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The diffusion of electronic wave packets in one-dimensional systems with on-site, binary disorder is nu-
merically investigated within the framework of a single-band tight-binding model. Fractal properties are in-
corporated by assuming that the distribution of distances � between consecutive impurities obeys a power law,
P�����−�. For suitable ranges of �, one finds system-wide anomalous diffusion. Asymmetric diffusion effects
are introduced through the application of an external electric field, leading to results similar to those observed
in the case of photogenerated electron-hole plasmas in tilted InP/InGaAs/InP quantum wells.
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I. INTRODUCTION

The work reported in this paper is motivated by the ex-
perimental observation of asymmetric diffusion of electron-
hole plasmas in semiconductor quantum wells,1–3 as well as
by attempts at a theoretical explanation of such results, on
the basis of models for fractal diffusion.1,4 In Ref. 1,
electron-hole plasmas were photogenerated in intrinsic InP/
InGaAs/InP single-quantum wells and their diffusion was ob-
served through measurements of photoluminescence inten-
sity profiles. Two types of heterostructures were examined:
the first was grown in a direction normal to the �001� crys-
tallographic axis and the second was grown in a direction
tilted by 2° relative to that of the first, toward the �111� axis.
The experimental results were as follows: in the former
structure the plasma undergoes Gaussian �symmetric� diffu-
sion while in the latter the diffusion is asymmetric. The au-
thors of Ref. 1 showed that diffusion data for the tilted het-
erostructure can be fitted by an asymmetric Lévy
distribution, previously obtained4 as a solution to a �one-
dimensional� generalized Fokker-Planck equation with dis-
tinct right- and left-diffusion coefficients, and fractional de-
rivatives. Furthermore, it was argued that the fractional
character of the diffusion is connected to fractal properties of
the medium, namely a power-law roughness distribution of
the interfaces that delimit the quantum wells. Further photo-
luminescence studies suggest that the carrier diffusion prop-
erties are indeed very sensitive both to interface roughness
and to the presence of finite-width terraces.2 By varying both
optical excitation intensities and temperature, a more de-
tailed picture was found for the anomalous diffusion phe-
nomena taking place, including the likely existence of Auger
recombination, which in its turn might be induced by fractal
interface morphology.3

The relationship between fractional diffusion and the ab-
sence of a characteristic length scale �the latter being a basic
property of fractals� is well-established, and has been exten-
sively investigated.5–7

Here we study a model system along the lines of Ander-
son’s picture8–11 for electron diffusion in disordered media.
Alternatively to the theoretical approach adopted in Refs. 1
and 4, whose starting point was a generalized Fokker-Planck
equation for �classical� particles, we write a tight-binding
Hamiltonian for a �quantum� particle, which evolves accord-

ing to the rules of quantum mechanics. The fractal features
are incorporated by a specific spatial distribution of on-site
disorder, to be described below.

Bearing in mind that the electron-hole pairs undergoing
anomalous diffusion in the experimental systems are essen-
tially quantum-mechanical objects, our treatment is expected
to reflect the basic wavelike properties of such entities. The
link between the quantum properties underlying localization
and those classical features brought to fore in classical ap-
proaches to diffusion is not well understood although it has
been discussed in the recent past �see, e.g., Ref. 12�.

Our main concern is to provide an independent check of
whether the connection between fractal properties of a disor-
dered medium and the behavior of particles diffusing in it,
which has been proposed in the classical context, is robust
enough to survive the translation to a quantum-mechanical
picture. Therefore, we shall not aim at making specific
comparisons of our results to the experiments described in
Refs. 1–3.

In Sec. II A, we introduce the tight-binding Hamiltonian
and the respective disorder distributions to be investigated
along with a brief description of our calculational proce-
dures. In Sec. II B results are given for the time evolution of
the width of wave-function packets against time as well as
for the corresponding instantaneous profiles. Section II C
deals with the introduction of an external bias in order to
investigate the effects of anisotropy. Finally, in Sec. III, con-
cluding remarks are made.

