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We study proximity effect in superconductor/ferromagnet �SF� structure with a narrow domain wall �DW� at
the SF interface. The width of the domain wall is assumed to be larger than the Fermi wavelength but smaller
than other characteristic lengths �for example, the “magnetic” length�. The transmission coefficient is supposed
to be small so that we deal with a weak proximity effect. Solving the linearized Eilenberger equation, we find
analytical expressions for quasiclassical Green’s functions. These functions describe the short-range �SR�
condensate components, singlet and triplet, with zero projection of the total spin on the quantization z axis,
induced in ferromagnet �F� due to the proximity effect as well as long-range odd triplet component �LRTC�
with a nonzero projection of the total spin of Cooper pairs on the z axis. The amplitude of the LRTC essentially
depends on the product h� and increases with increasing the exchange energy h �� is the elastic-scattering
time�. We calculate the Josephson current in superconductor/ferromagnet/superconductor junction with a thick-
ness of the F layer much greater than the penetration length of the SR components. The Josephson critical
current caused by the LRTC may be both positive and negative depending on chirality of the magnetic structure
in F. The density of states �DOS� in a diffusive SF bilayer is also analyzed. It is shown that the contributions
of the SR and LR components to the DOS in F have a different dependence on the thickness d of the F layer
�nonmonotonous and monotonous�.
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I. INTRODUCTION

For a long time the mechanism of superconductivity of
Bardeen, Cooper, and Schrieffer �BCS�1,2 based on the as-
sumption of s-wave singlet pairing remained sufficient for
explanation of properties of almost all existing superconduct-
ors. However, the situation has changed in the last two de-
cades. It has been established that in high Tc superconductors
the d-wave singlet pairing is responsible for the
superconductivity.3 A triplet p-wave pairing was suggested to
explain properties of materials with heavy fermions.4 Recent
intensive studies of the strontium ruthenate �Sr2RuO4�
showed that superconductivity in this compound was also
due to the triplet p-wave pairing mechanism.5,6 The p-wave
pairing was considered to be an essential ingredient for form-
ing the triplet Cooper pairs because, in contrast to the con-
ventional singlet pairing, it allowed to satisfy the Pauli prin-
ciple.

A more exotic type of triplet pairing was proposed by
Berezinskii7 as a possible mechanism of superfluidity of He3.
According to this suggestion the triplet pairing might have a
singlet space symmetry. The wave function of the Cooper
pairs, f↑↑�t , t�� ���↑�t��↑�t���, suggested by Berezinskii7 was
symmetric in both momentum and spin spaces. At the same
time, in order to fulfill the Pauli principle, the function
f↑↑�t , t� taken at equal times must be zero. The only possibil-
ity to satisfy all these requirements is to assume that the
wave function in the Matsubara representation f↑↑��� should
be an odd function of � so that f↑↑�t , t����f↑↑���=0. This is
exactly what was suggested by Berezinskii7 and one may call
such a state as odd triplet superconductivity �superfluidity�.

Unfortunately, this type of pairing was not more than a
hypothesis and no microscopic model leading to the odd trip-

let superconductivity was suggested in Ref. 7. Moreover, it
turned out later that in superfluid He3 another type of pairing
was responsible for the superfluidity8,9 and the scenario for
the odd triplet superconductivity remained justified neither
theoretically nor experimentally.

It was discovered only recently10 that the odd triplet su-
perconductivity could be realized in a simple system consist-
ing of an ordinary BCS superconductor �S� and ferromagnet
�F� with a nonhomogeneous magnetization M �for details,
see also a review11 and references therein�. In the case of an
superconductor/ferromagnet �SF� system �for example, an SF
bilayer� with a homogeneous magnetization in F, two types
of the condensate arise in the system—a singlet component
with a condensate wave function f3 and a triplet component
f0 with the zero projection of the total spin of the Cooper
pair on the quantization axis, Sz=0.11,12 Both the components
decay in F over a short length,

�h = �D/h , �1�

in the diffusive limit �h��1� and over the mean free path
l=v� in the limit h��1, where D=vl /3 is the diffusion co-
efficient and h is the exchange energy. Since the exchange
energy h is much larger than the temperature T, the decay
length �h is much shorter than the depth of the condensate
penetration into a nonmagnetic metal N in the case of an SN
system.

In Ref. 10 a diffusive SF system with a domain wall
�DW� at the SF interface was considered. It was shown that
in this case not only the singlet and triplet Sz=0 components
but also a triplet �Sz�=1 component arises in the system. The
triplet component with a nonzero projection of the total spin
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Sz penetrates the ferromagnet over a length �� that does not
depend on the exchange energy h and equals

�� = �D/2� �2�

in the diffusive limit, where �=	T�2n+1� is the Matsubara
frequency. This triplet component was called a long-range
triplet component �LRTC�.

In order to carry out calculation of physical quantities
explicitly, it was assumed in Ref. 10 that the width of the
domain wall w was much larger than the mean free path l
and that the proximity effect was weak due to a nonideal SF
interface �the reflection coefficient at the interface R is close
to 1�. The magnetization vector M in the domain wall was
assumed to rotate linearly with the coordinate x normal the
SF interface so that the angle 
 between M and z axis was
equal to 
�x�=Qx in the interval �0,w	 and 
=Qw at x
�w. In this case the condensate functions in F could be
found exactly from the linearized Usadel equation.

As a result, the amplitude f1 of the odd triplet �Sz�=1
component has been obtained in Ref. 10 explicitly. Using the
known value of the function f1, the conductance variation �G
of the ferromagnet as a function of temperature T has been
determined. It turned out that, in contrast to the
superconductor/normal �SN� system where the conductance
variation has a maximum at some temperature �a reentrant
behavior�,13–17 the function �G�T� in the SF system de-
creased monotonously with increasing temperature.

