line.15,35 These lines are determined by
the temperature dependent mass �m�T� of the excitations of
�. In a Ginzburg-Landau approach, these excitations are gen-
erated by the quartic u0���4 coupling in the action, where
u0��0 / ��D�2 from Eq. �10�. In the following, we compute
�m�T� generated due to the propagating mode with z=2
given by Eq. �24�, as well as that generated by the over-
damped mode with z=3 given by Eq. �25�. The contributions
from the other regimes of D��q , i�n� are always subleading.
The general expression for �m�T� is given by

�m�T� = u0�
q
�

−�

� d�

2�
coth� �

2T
�Im D��q,� + i�� .

�34�

Denoting the contribution of the z=2 mode as �m1�T�, we
get using Eq. �24�

�m1�T� = � u0Ex

2�2�0
��

0

q�

dqq2nB�Exq
2

4kF
2 � ,

where nB�x�= �ex/T−1�−1 is the Bose function. For the leading
T dependence, we write nb�x��1 /x, with an appropriate ul-
traviolet cutoff for the q integral. For T�E�, this cutoff is
kF�T /Ex�1/2, and for T�E�, this cutoff remains at q�. We get

�m1�T� � �4u0kF
3

�2�0
�T3/2

Ex
1/2 , T� E�,

��2u0kF
2q�

�2�0
�T, T� E�. �35�

Next, denoting the contribution of the z=3 mode as �m2�T�,
we get

�m2�T� = �4u0�DkF
3

�2�0
��

0

�

d� coth� �
2T

��
��

qc

�

dq
q3

q6 + 4�2�2 ,

where q and qc are dimensionless in units of kF and � and T
are dimensionless in units of �D. For T�E�, we can set qc
��1/3 for the leading term, while for T�E� we have qc
=q�. This gives

�m2�T� � 2u0kF
3

3�0
�� kF

q��2 T2

�D
, T� E�,

�27/3��4/3�!�4/3�u0kF
3

33/2�5/3�0
� T4/3

��D�1/3 , T� E�. �36�

Comparing Eqs. �35� and �36� we find that, for T�E�, the
leading T dependence is given by the z=2 mode and
�m�T���m1�T�, while for T�E�, the leading term is from
the z=3 damped mode and �m�T���m2�T�. Consequently,
the crossover lines in temperature which define the quantum
critical regime are given by

T � �� − �c�2/3, T� E�,

� �� − �c�3/4, T� E�. �37�

VI. QUASIPARTICLE LIFETIME AND TRANSPORT

In this section, we first evaluate the quasiparticle lifetime
�
c� of the conduction electrons due to scattering from the
excitations of � and then argue that this lifetime can be iden-
tified with the transport lifetime �
tr� for the evaluation of the
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temperature dependence of the resistivity. For the process
shown in Fig. 4, the general expression for the imaginary
part of the self-energy of the conduction electrons is given by

Im "c
R�k,�� = �

q
�

−�

� d�

�
�nB��� + nF�� − ���

� Im D�
R�q,��Im Gf

R�k − q,� −�� ,

�38�

where nF�x�= �ex/T+1�−1 is the Fermi function and R denotes
retarded functions. At zero temperature, this gives

Im "c
R�k,�� = �

q
�

0

� d�

�
Im D�

R�q,��

�Im Gf
R�k − q,� −�� . �39�

We evaluate the above expression for a conduction electron
on the Fermi surface, i.e., for �k�=kF, and we find that the
leading frequency dependence is always due to the over-
damped z=3 mode whose expression is given by Eq. �25�.
The z=2 mode does not contribute since it cannot kinemati-
cally connect the f and c electrons. We write

�
q

→
1

4�2�
0

�

dqq2�
−1

1

dz ,

where z is the cosine of the angle between k and q. After
linearizing the spectrum for the spinons, we have

Im Gf
R�kF − q,� −�� = − ���� −� + Ex + �vFqz� .