II. MODEL SYSTEM AND RESULTS

A. Model

In order to simplify the calculational framework, we re-
strict our investigation to one-dimensional systems. We con-
sider the one-electron, tight-binding Hamiltonian for a
single-orbital linear chain with nearest-neighbor hopping,

H = �
n

�n��n	n� − ��
n,m

�n�	m� , �1�

where �n� is an orbital with self-energy �n, m=n�1, and � is
the hopping energy, assumed to be constant and positive.

We study binary models of disordered alloys, in which
two different orbitals A �host atoms� and B �substitutional
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impurities� coexist with respective self-energies �A and �B,
and overall concentrations 1− p0 and p0. The relevant energy
in the present context is �
�B−�A, which measures the
impurity-host mismatch.

If the impurity locations are uncorrelated, �a case to be
denoted as the random binary model or random for short� the
distances � between any two consecutive impurities have an
exponential distribution, i.e.,

P��� =
p0

1 − p0
�1 − p0�� � exp�− ��� �� = 1,2, . . .� , �2�

where �=��p0�=−ln�1− p0� is the inverse decay length �in
lattice-parameter units� that sets a scale for the typical B
−B distance, i.e., a cutoff dictating the largest allowable dis-
tances. Note that the average impurity-impurity distance is
p0

−1, which approaches �−1 only in the low-concentration
limit p0�1 where continuum and discrete-lattice descrip-
tions become equivalent. For the random model, host-
impurity �A−B� duality means that our investigation can be
restricted to 0� p0�1 /2.

We introduce fractal features by assuming the distribution
of � to decay with a power law:

P��� � �−�, �3�

where � is a characteristic exponent.
Distributions similar to Eq. �3� have been extensively

studied in the literature of fractal-based point processes;13–15

in that context, they refer to the probabilities of occurrence
of interevent �time� separations. In such cases, most of the
interest focuses on the characteristics of the associated power
spectrum, which turns out to exhibit 1 / f� noise properties.
Here, by contrast, the fractal features of the real-space impu-
rity distribution are of interest only inasmuch as they are the
background against which we simulate the quantum-
mechanical evolution of electronic wave packets.

The distribution given by Eq. �3� is normalizable only for
�	1; its mean is finite only for �	2 and its variance is
finite only for �	3. Nevertheless, as discussed at length in
Sec. II B, it is a physically sensible choice to adopt a system-
wide normalization, which enables one to consider 1
�
�2, for �large but finite� fractal systems. In this fractal bi-
nary model, or fractal for short, � lacks a typical scale. Here,
all distances are allowed on account of the slowly decaying
distribution tail. Thus we expect the resulting system to ex-
hibit fractal properties, provided that it is large enough. The
correlation between impurity positions, implied by Eq. �3�,
destroys strict A−B duality.

Comparison between overall concentrations in the two
cases proceeds by matching the respective average distances
between impurities, which are p0

−1 for the former model �as
remarked in connection with Eq. �2�� and ���−1� /���� for
the latter, where ����=�n=1

� n−� is Riemann’s zeta function.
For example, p0=0.4↔��2.34. Clearly, in the thermody-
namic limit, any ��2 corresponds to vanishing B concen-
trations in the fractal. However, as pointed out above, for
large but finite systems, one can still get nontrivial results for
��2 once suitable normalization considerations are taken

into account �see Fig. 3 below, for a full illustration of the
p0−� correspondence, both in the thermodynamic limit and
for finite systems; see also Eq. �6��.

We study the dynamics of wave packets16,17 in random
and fractal linear chains. The time evolution of the ampli-
tudes n�t�= 	�n��t�� is determined by the Schrödinger equa-
tion:

i̇n = �nn − n−1 − n+1, �4�

where �n=�n /� is a dimensionless parameter and time is
given in units of � /�.

We start with Gaussian wave packets:

n�0� = C exp�− �n − n0�2

2�0
2  , �5�

where n0 denotes the initial position of the centroid, �0 the
initial width, and C is a normalization constant.

Configurational averages are taken in all the calculations
presented in this work.

B. Variances and wave fronts

We analyze and compare the properties of the two kinds
of systems just defined.