In subsequent works18–23,40 the idea about the generation
of the odd triplet condensate with the nonzero projection and
long-range penetration into the ferromagnets was discussed
using somewhat different models and approaches. Kadi-
grobov et al.18 also considered a model with a DW at the SF
interface but, in contrast to Ref. 10, assumed that the length
of the DW was shorter than the mean free path. Although
nothing was said in the paper about the type of the SF inter-
face, they considered apparently the limit of the ideal SF
interface �the transmission coefficient did not enter the equa-
tions presented in that paper�. It was assumed that in the
region of the domain wall the superconducting condensate
had to be described by an Eilenberger equation. At distances
exceeding the mean free path, one should have the Usadel
equation and the Eilenberger equation might be used to de-
rive a boundary condition for the Usadel equation.

Without presenting a solution of the Eilenberger equation,
Kadigrobov et al.18 displayed in a simple form an effective
boundary condition for the linearized Usadel equation. This
boundary condition introduced the triplet condensate as a
solution of the Usadel equation and the latter was used to
determine the contribution to the conductivity due to the trip-
let condensate penetrating the ferromagnet over long dis-
tances. Another approach to finding the odd triplet compo-
nent was suggested in Refs. 19, 20, and 24. In that approach
the properties of the SF interface are characterized by a scat-
tering matrix the elements of which may be considered as
phenomenological parameters. In this approach one does not
need knowing the detailed structure of the SF interface and
can proceed calculating physical quantities using these pa-
rameters. The amplitude of the condensate wave functions
has been determined in these papers numerically. Analytical

results were obtained in the framework of this approach
in a recent paper,21 where a ballistic superconductor/
ferromagnetic/superconductor �SFS� system was considered.
However, from the physical point of view this approach is
equivalent to introducing a thin domain wall. If one wants to
know details of how the triplet component is generated one
has to solve again the microscopic Eilenberger equation for a
certain configuration of the magnetic moment, which is simi-
lar to considering the model of Ref. 18.

In this paper, we reconsider the problem of the generation
of the odd triplet component by a thin domain wall located at
the SF interface. We assume that the size the domain wall
exceeds the interatomic distances, which allows us to use the
quasiclassical Eilenberger equation.25,26 Below, we solve the
Eilenberger equation assuming a weak proximity effect and
show that some effective boundary condition for the Usadel
equation can indeed be written. However, the results we ob-
tain disagree with those in Ref. 18. It turns out that, in con-
trast to the formula in Ref. 18, the effective boundary condi-
tion for the Usadel equation crucially depends on the relation
between the exchange energy h, elastic-scattering rate �−1,
and other parameters. Moreover, the absence of the transmis-
sion coefficient T�� in the formulas in Ref. 18 makes us to
suppose that the SF interface was assumed to be ideal. How-
ever, in this case one has to solve nonlinearized Eilenberger
equation and we believe that this can be done only numeri-
cally. Therefore we suspect that the form of the boundary
condition presented in Ref. 18 is not well justified.

By now, several attempts to observe this new type of the
condensate—odd triplet component—have been undertaken.
In a recent work27 the dc Josephson effect has been measured
in an SFS Josephson junction consisting of two supercon-
ductors �Nb� and the ferromagnet CrO2 where free electrons
have only one direction of spins. The Josephson critical cur-
rent has been observed in junctions with a separation be-
tween S electrodes of about 1 m. Obviously, the Josephson
coupling between the superconductors may only be due to
the LRTC. In Ref. 28 a conductance variation �G was mea-
sured in an Al/Ho system below the critical temperature of
Al. The order of magnitude of the observed change in the
conductance can really be explained in terms of the LRTC.
In this ferromagnet, a magnetic inhomogeneity is natural be-
cause Ho is a helicoidal ferromagnet such that the magneti-
zation vector rotates in space forming a spiral with the period
of 
60A.

Already earlier experiments on SF structures have also
brought an evidence in favor of the existence of a condensate
penetrating into the ferromagnet over a long distance.29–32 It
is also worth mentioning that in recent experiments on SFS
junctions,33–36 where the sign reversal of the critical current
�	 state� has been detected, the magnetization was not ho-
mogeneous, and therefore, the triplet component had also to
exist and contribute to the critical current. The problem of
the triplet component in multilayered SFS junctions37–41 and
in junctions with Neel’s domain walls42 was studied in recent
theoretical papers. It was shown, in particular, that the LRTC
may also lead to a nonmonotonous dependence of the critical
Josephson current on SFS junctions.41,43 In order to succeed
in searching the LRTC in SF structures, it is very important
to use materials that might give a large amplitude of the
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LRTC. Therefore, it is desirable to have analytical formulas
for the amplitude of the LRTC in a wide range of parameters
characterizing the system. Calculation of these amplitudes is
the ultimate goal of the present work.

The paper is organized as follows. In Sec. II we formulate
the model and solve the linearized Eilenberger equation. Ex-
pressions for short-range �SR� and long-range �LR� conden-
sate components induced in F are also presented there. In
Sec. III spatial dependencies of the SR and LR components
are found for weak �h��1� and strong �h��1� ferromag-
nets. The Josephson current in a long SFS junction originat-
ing from the LRTC is calculated in Sec. IV. In Sec. V we
analyze a diffusive SF bilayer with a DW the width of which
exceeds the mean free path but is shorter than the “magnetic”
length �h. The influence of the spin-dependent scattering on
the LRTC is also analyzed in this section. In Sec. VI we
consider a diffusive SF bilayer. We calculate the contribu-
tions to the density of states �DOS� due to the SR and LR
components and discuss a possible reason for an anomalous
behavior of the DOS observed in a recent experiment.44 In
Sec. VII we discuss the results obtained.