Since, ��� and q�q� for the overdamped mode, the con-
straint from the � function is always satisfied. After the an-
gular integral, we get

Im "c
R�kF,�� = − � 2kF

3

��0
��

0

�

d���
q�

�

dq
q2

q6 + 4�2�2 ,

where momenta and frequencies are dimensionless in units
of kF and �D, respectively. For ����E�, the leading con-
tribution of the q integral comes from q����1/3 and there-
fore the infrared cutoff q� can be set to zero. However for
����E�, q���1/3, and the lower cutoff at q� comes into
play. We finally get

Im "c
R�kF,�� � − � kF

3

6��0�D
����, ���� E�,

�− � kF
3

6�2�0�DE���2, ���� E�. �40�

Thus we find that above the infrared cutoff scale E�, the
Kondo breakdown scenario, in which the conduction elec-
trons interact with the critical hybridization fluctuations, pro-
vides a microscopic mechanism to obtain a marginal Fermi
liquid36 in three dimensions.

Next we evaluate the temperature dependence of the
imaginary part of the self-energy at �=0 and on the Fermi
surface. Denoting this as Im "c�T�, we get from Eq. �38�

Im "c
R�T� = �

q
�

−�

� d�

�

1

sinh��/T�
Im D�

R�q,��

�Im Gf
R�kF − q,−�� . �41�

The evaluation of the above expression is very similar to the
finite frequency case, except for T�E�, the thermal factors
nB�x�+nF�x�=1 /sinh�x� gives an additional logarithm which
is cutoff by E�. We get

Im "c
R�T� � − � kF

3

3��0�D
�T ln�2T

E��, T� E�,

�− � kF
3

6�0�DE��T2, T� E�. �42�

In Fig. 5, we show a plot of this quantity from a numerical
evaluation of Eq. �41� using Eq. �25�. One can see the ap-
proximate linear T behavior except at very low temperatures,
where one crosses over to a T2 behavior.

Next we evaluate the temperature dependence of the re-
sistivity ���T�
��T�−��0�. In order to proceed, we first
need to address whether the transport lifetime 
tr can be
identified with the quasiparticle lifetime 
c�� ,T�
� �Im "c�� ,T��−1, whose frequency and temperature depen-
dences are given by Eqs. �40� and �42�. For this, it is useful
to compare the Kondo-Heisenberg model with a single band
model. In the latter case, the two lifetimes have a different
temperature dependence because the leading contribution to
the self-energy comes from forward-scattering processes
with momentum transfer q�0 but which are not effective in
relaxing the current. As such, when vertex corrections are

FIG. 4. Self-energy diagram for the conduction electrons due to
scattering from the critical excitations of � whose dynamical expo-
nent is z=3. In three dimensions, this has a marginal Fermi-liquid
form.

0

0.02

0.04

0.06

0 0.2 0.4 0.6 0.8 1

-
ρ 0

Im
Σ

T/Ex

FIG. 5. The imaginary part of the conduction-electron self-
energy at �=0 versus T from a numerical evaluation of Eq. �41�
using Eq. �25�. Note the approximate linear T behavior, with a
crossover to T2 behavior at very low T.
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taken into account, 
tr
−1 acquires an additional temperature

dependence proportional to q2�T2/z. However, this is not the
case for the Kondo-Heisenberg model which has two bands,
one of light conduction electrons and the other of heavy
spinons. Due to the constraint of half filling �Eq. �2��, the

spinon current operator J� fi=0 at every site i. Therefore, it is
guaranteed by gauge invariance that a vertex correction in-
volving the exchange of a single � boson �Fig. 6�b��, which
involves an external spinon current operator, is identically
zero.37 The first nonzero vertex correction involves the ex-
change of two � bosons, and we expect such a correction to
be small by a factor of �. This can be understood as well in
a Boltzmann approach,38 where the transport vertex correc-
tion 1−cos�� gets replaced by 1−� cos��, which is essen-
tially unity since ��1.

Consequently, in the present theory, the transport lifetime
is proportional to the quasiparticle lifetime. The physical pic-
ture that emerges from the above discussion is that, when
scattered from a � boson �c� f +��, a conduction electron
transmutes into a spinon and relaxes its current in the bath of
the spinons. More formally, the expression for the conduc-
tivity ��c� obtained from the current-current correlator in the
Kubo formalism is given by

�c = �vF
2

3
��

k
�

−�

� d�

2�
 �

��
tanh� �

2T
���Im Gc

R�k,���2.