We have numerically determined the time evolution of the
�ensemble-� averaged wave packets in one-dimensional sys-
tems of sizes L=10 000 with free ends. The number of real-
izations incorporated in the ensemble averages is M =1000
or, in some cases, larger.

The calculational method is based on numerical integra-
tion of Eq. �4� with initial condition given by Eq. �5� via a
fifth-order Runge-Kutta code. We compared results for fixed
realizations of disorder, obtained with time steps of 0.1 and
0.01, and checked that they are indistinguishable for all prac-
tical purposes. Thus, we set the former value in all calcula-
tions described here.

The integration is taken up to times not longer than
enough for the packet to reach the chain’s ends in order to
avoid reflection effects. The actual hopping rate of an elec-
tron in a pure system modeled by Eq. �4� is one atom per
time unit. Considering that diffusion on a disordered chain is
hampered by impurities, in order to be safe we set the upper
time limit as L /2 for a packet initially spread over a few sites
around the center of an L-atom chain. We have used �0
=5.0, that is, the initial packets are rather localized.

As usual, we study diffusional behavior through investi-
gation of the time evolution of the ensemble-averaged sec-
ond moment �variance� of the particle probability distribu-
tion, 	��x�2�. Power-law dependencies, 	��x�2�� t2�, with
�=0, 1/2, and 1 characterize localized, diffusive, and “bal-
listic” regimes, respectively �the latter to be interpreted here
in the sense that, even though there is no center-of-mass
motion in the absence of an external bias, the packet width
varies linearly in time if each of its Fourier components trav-
els unhindered�.

Initially we consider the random model so as to provide a
benchmark against which to compare results for the fractal
case.
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By scanning the values of �
� /� for the dimensionless
impurity-host self-energy mismatch, as well as those of p0,
along suitable intervals, one finds the same overall picture,
namely apparent ballistic behavior at first, followed by a
continuous, smooth crossover toward localization, i.e., the
variances 	��x�2� eventually approach saturation. To illus-
trate this, in Fig. 1 we show the evolution of the slopes
d	��x�2� /dt against time in the random system. One can see
that saturation behavior �zero slope� always obtains, albeit at
rates which depend on � and p0.

We have found no simple scaling picture from which a
data collapse plot could be derived. Even for fixed �, where
for each p0 one has the characteristic interimpurity distance
�−1�p0�, this quantity does not translate directly on to a scal-
ing length. In this case, the saturation value of 	��x�2� varies
approximately as p0

−1.35 �for p0�0.5�.
We now turn to the fractal model for which representative

results are shown in Fig. 2. These are for samples whose
distributions P��� are normalized with respect to the actual
system size L, i.e.,

P��� =
�−�

�L���
, �L��� 
 �

n=1

L
1

n� . �6�

Such a system-wide normalization is indeed consistent with
the inclusion-exclusion principle. This can be seen by recall-
ing that, starting from a B atom at x=0 and following along
the chain, the statement that, e.g., the first B atom occurs at
x=� encompasses all �mutually exclusive� 2L−� possible ar-
rangements of As and Bs for x	�, and with only As for 1
�x��−1. With the above normalization, even for ��2 one
has, on average, a nonvanishing �though in such case rather
small� impurity concentration. This is illustrated in Fig. 3.

The larger the system, the individual probabilities for
some given distance � become comparatively smaller while
the occurrence of larger distances becomes possible, al-
though with low probability. We find that for larger systems,
the fractal environment makes it easier for the packet to dif-
fuse than the random one for the same �effective� concentra-

tion of impurities. Of course, here, one is only considering
diffusion along distances of the order of the system’s length,
L. The crucial difference, relative to the random model, is
that since there is no intrinsic length scale in the fractal sys-
tem, the single length introduced by the normalization in Eq.
�6� coincides with the system size. Thus, although the diffu-
sive behavior observed here must always be regarded as an
apparent regime, it may extend to rather long distances.