II. MODEL AND BASIC EQUATIONS

We consider an SF structure with a thin domain wall at
the SF interface �see Fig. 1�. The thickness of the DW, w, is
supposed to be larger than the Fermi wavelength but smaller
than all other characteristic lengths �the mean free path l
=v�, the “exchange length” v /h, etc�. Outside the interval
�0,w	 the magnetization vector M in F is parallel to the z
axis but inside the domain wall it has a projection on the y
axis M sin 
�x�. The average �sin 
�x��w� 1

w�0
wdx sin 
�x�

�0 is assumed to differ from zero. The transmission of elec-
trons through the SF interface is supposed to be small so that
we deal with a weak proximity effect. This assumption
seems to correspond to experiments because even in the ab-
sence of a potential barrier at the SF interface the reflection
of electrons at the interface is strong due to a considerable
mismatch of the Fermi surfaces in the superconductor and
ferromagnet.

Our calculations are based on the Eilenberger equation for
quasiclassical Green’s functions.25,26,45 In the limit of the
weak proximity effect considered here, these functions in S
and F deviate weakly from their values in the absence of the
contact between S and F. We are interested here in the con-
densate wave functions induced in F. Due to the presence of

the exchange field acting on spins of free electrons, the sys-
tem should be described by quasiclassical Green’s functions
ǧ that are 4�4 matrices in the particle-hole and spin spaces.

The Eilenberger equation in the ferromagnet F has the
form11,25,26,45

v � ǧ + ��̂3 � �̂0, ǧ� + ih�x�S, ǧ� + �1/2���ǧ�, ǧ� = 0,

�3�

where h�x�=h0,sin 
�x� , cos 
�x�� is the vector of the ex-
change field, �=	T�2n+1� is the Matsubara frequency, v is
the Fermi velocity, S= ��̂1 , �̂2 , �̂3 � �̂3�, �̂k are the Pauli ma-
trices, and �̂0 is the unit matrix. The square and angular
brackets mean the commutator and averaging over angles,
respectively, and � is the elastic-scattering time. The matrices
�̂k and �̂k operate in the particle-hole and spin spaces. As has
been assumed previously, outside of the DW �x�w� the
angle 
 is just zero, 
�x�=0. At the same time, the concrete
spatial dependence of the angle 
 inside the DW is not es-
sential. It is important only that

�sin 
�x��w �
1

w
�

0

w

dx sin 
�x� � 0.

Equation �3� is complemented by a boundary condition46

ǎ � �ǧ�� − ǧ�− ��/2 = sgn  · �T��/4�ǧ, ǧS� , �4�

where ǎ is the part of the quasiclassical Green’s function ǧ
antisymmetric in the momentum space, = px / p, ǧ= ǧF is the
Green’s function in F, and T�� is the coefficient of trans-
mission of electrons through the SF interface which is sup-
posed to be small.

Due to the weakness of the proximity effect, it is conve-
nient to represent the quasiclassical Green’s function ǧ in the
form

ǧ = sgn � · �̂3 � �̂0 + f̌ , �5�

where the first term is the Green’s function of the ferromag-
net in the absence of the superconducting condensate and the
second term is the condensate function we are interested in.
Substituting ǧ, Eq. �5�, into Eq. �3� and linearizing the Eilen-

berger equation with respect to f̌ , we come to the equation

sgn � · �̂3 � � f̌/� x̃ + �1 + 2����� f̌ − i�h���cos 
�x��̂3, f̌�+

= � f̌� + i�h���sin 
�x��̂3 � �̂2, f̌� , �6�

where x̃=x / l is the dimensionless coordinate h�=h · sgn �,
the brackets .. , ..�+ , .. , ..� stand for the anticommutator and
commutator, respectively, and the angular brackets mean the
averaging over angles. When writing Eq. �6�, we used the

fact that the condensate matrix function f̌ is off-diagonal in
the particle-hole space and therefore anticommutes with the
matrix �̂3. We neglect here the spin-dependent scattering
caused by fluctuations of magnetic moments in space and
spin-orbit interaction. The influence of this scattering will be
discussed in Sec. V.

For small values of the condensate function f̌ , the bound-
ary condition, Eq. �4�, can also be linearized and written as

S F

x

y

hvl /,w

FIG. 1. Schematic picture of a SF bilayer with a domain wall
�the shadowed stripe� at the SF interface. The width of the DW is w;
v /h , l denote the “magnetic” length and the mean free path.
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ǎ = sgn  · sgn � · �T��/2��̂3 f̌S, �7�

where f̌S= �̂3 � �̂2fS is the condensate matrix function in S in
the absence of the proximity effect, fS=� /��2+�2.

So, we have to solve Eq. �6� with the boundary condition,

Eq. �7�. To find the solution we represent the matrix f̌ as the
sum of symmetric š and antisymmetric ǎ in the momentum
space parts,

f̌ = š + ǎ . �8�

Substituting the representation for the matrices š and ǎ,
Eq. �8�, into Eq. �6�, we come to the following equations:

sgn � · �̂3 � � š/� x̃ + ��ǎ − i�h���cos 
�x��̂3, ǎ�+

= i�̂3�h���sin 
�x��̂2, ǎ� , �9�

sgn � · �̂3 � � ǎ/� x̃ + ��š − i�h���cos 
�x��̂3, š�+

= �š� + i�̂3�h���sin 
�x��̂2, š� , �10�

where ��=1+2����.
If we neglected the right-hand side, the solution of Eqs.

�9� and �10� with the boundary condition �7� would contain
only the singlet and Sz=0 triplet components. The presence
of the right-hand side of Eqs. �9� and �10� results in the
appearance of the LRTC. If the domain width w is small in
comparison with the other characteristic lengths of the prob-
lem, v /h and l, all the functions vary slowly over this dis-
tance. Therefore, we can integrate Eq. �10� over the interval
�0,w	 and obtain an effective boundary condition for the
matrix ǎ,

�ǎ�x=0 = sgn � · b�̂3 � �̂3 f̂ S + iH�̂2, š�0�� , �11�

where b= �T���� /2�, f̂S= fS�̂2, and H
= �h���w / l��sin 
�x��w��h���w̄ / l�, with w̄=w�sin 
�x��w.
For example, in the case of DW with a linearly varying mag-
netization, we obtain w̄=w�2 /	�
0.64w.