�43�

We write

�Gc
R�k,���−1 = � − �k − Re "��� +

i

2
c��,T�
, �44�

where for �� ,T��E�

�
c��,T��−1 = 
−1 + � 2kF
3

3��0�D
�T ln�2T

E�� +
���
2
� .

�45�

Here 
 is an elastic-scattering lifetime of the conduction elec-
trons due to impurities and sets the scale of the temperature
independent part of �c. We linearize the dispersion of the
conduction electrons and replace the momentum sum
by an energy integral, and we finally obtain �c�T�
= ��0vF

2
c�0,T�� /3. This implies for E��T��D,

���T� � T ln�2T

E� � . �46�

Therefore, the scenario of the breakdown of the Kondo effect
captures one of the most enigmatic features of heavy fermion
systems close to quantum criticality, namely, the quasilinear
temperature dependence of the resistivity observed for most
compounds over a large range of temperature. For T�E�,
the usual Fermi-liquid result is recovered and ���T��T2. It is
interesting to note that the recovery of the Fermi-liquid T2

behavior of resistivity below a finite temperature scale in the
quantum critical regime of YbRh2Si2 has recently been
reported.39 Finally, we note that for the same reason that
equates the single-particle and transport lifetimes, the elec-
trical and thermal transport lifetimes are the same.

VII. CONCLUSION

To summarize, we studied the Kondo-Heisenberg model
in three dimensions using a fermionic representation for the
localized spins. The mean-field phase diagram in the T−JK
plane, where JK is the Kondo coupling, exhibits a quantum
critical point that separates a uniform spin liquid phase from
a heavy Fermi-liquid phase. In the uniform spin liquid phase,
the Kondo hybridization between the conduction band and
the band of fermionic spinons that constitute the local mo-
ments vanishes, thereby indicating that in this phase, the
Kondo effect fails to occur. For a Kondo coupling larger than
the critical value �JK�JKc

�, a heavy Fermi-liquid ground
state is established with finite hybridization between the
bands. This implies that at the quantum critical point �JK
=JKc

�, the lattice Kondo energy scale TK vanishes, indicating
the breakdown of the Kondo effect for couplings smaller
than the finite value JKc

.
In general, the size of the �hot� Fermi surface of the

spinon band is different from that of the conduction elec-
trons, and we characterized their mismatch by a wave vector
q�
kF0−kF, where kF0 is the spinon Fermi wave vector and
kF is the conduction Fermi wave vector. As a consequence of
this mismatch, we found that two mean-field solutions are
possible in the Fermi-liquid phase. First, one with a uniform
hybridization, which is stabilized when the two band masses
have the same sign. This is the standard Kondo phase which
appears in the mean-field pseudofermion description of the
Kondo lattice. Second, a Kondo phase with the hybridization
modulated in space with wave vector q0�1.2q�, which ap-
pears when the two band masses have opposite signs �i.e.,
one band is electronlike and the other holelike�. Conceptu-
ally, this phase is analogous to the LOFF state of supercon-
ductivity and is characterized by nodes in space where TK is
zero. This solution was discussed at the mean-field level in
Ref. 25 and Appendix A 1. Fluctuations in the modulated
case are more complex than for the uniform case and will be
the topic for future work. For the uniform case, we showed
that at the quantum critical point the single-ion Kondo scale
TK

0 is approximately equal to the Heisenberg coupling JH.
This demonstrates that the Kondo breakdown is a conse-
quence of the competition between the Kondo energy scale
and the magnetic energy scale, even though there is no long-

(a) (b)