The occurrence of large impurity-impurity distances in
this system may produce individual realizations of disorder,
comprising regions that are effectively pure. The result is
that the eigenstates in the system may be extended or
semiextended. Averaging over many realizations would pro-
duce an ensemble of wave packets composed of localized
and extended states, even though on average the system has
a finite concentration of impurities. Least-squares fits of
102
 t
5�103 data of Fig. 2 to a single power-law form
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produce an exponent 2�=1.82�1�, 1.30�1�, and 1.04�1�, re-
spectively, for �=1.5, 2.0, and 2.5. Thus one finds an effec-
tive anomalous diffusion regime, which has no counterpart in
the random disorder model.

On the other hand, the �=3.5 results, for example, show
that even in the fractal model, one can have disorder so
strong that localization �within the system’s limits� is statis-
tically the only possible outcome. For this case, the corre-
sponding effective impurity concentration, as defined above,
is �0.84, which �for the random model� would be equivalent
to p0=0.16 by using the p0↔1− p0 duality valid for the latter
type of disorder. One can infer from Fig. 1�b� that the behav-
ior of the p0=0.16 random system is indeed similar to that of
the �=3.5 fractal case, namely localization setting in for t
�103 �we have also checked that the actual saturation value
of 	��x�2�, which is �6�102 for �=3.5 �fractal�, falls be-
tween the respective ones for p0=0.1 and 0.2 �random��.

As regards �=4.0 data, for which one has the equivalent
p0=0.90 from Fig. 3, comparison is to be made to the p0
=0.10 curve of Fig. 1�b�. Again, the agreement is very good
as far as general trends are concerned: increasing � in this
range turns out to produce a longer localization length.

The reason why the fractal model behaves similarly to the
random one for large �, while it certainly does not do so for
��2.5, is as follows. From Eqs. �3� and �6�, one can work
out that the probability distribution for distances between
consecutive A atoms is

PA��� � exp�a�����, a��� = ln P�1� , �7�

where P�1�=�L
−1��� is the probability for unit distance be-

tween B �impurity� atoms. For ��2.5 �corresponding to p0
�0.5�, the B atoms are in the minority so they indeed play
the role of impurities in an otherwise pure A system. As seen
above, the fractal properties associated to the power-law B
−B distance distribution �Eq. �3�� give rise to the consequent
diffusionlike behavior. At larger � �p0	0.5�, the A atoms are
now in the minority. Physically, the traveling electrons are
only sensitive to the existence of two distinct values of on-
site energies, thus the effective “impurity” label will be as-
signed in practice to the species that occurs less frequently
�in this case, A atoms, whose distance distribution, Eq. �7�, is
qualitatively the same as in the random model, thus bringing
about localization�. The characteristic length, �ln �L����−1,
increases with increasing �, thus explaining the trend men-
tioned above.

In practice, one would expect the region 0.4� p0�0.6,
i.e., 2.35���2.65, to behave as a crossover region. This is
because, for the finite systems under study, one needs a clear
majority of one species over the other to be statistically es-
tablished while still within distances shorter than system
size.

Further evidence that effective diffusionlike behavior is
linked to the absence of a typical scale in fractal systems can
be derived as follows. If, instead of normalizing P��� by
system size L as in Eq. �6�, we take a fixed N
L as the
upper limit �see in Fig. 3 how this affects the effective im-
purity concentration�, a length scale equal to N is introduced
even though the variation of P��� against � is still described
by a power law. Results for N=100 and assorted values of �

are shown in Fig. 4. Note that while the localization length
decreases with increasing ��2.5, the trend is reversed for
�	2.5. This is similar in nature to the p0↔1− p0 duality
observed in the random model.

Finally, we examine the actual shapes of particle probabil-
ity densities. For the localized packets in the random case,
extended exponentials, ��x��2�exp�−b�x���, provide reason-
ably good fits to the region within 20 to 30 sites from the
peak, with 1.5���1.8. At larger distances, the probability
density decay is somewhat slower than that. Fits for 30�x
�200 give � in the 0.2–0.6 range.