Now the problem is reduced to solving Eqs. �9� and �10�
outside the domain wall �
=0� with the boundary condition
�11�. We will see that the symmetric part, š, has the following
structure in the spin space:

š = �ŝ3�̂3 + ŝ0�̂0� + ŝ1�̂ , �12�

with ŝ3=s3�̂2, ŝ0=s0�̂2, and ŝ1=s1�̂1.
First, we consider elements of the š matrix diagonal in the

spin space. From Eq. �9� we find for a��a11�22�

− â� · �h� = sgn � · ���̂3 · � ŝ�/� x̃ , �13�

where �h�=1+2�����2ih��.
Using Eq. �13� the effective boundary condition, Eq. �11�,

can be written as

− 2 � ŝ�/� x̃ = � �h�b f̂S + 2H� · �̂3 · ŝ1�0�� , �14�

where H�=H · sgn �.
Substituting a� from Eq. �13� into Eq. �10�, one can write

an equation for ŝ� in the form

− 2�2ŝ�/� x̃2 + �h�
2 ŝ� = �h��ŝ�� � 2��x̃��h�b f̂S

+ 2H��̂3 · ŝ1�0�� . �15�

The boundary condition, Eq. �14�, is taken into account with
the help of the last term on the right-hand side of Eq. �15�
and a formal symmetric continuation of the solution to the
interval �−� ,0	. Performing the same procedure, we can ob-
tain an equation for ŝ1,

− 2�2ŝ1/� x̃2 + ��
2 ŝ1 = ���ŝ1� − 4��x̃���H��̂3 · ŝ3�0�

�16�

Equation �16� can easily be solved in the same way as it
was done for the case of a homogeneous magnetization.47

For the Fourier transforms Ŝ��k� and Ŝ1�k� of the functions
ŝ� and ŝ1, we obtain

Ŝ��k� = � 2
�h�

Mh��k,�� �h�

1 − �h��Mh�
−1 �k,��

�� b f̂S + H��̂3 · ŝ1�0�
Mh��k,� � + b f̂S + H��̂3 · ŝ1�0�� ,

�17�

Ŝ1�k� = − 4
H���

M��k,�
�̂3

�� ��

1 − ���M�
−1�k,��� ŝ3�0�

M��k,�� + ŝ3�0�� ,

�18�

where Mh��k ,�= �k�2+�h�
2 , M��k ,�= �k�2+��

2 , H�

=sgn ��h���w / l��sin 
�w�sgn ��h���w̄ / l�, �h�=1
+2����� ih��, and ��=1+2����.

One can see from Eq. �18� that the characteristic length of
the decay of the LRTC, s1�x�, does not depend on the ex-
change energy h.10 We will see that the spin-dependent scat-
tering makes the characteristic decay length shorter. Account
for this scattering changes the quantity �� as ��⇒��=1
+2����+��+ �4 /9��so �see Sec. V�. As follows from Eqs.

�17� and �18�, the SR components, Ŝ�, arise in the case of a
homogenous magnetization when H�=0. The LRTC appears
only in the presence of a nonhomogeneous magnetization,
for example, in the presence of a DW when H���h���w̄ / l�
�0.

Equations �17� and �18� are the main results of the paper.
They determine the spatial dependence of the short, ŝ�, and
long, ŝ1, range amplitudes of the condensate. Note that the

amplitudes of the singlet, Ŝ3�k�, and short-range triplet, Ŝ0�k�,
components are expressed through Ŝ��k� in a simple way,

Ŝ0,3�k� = Ŝ+�k� � Ŝ−�k��/2, �19�

Although Eqs. �17� and �18� completely determine the
solutions of Eqs. �15� and �16�, the explicit form of the so-
lutions is still to be obtained from the inverse Fourier trans-
form. Unfortunately, the latter can be presented in an analyti-
cal form only in some limiting cases. In Sec. III we will
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analyze the spatial dependence of the amplitudes ŝ0,1,3�x�.

III. SPATIAL DEPENDENCE OF THE CONDENSATE
WAVE FUNCTIONS

Using Eqs. �17� and �18� one can obtain the spatial de-
pendence of the amplitudes ŝ0,1,3�x� describing the penetra-
tion of the odd triplet condensate into the ferromagnet. The
corresponding expressions are to be found by calculating the
inverse Fourier transform of Eqs. �17� and �18�.

The form of the expressions for Ŝ��k� and Ŝ1�k� indicates
that the spatial dependence of the amplitudes ŝ0,1,3�x� is de-
termined by zeros of the functions M��k ,� and Mh��k ,�
as well as of the functions �1−���M�

−1�k ,��� and �1
−�h��Mh�

−1 �k ,���. Although the decay length of the ampli-
tudes ŝ0,3�k� depends on the exchange energy h, the decay
length of the amplitude ŝ1�k� does not.

The LRTC in the Fourier representation, Ŝ1�k�, is ex-
pressed through the short-range singlet component ŝ3�0� at

x=0, and in its turn, the matrix Ŝ��k� depends on the ampli-

tude of the singlet component in S, f̂S, and on the LRTC
ŝ1�0� at x=0. We suppose that the influence of the LRTC on

the short-range amplitude Ŝ��k� is weak; that is, the condi-
tion

H�s1�0�� � bfS �20�

is satisfied.

The matrices Ŝ��k� and Ŝ1�k� may be found from Eqs.
�17� and �18�, respectively. Then, performing the integration
over k, one can find s0,3�0�=��dk /2	�s0,3�k� and s1�0�. How-
ever, the expressions for these matrices are too cumbersome
even if condition �20� is fulfilled. One can further simplify
these expressions considering the limits of large and small
products h�, i.e., considering the case of a strong or weak
ferromagnet. We also will assume that the condition

T� � 1 �21�

is fulfilled because it corresponds to experimental situations.
The corresponding formulas can easily be obtained also in
the opposite limit.