FIG. 6. Diagrams for the current-current correlator for the
evaluation of the conductivity in the Kubo formalism. The solid
dots indicate current vertices. �a� involves conduction electrons
with self-energy corrections �see Fig. 4�. This contribution identifies
the transport lifetime with the conduction-electron lifetime. �b� Ver-
tex correction involving the exchange of one � boson. It vanishes
because the spinon current is zero due to the local constraint �see
Eq. �2��.
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range magnetic order in the present formulation.
Then, we studied the effect of the critical hybridization

fluctuations �excitations of the order parameter �� associated
with the vanishing energy scale TK on the thermodynamic
and transport properties of the system. We found that, due to
the mismatch q�, the critical fluctuations are affected by en-
ergy scales E����D / �2����q� /kF�3 and Ex��vFq�, where
��JH /D is the ratio of the spinon bandwidth JH and the
conduction bandwidth D. The propagator for the critical
modes has several asymptotic structures in different regimes
of frequency-momentum space, out of which the following
two are important and readily understood. �i� For momentum
q�q�, the spectrum of the critical fluctuations lies outside
the interband particle-hole continuum and therefore their dy-
namics is undamped and is characterized by a dynamical
exponent z=2. �ii� For most of momentum space �q�q��,
the spectrum of the critical modes lies within the particle-
hole continuum and therefore has overdamped dynamics
with exponent z=3 �Landau damping�. The leading contribu-
tion to thermodynamics and transport is almost always gov-
erned by the latter asymptotic structure, in contrast to most
Ginzburg-Landau approaches, where only the critical modes
within 1 /#�T� of the ordering vector �q=0� are important.40

Above the temperature scale E�, this gives rise to anomalous
metallic behavior, such as a specific-heat coefficient that di-
verges logarithmically with temperature, and the inverse life-
time of the conduction electrons which has a T ln T tempera-
ture dependence. The latter is a consequence of the
conduction-electron scattering with the critical bosons with
the dynamical exponent z=3, which in three dimensions pro-
vide a microscopic mechanism to obtain marginal Fermi-
liquid behavior. Since the spinons do not carry current but
are effective in relaxing the current carried by the conduction
electrons, the T dependence of the inverse particle lifetime
also gives rise to a T ln T behavior of the resistivity. From a
scaling point of view, in this regime the frequency � of the
critical fluctuations scales as ��q3, where q is their mo-
mentum. For T�E�, however, the infrared cutoff q� prohib-
its the z=3 scaling, and the leading T dependence of the
specific-heat coefficient and the resistivity are Fermi-liquid-
like. The Kondo breakdown scenario is promising in that it
can explain one of the least understood features of the heavy
fermions near quantum criticality, namely, the quasilinear
temperature dependence of the resistivity and the existence
of multiple energy scales over decades of temperature.

ACKNOWLEDGMENTS

We thank the hospitality of the KITP where this work was
initiated. We also acknowledge J. Schmalian, P. Sharma, A.
Chubukov, P. Coleman, G. Kotliar, M. Civelli, and L. De Leo
for illuminating discussions. This work was supported by the
U.S. Department of Energy, Office of Science, under Con-
tract No. DE-AC02-06CH11357, in part by the National Sci-
ence Foundation under Grant No. PHY99-07949, and by the
French ANR Program under Grant No. ANR36ECCEZZZ.

APPENDIX A

1. Spatially modulated mean-field solution

Here we demonstrate that when the conduction electron
and spinon masses have opposite signs, i.e., when one band

is electronlike and the other holelike, the mean-field theory
admits a solution where the Kondo hybridization is modu-
lated in space. This is a consequence of the mismatch be-
tween the two Fermi surfaces and conceptually is analogous
to the LOFF state of superconductivity.22,23 In the following,
we choose the conduction band to be electronlike and the
spinon band to be holelike and linearize their dispersions.
This gives �k=� for the dispersion of the conduction band,
where �=vF�k−kF� and �k

0 =−���−vFq�� for the dispersion
of the spinon band. For this case, we evaluate the static in-
terband polarization � fc�q ,0�, whose general expression is
given by Eq. �19�. Approximating the momentum summation
by

�
k

→
�0

2
�

−D

D

d��
−1

1

dz ,

where the conduction bandwidth D enters as an ultraviolet
cutoff for the energy integral, we get