On the other hand, for the fractal cases with apparent
diffusion, one can get power-law fits extending to two or
more decades of distance, as shown in Fig. 5. Of course, the
power-law behavior exhibited in the figure is expected to
hold only within the system’s finite limits, as is the case for
all features of the apparent diffusion regime �recall that our
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whole study is conducted for times not longer than enough
for the wave packet to reach the chain’s ends in order to
avoid reflection effects�. Thus, for instance, although data for
�=1.5 �corresponding to power-law decay with �=0.45�
would be strictly non-normalizable if such behavior extended
to arbitrarily long distances, one must keep in mind that
�within the present context� the wave packet amplitude will
fall to zero before reaching the chain’s ends. Localized pack-
ets for fractal disorder, i.e., ��3.0 �not shown�, seem to
behave in an intermediate way between power law and ex-
tended exponential decay.

C. Application of a bias

We search for an effect that, in the present quantum-
mechanical formulation, would be the equivalent to distinct
values for left- and right-diffusion coefficients in the Fokker-
Planck approach of Refs. 1 and 4. The simplest source of
such anisotropy is an electric field.

The effect of applying a uniform electric field to the sys-
tem is incorporated by the inclusion of the term

Hbias = �
n

�n�eEn	n� �8�

in the Hamiltonian, where e is the electronic charge and E is
the field intensity. The corresponding Schrödinger equation
is

i̇n = ��n + f0n�n − n−1 − n+1, �9�

where f0=eE /� is a dimensionless bias intensity.
On a pure system, application of a bias produces a drift of

the entire wave packet as its centroid moves through the
lattice with diffusion occurring with respect to the center-of-
mass reference frame. However, due to the unequal effect of
the bias on the various Fourier components of the packet,
this diffusion may be asymmetric. Also, one must be aware
of Bloch oscillations, which confine the wave packet in a
region of space, thus producing oscillating behavior from
application of a static electric field.18

In order to prevent the effect of Bloch oscillations from
distorting the diffusive behavior, which is our main concern,
here we use f0=1.0�10−3. Then, elementary considerations
show that for a packet starting at the center of a chain with
L=10 000, speed reversal will only set in at t�4�103, giv-
ing one a rather broad window of observation.

In a disordered system, the application of a bias gives rise
to dynamical localization. This is related to Bloch oscilla-
tions. The difference is that a part of the packet diffuses
away and performs oscillations while the other part remains
localized close to the origin. Such asymmetric diffusion be-
havior may thus be viewed as the coexistence of two distinct
regimes.

The results in Fig. 6 show that the diffusing portion of the
averaged wave packet behaves as if the system were pure; its
centroid coincides with that of a corresponding wave packet
in a pure system. One can see that it is only for the fractal
case with apparent diffusion ��=2.5� that a significant por-
tion of the particle probability distribution is pure system
like. As remarked above, for such values of �, one has co-

existence between individual disorder realizations with effec-
tively delocalized eigenstates and others in which localiza-
tion occurs. The relative height of the corresponding peaks in
Fig. 6 shows that the latter are much more frequent than the
former.

III. DISCUSSION AND CONCLUSIONS

We have introduced a model system for the incorporation
of on-site fractal disorder in the one-electron diffusion prob-
lem. As remarked above, the distribution of impurity-
impurity distances given in Eq. �3� implies that disorder is in
fact correlated. It is well known that features such as long-
range hopping19,20 and/or correlated disorder21–25 may have
strong effects �including the occurrence of a metal-insulator
transition even in one-dimensional systems�, an observation
which is confirmed here by the comparison of fractally dis-
ordered and uncorrelated random electronic systems.

As regards comparison with experimental results, the
wave-front profiles depicted in Fig. 6 show a connection be-
tween anomalous diffusion of tight-binding electrons and
fractal properties of the underlying medium. Furthermore,
we have seen that, in the present model, asymmetric profiles
arise from coexistence of ballistic and localized states upon
application of an external bias. Such coexistence results from
the fact that a subset of ensemble realizations of the �scale-
free� disorder are, in fact, almost pure. Whether the same
explanation holds for the experimentally observed profiles is
not certain at the moment although one might conceivably
propose ways to test it on available samples.
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