First, we consider the limit of a weak ferromagnet when
the inequality �a� �h ,T	��−1 is fulfilled �the diffusive case or
the case of a weak ferromagnet�. In this case, the main con-
tribution comes from small k �k�1� �Ref. 47� and we obtain:
1−�h��Mh�

−1 �k ,��
�k2+Kh
2� /3 and 1−���M�

−1�k ,��
�k2

+K�
2 � /3, where Kh�

2 =6����� ih���= l��2���� ih�� /D and
K�

2 =3���−1�. Calculating the residue of the pole at k= iKh in
Eq. �17�, we find for the amplitudes of the SR components

ŝ��x� = � 3�b/Kh�� f̂S exp�− x/�h�� , �22�

where �h�=�D / 2����� ih��� is the characteristic length
over which the short-range components �singlet and triplet
ones with zero projection Sz on the z axis� penetrate the
ferromagnet.

The LRTC can be found from Eq. �18� calculating the
residue and we obtain

ŝ1�x� = − 18H��b���LR/l�Re
1

Kh
��̂3 · f̂S�exp�− x/�LR� ,

�23�

with �LR=�D / �2����+��+ �4 /9��so� and Kh=�6����− ih���.
Equations �22� and �23� describe the spatial dependence

of the short- and long-range components of the condensate.
The SR component ŝ��x�� �̂2 exp�−x /�h�� decays over a
short length, �h�, and experiences oscillations.11,12,48 The
LRTC ŝ1�x�� �̂1 exp�−x /��� decays without oscillations over
a long distance �LR.10–12 The amplitude of the singlet com-
ponent ŝ3�0�=s3�̂2 at x=0 equals

ŝ3�0� = 3b Re
1

Kh
f̂S. �24�

Thus, the ratio of the LRTC ŝ1�0�=s1�̂1 to the singlet com-
ponent s3�0� takes the form

r = � s1�0�
s3�0�

� = 2
�LR

�h
2 w̄ . �25�

This ratio may be both larger and smaller than 1. The ampli-
tude of the LRTC increases with increasing the exchange
energy h.

Condition �20� can be rewritten in this limit as

� w̄

l
� �

1

3�6

�LR

�h��3/2l
. �26�

If the spin-coupling constant �so is larger than the product
����, this inequality can be written as h�� �1 /18��so.

Now we consider the limit of the large exchange energy
h: �b� T��−1�h �the case of a strong ferromagnet�. In this
case the quantity �h��Mh�

−1 �k ,�� is small because ��h���1.
Therefore, the main contribution to ŝ��x� is due to the sec-
ond term in the figure brackets in Eqs. �17� and one has to
calculate the residue of the pole of the functions
�Mh��k ,���−1. The formula for ŝ1�x� is obtained as before.

As a result, we find

ŝ��x� = � �b/��� f̂S exp�− �h�x/l� �27�

and

ŝ1�x� = − 6�b/���H���LR/l���̂3 · f̂S�exp�− x/�LR� �28�

The SR components ŝ��x� oscillate with the period 	v /h
and decrease in the ferromagnet over the mean free path l as
has been obtained earlier in this limit.47,49,50 The LRTC de-
creases in a monotonic way over the length �LR. The ratio of
the amplitude of the LRTC to the short-range singlet compo-
nent at x=0 is equal to

r = 6� w̄

v/h� �LR

l
, �29�

and condition �20� is fulfilled provided the inequality
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w̄ �
v

2h
� l

3�LR
�30�

is satisfied. Combining Eqs. �29� and �30�, one obtains that
the ratio of the LRTC and singlet component at the SF inter-
face satisfies the condition

r ��3
�LR

l
. �31�

If the spin-dependent scattering can be neglected, this in-
equality can be written as r� �2T��−1/4. This means that for
T
4K and �
10−14 s, the ratio r should be r�6; that is,
the amplitude of the LRTC at the SF interface may be com-
parable with or even larger than the singlet component. We
see that at a given width of the DW w, the amplitude of the
LRTC increases with increasing exchange field h, whereas
the amplitude of the singlet component s3�0� decreases and
reaches an asymptotic value �b at h��1. The maximum
value of the LRTC at h��1 is of the order of �b

��LR / l.
The upper limit on h is imposed by the condition: w�v /h,
i.e., max h
v /w. In the both cases of small and large prod-
uct h�, the amplitude of the LRTC is proportional to the
width of the DW turning to zero at w=0.

IV. JOSEPHSON EFFECT

In this section we consider the dc Josephson effect in an
SFS junction with narrow DWs located at the left and right
interfaces. We assume that the distance between the super-
conductors is larger than the correlation length �SN=�D /� in
the absence of the exchange field. In this case, the Josephson
coupling is caused only by the LRTC and the overlap of the
LRTC created by each interface is weak. Then, in order to
calculate the Josephson critical current, one can represent the
amplitude of the LRTC in the form

š�x� = šL�x� + šR�x� , �32�

where šL,R�x� are the amplitudes of the LRTC created by the
left �right� interfaces. These matrices are equal to

šL�x� = − �̂1 � �̂3 · f̂S
�LR

l
BL exp�− x/��� , �33�

šR�x� = − �̂1 � �̂3 · Ŝ · f̂S · Ŝ†�LR

l
BR exp�− �L − x�/��� ,

�34�

where the coefficients bL,R equal BL,R
=18H�L,R�b�L,RRe�1 /Kh� if h��1 and BL,R
=6H�L,R�b /�L,R if h��1.