� fc�q,0� =
�0

1 + �
�ln�vF

2 ��q��2 − q2�
�1 + ��2D2 � − 2

+
q�

q
ln q� + q

�q� − q��� . �A1�

It is easy to see that the maximum of −� fc�q ,0� is at a finite
wave vector q0 where

q0 � 1.2q�. �A2�

Therefore for JK�JKc
, where the critical value of the Kondo

coupling is given by

1

JKc

+� fc�q0,0� = 0,

the Kondo boson condenses in the Fermi-liquid phase at a
finite wave vector q0 �i.e., ��q0

��0�. This implies that the
Kondo hybridization is modulated, with nodes in space
where TK vanishes.41

2. Calculation of the mean-field free energy

In this part, we give the technical details for the evalua-
tion of the mean-field free energy at T=0. This can be writ-
ten as

FMF

N
= �

k,i=a,b
�k

i �− �k
i � +

�0
2

JK
+
	0

2

JH
+
�0

2
, �A3�

where �x� is the Heaviside step function and �k
a,b are given

by Eq. �9�. We replace �k →�0�d�, and from the solution of
the equations �k

a,b=0, we get

�
k,i=a,b

�k
i �− �k

i � =
�0

2
�

−D

s−s1

d���1 + ���� +
�2

D
�

− �1 − ��2�� +
�2

D
�2

+ 4�0
2�1/2�

+
�0

2
�

−D

−s−s1

d���1 + ���� +
�2

D
�
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+ �1 − ��2�� +
�2

D
�2

+ 4�0
2�1/2� ,

where s=�0 /�1/2 and s1=�0
2 / �2D�+O�1 /D2�. We expand

the expression under the square root in powers of �1 /D� and
keep terms up to O�1 /D2�, since higher orders contribute to
O��0

6� and beyond which we neglect. Performing the � inte-
gral to O��0

4� accuracy we get

FMF

N
=
�0D2

2
 �2

2�0JH
−
�

3
� + �0�0

2 1

�0JK
� −  1

1 − �
ln� 1

�
��

+
�0�0

4

�2D2

�1 − 4� + �2�
�1 + ��

,

where a constant part has been ignored. Since ��1, in the
terms proportional to �0

2 and �0
4, we retain only the dominant

� dependence and get Eq. �10�.

APPENDIX B

1. Asymptotic structure of the Kondo boson

In this appendix, we determine the leading frequency and
momentum dependences of the propagator for the Kondo
boson D��q , i�n� in the quantum critical regime using Eqs.
�20� and �22a�. Its leading frequency dependence is given by
the first terms in Eqs. �23a�–�23e�, while the next term is
determined by comparing the static �q /kF�2 term in Eq. �20�
with the subleading terms of Eqs. �23a�–�23e�. The
asymptotic structure of D��q , i�n� in different regimes of
frequency and momentum is as follows:

(1) �n�E�
���D� / �2����q� /kF�3. In this frequency in-
terval there are three subregimes depending on the magni-
tude of the momentum q. We get �a� q�q�1
��n /Ex�kF
�where Ex
�vFq��,

D�
−1�q,i�n� � − �0� i�n

Ex
�1 +

1

2
�1 + ��

i�n

Ex
� , �B1a�

�b� q�1�q�q�,

D�
−1�q,i�n� � �01

4
� q

kF
�2

−
i�n

Ex
� , �B1b�

and �c� q��q�kF,

D�
−1�q,i�n� � �01

4
� q

kF
�2

+
�

2

��n�
�vFq

� . �B1c�

(2) E���n�Ex. In this frequency interval there are four
subregimes given by �a� q�q�2
��n /Ex�1/2q�,

D�
−1�q,i�n� � − �0� i�n

Ex
�1 +

1

2
�1 + ��

i�n

Ex
� , �B2a�

�b� q�2�q�q�,

D�
−1�q,i�n� � − �0� i�n

Ex
�1 +

1

3
� q

q��2� , �B2b�

�c� q��q�q�3
kF��q��n� / ��kFD��1/4,

D�
−1�q,i�n� � − �0� i�n

�vFq
�i
�

2
sgn��n� +

q�

q
� ,

�B2c�

and �d� q�3�q�kF,

D�
−1�q,i�n� � �01

4
� q

kF
�2

+
�

2

��n�
�vFq

� . �B2d�

(3) Ex��n��D. In this frequency range there are five
subregimes given by �a� q�q�4
q��Ex /�n�1/2,

D�
−1�q,i�n� �

�0

�1 − ��ln�− i�n

Ex
� −

Ex

i�n
� , �B3a�

�b� q�4�q�q�,

D�
−1�q,i�n� �

�0

�1 − ��ln�− i�n

Ex
� +

1

6
� q

q��2� ,

�B3b�

�c� q��q�q�5
kF��n / ��D��,

D�
−1�q,i�n� �

�0

�1 − ��ln�− i�n

�vFq
� + 1 + i

�

2
sgn��n�� ,

�B3c�

�d� q�5�q�q�6
kF��n / ��D��1/2,

D�
−1�q,i�n� � �0�2 ��n�

�vFq
−

1

2
�1 + ��

�n
2

��vFq�2� ,

�B3d�

and �e� q�6�q�kF,

D�
−1�q,i�n� � �01

4
� q

kF
�2

+
�

2

��n�
�vFq

� . �B3e�

2. Spectral response of the Kondo boson

In the paper, several simplified expressions were used for
the spectral response of the Kondo boson. Here, we give a
more complete account. The fc polarization bubble has some
similarities to the Lindhard function42 but also differs from it
in important respects. In particular, the particle-hole con-
tinuum of the Lindhard function exists for all momenta,
while this is not the case for the fc polarization as a result of
the mismatch between the conduction and spinon Fermi sur-
faces. We have performed numerical calculations including
the full quadratic dispersion of the fermions, but they are
very similar to results we present here that are based on Eq.
�22a� plus the static curvature correction �last term in Eq.
�20��. The advantage of using Eq. �22a� is that it is valid for
arbitrarily small �. All results here are for the retarded re-
sponse function at T=0. We confine our discussion to the
case where both conduction and spinon bands have the same
sign for the mass.

We begin with the fc bubble at q=0,
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Re � fc�0,�� =
�0

1 − �
ln

�� − �vFq��
�� − vFq��

. �B4�

This expression contains two logarithmic singularities at the
energies Ex
�vFq� and vFq�, where q�
kF0−kF is the mis-
match vector between the conduction and spinon Fermi sur-
faces. The imaginary part of � fc is simply a step function
with value ��0 / �1−�� between these two energies. Note that
� fc is not symmetric around zero energy �only the sum of it
with �cf would be�. We have chosen kF0�kF. For the re-
verse case, the singularities would flip to the other side of the
frequency axis. The logarithmic singularity at Ex plays an
important role. It guaranties that the Kondo boson propaga-
tor, D
JK / �1+JK� fc�, always has a pole between zero and
Ex. This pole is undamped since Im � fc is zero below Ex.

The general structure of � fc can be appreciated from Fig.
7, where the various domains for the imaginary part are
shown. Note that the imaginary part vanishes in the regime
we label as z=2. For the positive frequency side, this is a
triangle in �q ,�� space bounded by �0,Ex� and �q� ,0�. For
low frequencies appropriate for the dispersive peaks of Im D,
it will be sufficient to expand Eq. �22a� for small �. When
we do this, we find

Re D−1 = � −
�0�

2�vFq
ln

�q + q��
�q − q��

+
�0q2

4kF
2 , �B5�

where � is the deviation from the quantum critical point
�QCP� and the last term is the static curvature correction.
Below the kinematic boundary, Im D−1 is zero, so the zeros
of Eq. �B5� in this regime give the collective-mode disper-
sion, which for �=0 is

�coll/Ex = 0.5�q�/kF�2�q/q��3/ln
�q + q��
�q − q��

. �B6�

We compare this in Fig. 8 with the expression where the
logarithm in Eq. �B5� is expanded for small q /q�, the latter
being Eq. �24�. Note that formally, Eq. �B6� vanishes as q
goes to q�, but this is of no concern, since the mode inter-
sects the kinematic boundary before this occurs, and thus
it terminates at a finite energy, corresponding to c�0.1 in
Eq. �26�.