With the help of the matrix Ŝ=cos�� /2�+ i�̂3 sin�� /2�, we
take into account the phase difference � between the super-
conductors S �the phase of the left S is set to be equal to
zero�. In order to compare the magnitude of the Josephson
critical current in the considered case of the SFS junction
with the one for an SNS junction, we write down here also
the amplitude of the singlet component for the SNS junction
expressed in terms of the same quantities. We can obtain it

from Eq. �22� simply setting h=0 and the corresponding ex-
pressions take the form

šL�x� = 3 f̂S � �̂3�b�
�LR

l
exp�− x/��� , �35�

šR�x� = 3Ŝ · f̂S � �̂3 · Ŝ†�b�
�LR

l
exp�− �L − x�/��� , �36�

with f̂S= fS�̂2 and fS=� /��2+�2.
The current through the SFS �or SNS� junction in the limit

T��1 is given by the expression

I =
1

16
S��4	Ti�Tr��̂0 � �̂3��

�

�š�x� � š�x�/�x	 , �37�

where S is the cross-section area of the junction and the
summation is performed over the fermionic Matsubara fre-
quencies.

Substituting the function š from Eqs. �32�–�34� into this
expression, we obtain for the case of identical interfaces

IJ =
9

8
S��4	Ti��b�2 Tr �̂3�

�

� f̂S · Ŝ · f̂S · Ŝ†

− Ŝ · f̂S · Ŝ† · f̂S	
�LR

l
exp�− L/��� . �38�

Calculating the trace in Eq. �38�, we find

IJ = Ic�SNS� sin �, Ic�SNS�3�3/2S��4	T�

��b�2�
�=0

fS
2���

exp�− L/�LR�
l���

. �39�

A similar formula for IJ can be obtained for the SFS junc-
tion with the use of the LRTC š given by Eqs. �33� and �34�.
We write down the expression for the critical currents caused
by the LRTC,

Ic�SFS� = − H�LH�R6�6S��4	T��b�L�b�R�
�=0

fS
2 exp�− L/���

l���
,

h� � 1, �40�

where �� is given, as before, by Eq. �2�.
The sign opposite to the critical current Ic�SNS� in Eq. �40�

arises because the product � f̂S · Ŝ · f̂S · Ŝ†� in Eq. �38� is re-
placed in the case of SFS junction by the product

��̂3 · f̂S · Ŝ · �̂3 · f̂S · Ŝ†�. If the interfaces and domain walls in
SFS are identical �HL=HR�H�, we get

Ic�SFS� = − 4H2Ic�SNS�, �41�

where H= �h���w / l��sin 
�w.
According to inequality �20� the quantity 4H2 must satisfy

the condition 4H2�����1. This means that the critical cur-
rent in SFS junctions with a narrow domain wall is smaller
than the critical current Ic�SNS� of the SNS junction. However,
it can become comparable with the latter provided the pa-
rameter H is of the order of 1, which is possible for strong
ferromagnets �h��1�. In the case of different orientations of
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magnetization on the right and left domain walls, i.e., if the
product �sin 
�wL�sin 
�wR is negative, the critical current
Ic�SFS� has the same sign as Ic�SNS�. This result is in accor-
dance with the results in Ref. 37, where the sign of the criti-
cal current was shown to be sensitive to a so-called chirality
depending on whether the magnetization vector M rotated or
oscillated when going from one interface to the other. The
negative sign of the critical current in the SFS junction with
a half metal was obtained also in Ref. 19.

V. SPIN-DEPENDENT SCATTERING IN A
DIFFUSIVE SF BILAYER

In this section we consider for completeness the diffusive
limit assuming that the mean free path l is shorter than the
“magnetic” length �h, Eq. �1�. However, in contrast to Ref.
10 the width of the DW, w, is supposed to be shorter than the
length �h. Then, in order to find the LRTC, we can use the
same method as in Secs. II and IV. We also take into account
the spin-dependent scattering that strongly affects the pen-
etration length of the LRTC. In the case of a diffusive SF
bilayer considered here, one can use the Usadel equation
which in the F layer has the form

D � �ǧ � ǧ/�x2� − ��̂3 − ih�̂3 � �̂3 cos 
�x�, ǧ�

+ ih�̂0 � �̂2 sin 
�x�, ǧ� = Ǐm/� , �42�

where ǧ is a 4�4 matrix Green’s function in the ferromag-
netic region that does not depend in the diffusive limit on the
momentum orientation, and D=vl /3 is the diffusion coeffi-
cient. The matrix on the right-hand side is the spin-dependent
collision term,

2Ǐm = �m̌�ǧ�m̌ǧ − ǧm̌�ǧ�m̌ + �ǧ�soǧ − ǧ�ǧ�so	�. �43�

with m̌=1+�zňz+��ň�, ňz= �̂3 � �̂3, and ň�= �̂0 � ��̂1 cos �
+ �̂2 sin ��. The subscript � means the averaging over the
azimuthal angle �.

The last two terms in Eq. �43� stand for the spin-orbit
scattering,

�ǧ�so = ��so/4	�� d��ei�ek��S � e�iǧ�S � e�k. �44�

with S= ��̂1 , �̂2 , �̂3 � �̂3�. The coefficients �z,� and �so are
expressed in terms of spatial fluctuations of the magnetic
moments of impurities �see Refs. 11 and 51�. For example,
the most important coefficient, �so, related to the spin-orbit
interaction is equal to �so=� /�so, �−1=2	�Nimpuimp

2 , and �so
−1

=2	�Nimp�d� /4	uso
2 sin2 �, where � is the density of states

at the Fermi level, which is assumed to be the same for the
spin-up and spin-down orientations in the quasiclassical ap-
proximation, Nimp is the impurity concentration, and uimp and
uso is the potential of impurities and spin-orbit interaction,
respectively. These coefficients are related to the quantities
used in Ref. 52, �x,z and �so, in the following way: 2��x,z
=��,z and 9��so=�so.