Above the kinematic boundary, Im D−1 is nonzero. For
q�q�, it is

Im D−1 =
− �0��

2�vFq
. �B7�

This leads to a pseudo-Lorentzian behavior for Im D. The
location of the maximum of Im D, denoted as �, can be
found upon differentiation with respect to �, leading to

�/Ex = 0.5�q�/kF�2�q/q��3/��2 + ln2 �q + q��
�q − q��

, �B8�

which is also plotted in Fig. 8. If instead, we ignore the �
term in Eq. �B5�, we get Eq. �25� instead. The latter is a true
Lorentzian, and its dispersion is plotted as well in Fig. 8.
Although formally Eq. �B8� vanishes as q goes to q�, the
actual results based on Eq. �22a� do not, and we again find
c�0.1 in Eq. �26�.

We finish this discussion by showing in Fig. 9 Im D based
on Eq. �22a� for both positive and negative � for two
cases, the quantum critical point ��=0� and somewhat away
��=1�. The collective mode is not visible on the scale of
this plot, but we note that it is only present on the posi-
tive frequency side. The damped response is approximately
�anti�symmetric in � for �=0 but becomes highly asymmet-
ric for nonzero �. As � increases, the most intense part of the
damped response moves up the kinematic boundary � /Ex
=1−q /q� and approaches the logarithmic singularity at q
=0 and �=Ex. In Fig. 10, the dispersion of the Im D maxima
is plotted for various �. Note the reversed magnonlike dis-
persion of the undamped modes and the approximate linear q
behavior of the damped modes for nonzero �.

3. Free energy

Here we compute the free energy due to the excitations of
the Kondo boson, whose expression is given by Eq. �27�, and
take into account all the different asymptotic structures of the
propagator D��q , i�n� which are given in Eqs. �B1a�–�B1c�,
�B2a�–�B2d�, and �B3a�–�B3e�. The goal of this exercise is

-4
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0 0.5 1 1.5 2

Ω
/E

x

q/q*

z=2

z=3

FIG. 7. Regimes of � fc. The various dashed lines are the kine-
matic lines corresponding to the zeros of the arguments of the loga-
rithms in Eq. �22a�. The regime denoted z=2 has Im � fc=0,
whereas the regime z=3 has Im � fc��.
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0 0.5 1 1.5 2
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q/q*
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FIG. 8. �Color online� Dispersion of Im D for �=0 and q� /kF

=0.1. The undamped �z=2� dispersion is to the left of the kinematic
boundary, � /Ex=1−q /q� �marked by the nearly vertical line�,
whereas the damped �z=3� response is to the right. The results
based on Eq. �22a� closely follow the expressions of Eqs. �B6� and
�B8�. The simpler Eqs. �24� and �25� are used in the analytic cal-
culations and are quite good except for q near q�.
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to prove that for all temperatures T��D, the leading contri-
bution comes from that part of the phase space where the
boson is overdamped with dynamical exponent z=3 and
whose propagator is given by Eq. �25�.

(1) T�E�. Since for the leading T dependence we expect
��T, in this temperature regime D��q , i�n� has three
asymptotic forms which are given in Eq. �B1�. Accordingly,
we split the q integral into three parts, namely, q�q�1,
q�1�q�q�, and q��q�kF, and denote their contributions
as F1a, F1b, and F1c, respectively. Keeping only the leading
terms for each subregime, we get

F1a =
1

4�3�
−�

�

d� coth� �
2T

��
0

q�1

dqq2 Im ln−
�

Ex
− i��

= − ��2

90
kF

3�T4

Ex
3 , �B9a�

F1b =
1

4�3�
−�

�

d� coth� �
2T

��
q�1

q�

dqq2 Im ln q2

4kF
2 −

�

Ex

− i�� = − � !�5/2�
�3/2 kF

3�T5/2

Ex
3/2 , �B9b�

F1c =
1

4�3�
−�

�

d� coth� �
2T

��
q�

kF

dqq2 Im ln q2

4kF
2

− i
�

2

�

�vFq
� = − � kF

3

3
�ln� kF

q�� T2

�D
. �B9c�

We note that, since T�E�, the leading temperature depen-
dence is due to the z=3 mode whose contribution is given by
Eq. �B9c�, and thus F�F1c.