We employ the boundary condition at the SF interface in
the form presented in Ref. 53,

ǧ � ǧ/��x�x=0 = �2�F�−1ǧS, ǧ� , �45�

where �F=RB�F= l /bav, bav=c1Tav, Tav is an effective trans-
mission coefficient averaged over angles, and c1 is a numeri-
cal factor of the order of 1.46,53 Integrating Eq. �42� over the
width of the DW, we obtain an effective boundary condition
for the Usadel equation,

ǧ � ǧ/��x�x=w = �2�F�−1ǧS, ǧ� − iKD�̂0 � �̂2, ǧ� , �46�

where KD= �hw /D��sin 
�x��w�hw̄ /D.
We assume again that the proximity effect is weak so that

the matrix ǧ can be represented in the form of Eq. �5�. Then,
we linearize Eqs. �42� and �46� and arrive at the equation for

f̌ in the region outside the domain wall �x�w�,

�2 f̌/�x2 − 2��
2 f̌ + i�h

2�̂3, f̌�+ = �non
2 �Ǐm, �47�

where �non=1 /�D� is a wave vector related to a nonmag-

netic scattering, �Ǐm=�Ǐsp+�Ǐso and

�Ǐsp = ��z
2� f̌ + �̂3 � f̌ � �̂3�

+ ��
2  f̌ − ��̂1 � f̌ � �̂1 + �̂2 � f̌ � �̂2�/2�	 , �48�

�Ǐso = ��so/3�� f̌ + ��̂1 � f̌ � �̂1 + �̂2 � f̌ � �̂2

− �̂3 � f̌ � �̂3�/3	 . �49�

The effective boundary conditions are obtained as before and
have the form

�� f̌/�x�x=0 = �1/�F���gS� f̌ − f̌ S� − iKD�̂3 � �̂2, f̌�,

�� f̌/�x�x=d = 0. �50�

Here ��
2 = ��� /D, �h

2=−h� /D, KD=h�w�sin 
�x��w /D, and
gS=� /��2+�2. We again seek for a solution in the form

f̌�x� = �̂2 � �̂3f3�x� + �̂0f0�x�� + �̂1 � �̂1f1�x� , �51�

where f3�x� is the amplitude of the singlet component and
f0,1�x� are the amplitudes of the short-range Sz=0 and long-
range �Sz�=1 triplet components, respectively.

In this section we consider an SF bilayer of a finite width
having in mind to calculate the DOS variation at the outer
surface of the F layer. In order to satisfy the second boundary
condition at x=d, Eq. �50�, we represent the solution in the
form

f0,3�x� = � C0,3+ cosh�+�x − d�� + C0,3− cosh�−�x − d�� ,

�52�

f1�x� = C1 cosh�1�x − d�� , �53�

with the decay lengths determined by �� and �1.
Substituting Eqs. �51�–�53� into Eq. �47�, we obtain a sys-

tem of equations for the coefficients C0,3 and C1,

C0��2 − 2��
2 − K0

2� + 2i�h
2C3 = 0, �54�

C3��2 − 2��
2 − K3

2� + 2i�h
2C0 = 0, �55�
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C1��2 − 2��
2 − K1

2� = 0, �56�

where K0
2=2�non

2 ��z+ �2 /9��so�, K3
2=2�non

2 ��z+���, and K1
2

=�non
2 ���+ �4 /9��so�.
We see that the wave vector characterizing the decay of

the singlet component does not depend on the spin-orbit scat-
tering as it should be. Note that the influence of the spin-
orbit scattering on the SR components has been considered
for the first time in Ref. 54. The eigenvalue of Eq. �56� �1

2

equals

�1
2 = 2��

2 + K1
2. �57�

The eigenvalues ��
2 that determine the relation between the

coefficients C0,3 are found from Eqs. �54� and �55�. They are
the roots of the equation

��2 − 2��
2 − K0

2���2 − 2��
2 − K3

2� + 4�h
4 = 0. �58�

As follows from Eq. �58�, both the eigenvalues are real pro-
vided the condition

4�h
2 � �K0

2 − K3
2� �59�

is fulfilled. In this case there are no oscillations in the con-
densate functions and, therefore, no oscillations of observ-
able quantities.

In the limit

�h
2 � 2��

2 ,K0,3,1
2 , �60�

the eigenvalues equal

��
2 
 � 2i�h

2 + 2��
2 + �K0

2 + K3
2�/2. �61�

The coefficients C0,3 and C1 are found from Eqs. �54� and
�55� and the first boundary condition, Eq. �50�. Under con-
dition �60� they are equal to

C3� 
 � C0� 

d

�F

1

2A�

fs, C1 

KDd2

�F

1

A1
fs� 1

Ã+

+
1

Ã−
� ,

�62�

where fs=� /��2+�2, A�=�� sinh ��+ �d /�F�gS cosh ��,

A1=�1 sinh �1+ �d /�F�gS cosh �1, ��=��d, and Ã�

=�� tanh ��+ �d /�F�gS. Again, we neglected the influence
of the LRTC on the SR components. This is justified pro-
vided the condition

2KDdC1 � �d/�F�fS �63�

is fulfilled.
As follows from Eq. �57�, the spin-dependent scattering

can essentially reduce the penetration depth for the LRTC.
This holds also for the cases considered in Secs. II–IV. Equa-
tions �52�–�62� describe the spatial dependence of the SR,
f3,0�x�, and LR, f1�x�, components. In particular, at the outer
boundary of the ferromagnet we have f3,0�d�= �C3++C3−
and f1�d�=C1. This means that the short-range components
oscillate and decay over a distance of the order of �h:
f3,0�d��exp�−�1+ i�d /�h� at d /�h�1, whereas the LRTC,
f1�d�, decays in a monotonous way over a longer distance
��1

−1. The ratio of the LRTC and singlet component at the
interface is equal to

r =
�f1�0��
�f3�0��

=
2w�h/D��sin 
�w

�1 tanh �1 + �F
−1�gS�

. �64�

This quantity may be both larger or less than unity. In Sec.
VI we calculate the DOS by using the results for f0,3,1�x�
obtained here.