(2) E��T�Ex. In this temperature regime, D��q , i�n�
has four asymptotic forms which are given in Eq. �B2�. Now
we split the q integral into four parts, namely, q�q�2, q�2
�q�q�, q��q�q�3, and q�3�q�kF, and denote their
contributions as F2a, F2b, F2c, and F2d, respectively. Once
again, keeping only the leading terms for each subregime, we
get

F2a =
1

4�3�
−�

�

d� coth� �
2T

��
0

q�2

dqq2 Im ln−
�

Ex
− i��

= − � !�5/2�
4�1/2 kF

3�� E�

�DEx
3/2�T5/2, �B10a�

F2b =
1

4�3�
−�

�

d� coth� �
2T

��
q�2

q�

dqq2 Im ln−
�

Ex
− i��

= −
�q��3

6�2 T ln� T

E�� , �B10b�

F2c =
1

4�3�
−�

�

d� coth� �
2T

��
q�

q�3

dqq2 Im ln− �q�

q
� �

�vFq

− i
�

2

�

�vFq
� = − ���7/4�!�7/4�

6�2 kF
3��q�

kF
�3/4 T7/4

��D�3/4 ,

�B10c�

F2d =
1

4�3�
−�

�

d� coth� �
2T

��
q�3

kF

dqq2 Im ln q2

4kF
2

− i
�

2

�

�vFq
� = − � kF

3

9
�ln��D

T
� T2

�D
. �B10d�

After comparing the various contributions above, once again
we find that the leading temperature dependence is due to the
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FIG. 9. �Color online� Plots of Im D for positive �left� and nega-
tive �right� �. The quantum critical point ��=0� is shown on the
top, away from this ��=1� is shown on the bottom. The z=2 dis-
persion is not visible on the scale of this plot. Note the approximate
�anti�symmetry of the damped �z=3� response at the QCP as com-
pared to away. This damped dispersion at the QCP closely follows
the analytic expression of Eq. �B8�. The intensity scale for the bot-
tom plots are a factor of 10 smaller than the top ones.
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FIG. 10. �Color online� Dispersion of the Im D maxima for �
ranging from zero �bottom curve� to one �top curve�. The undamped
modes are to the left of the kinematic boundary �dashed line�, while
the damped modes to the right. Note the reversed magnonlike dis-
persion of the undamped modes and the approximate linear q be-
havior of the damped modes for nonzero �.
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z=3 mode, whose contribution is given by Eq. �B10d�, and
we have F�F2d.

(3) Ex�T��D. In this temperature regime D��q , i�n�
has five asymptotic forms which are given in Eq. �B3�. Now
we split the q integral into five parts, namely, q�q�4, q�4
�q�q�, q��q�q�5, q�5�q�q�6, and q�6�q�kF, and
denote their contributions as F3a, F3b, F3c, F3d, and F3e, re-
spectively. Once again, keeping only the leading terms for
each subregime, we get

F3a =
1

4�3�
−�

�

d� coth� �
2T

��
0

q�4

dqq2 Im lnln�−
�

Ex
− i��

−
Ex

�
� = − � �q��3

18�2�T , �B11a�

F3b =
1

4�3�
−�

�

d� coth� �
2T

��
q�4

q�

dqq2 Im lnln�−
�

Ex
− i��

+
1

6
� q

q��2� = − � �q��3

12�2�T ln� T

Ex
� , �B11b�

F3c =
1

4�3�
−�

�

d� coth� �
2T

��
q�

q�5

dqq2 Im lnln� ���
�vFq

� + 1

− i
�

2
sgn���� = − ��2

90
kF

3� T4

��D�3 , �B11c�

F3d =
1

4�3�
−�

�

d� coth� �
2T

��
q�5

q�6

dqq2 Im ln �2

2��vFq�2

− i
�

2

�

�vFq
� = − � !�5/2�

8�3/2 kF
3� T5/2

��D�3/2 , �B11d�

F3e =
1

4�3�
−�

�

d� coth� �
2T

��
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As before, we find that the leading temperature dependence
is given by the z=3 mode, whose contribution is given by
Eq. �B11e�, and we have F�F3e.
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