VI. DOS IN A DIFFUSIVE SF BILAYER

The DOS variation, ��=�−1, in the ferromagnetic film
caused by proximity effect in SF bilayers was measured in a
number of works.44,55,56 In particular, the inversion of ��
with increasing the thickness of the F layer d was observed.
This effect has been explained theoretically in terms of the
SR component oscillations in space.56–59

An interesting, although small, effect has been observed
in a recent work.44 The authors measured the DOS at the
outer surface of the F in an SF system for various thicknesses
of the ferromagnet d. They identified two small peaks in the
variation of the DOS. One of these peaks corresponded to the
energy gap � in the superconductor, whereas the other one
corresponded to a smaller energy. The first peak inverted
with increasing d but the sign of the second peak remained
unchanged.

SanGiorgio et al.44 suggested an explanation of this effect
assuming that the second peak is due to a contribution of the
LRTC. At the same time, this peak cannot be a result of a
long-range penetration of the LRTC into the ferromagnet but
is rather due to a different �monotonous� dependence on the
thickness d. In this section, we represent the contributions of
the SR and LR components to the DOS in the ferromagnetic
layer using Eqs. �52�, �53�, and �62�. We demonstrate that the
contribution due to the SR components, as it was shown
earlier, changes the sign with increasing d, while the contri-
bution due to the LR component does not. We are not going
to make a detailed comparison with the experimental results
because not all necessary data are available. For example,
nothing is known about the domain structure in the F layer.

In calculating the DOS, we use parameters close to esti-
mates presented in Ref. 44: ��Fd�−1=d / ��s�B�
0.3 for d
=4 nm, �B=0.5, and �s=�D /2�=23 nm. In the considered
case of a weak proximity effect, the correction to the DOS,
�����, at boundary x=d is equal to

����� = − �1/2�Ref3
2�d� + f0

2�d� + f1
2�d���=−i�, �65�

where the condensate functions f3,0,1
2 �d� are determined by

Eqs. �52�, �53�, and �62�.
In Figs. 2 and 3 we plot the contributions to the DOS

from the singlet, f3, SR triplet, f0, and LR triplet, f1, com-
ponents as a function of energy � for two different thick-
nesses of the ferromagnetic layer. To be more precise, in
Figs. 2�a� and 3�a� the corrections ��SR=−�1 /2�Ref3

2�d�
+ f0

2�d�� due to the SR components are plotted, whereas in
Figs. 2�b� and 3�b� we show the dependence of ��̃LR
=a−1��LR versus energy, where ��LR=−�1 /2�Re�f1

2� and a
= �w̄ /d��h

2. That is, in order to get the actual contribution to
the DOS due to the LR component, the magnitudes shown in
Figs. 2�b� and 3�b� should be multiplied by a.

We see that the corrections to the DOS due to the SR
components change sign with increasing d, whereas the sign
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of the correction due to the LRTC remains unchanged. It is
also worth mentioning that, strictly speaking, singularities in
the SR and LR components correspond to different energies.
If condition �60� is fulfilled, only the function fS���
= i� /���+ i��2−�2 depends on the energy �, and therefore,
the position of singularities is determined only by the energy
gap � and damping constant �.

On the other hand, the first term in the expression for
A1=�1 sinh �1+ �d /�F�gS���cosh �1 may be comparable with
the second one that also depends on the energy �. The ac-
count for the second term leads to a decrease in a character-
istic energy that determines the position of the singularity.
One can see that the contribution of the LRTC is comparable

with that of the SR components if the width of the DW, w, is
comparable with �h.

VII. CONCLUSIONS

We have considered the long-range triplet component in
an SF bilayer arising due to an nonhomogeneous magnetiza-
tion in the F layer �for example, due to a domain wall� lo-
cated in the vicinity of the SF interface. Unlike Refs. 10 and
11 where the width of the DW, w, was assumed to be larger
than the mean free path, we have calculated in the present
paper the amplitudes of the LR as well as of the SR compo-
nents for the case of a narrow DW. In fact, our model may be
considered as a microscopic model of a spin-active SF inter-
face usually described by introducing phenomenological
parameters.
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FIG. 2. DOS variation ����� at the outer surface of the F layer
vs the normalized energy � /� plotted on the basis of Eqs. �52� and
�53�. The contributions of the SR components, f0,3, are shown in �a�
and the contributions of the LRTC, f1, is shown in �b�. The follow-
ing values of parameters are used: �h�d /�h=1.5 �solid lines� and
�h=1.8 �dotted lines�; � /�=0.1, d /�F=0.4, and K1=0.6�h. The
parameters �� and K3 are assumed to be much smaller than �h.
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FIG. 3. The same graphs as in Fig. 2 with parameters: �h

�d /�h=1.5 �solid lines� and �h=1.8 �dotted lines�; � /�=0.05,
d /�F=0.2, and K1=0.6�h. The parameters �� and K3 are assumed to
be much smaller than �h.
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Assuming that the proximity effect is weak �this corre-
sponds to experimental data�, we have obtained analytical
formulas for the amplitudes of the LR and SR components in
a wide range of parameters. The amplitudes of the SR com-
ponents decrease with increasing exchange energy h and be-
come constant at h��1. The amplitude of the LRTC essen-
tially depends on the parameter h� and increases with
increasing h. The maximum value of the amplitude of the
LRTC in our approach is determined by the condition h
� �v /w�.

We have calculated the critical Josephson current Ic in a
SFS junction where the Josephson coupling is due to the
LRTC. The current Ic is negative if the rotation of the mag-
netization vector M in DWs at each SF interface occurs in
one direction �positive chirality� and is positive if the rota-
tion of M occurs in different direction �negative chirality�.
We have also found the DOS at the outer surface of the F
layer in an SF structure in the presence of a DW at the SF
interface. It has been shown that contributions to the DOS
from the SR and LR components have singularities at an
energy ��. Whereas the singularity due to the SR compo-
nents changes sign with increasing the thickness of the F

layer, d, the singularity due to the LR component does not.
The change in sign occurs at d
�	 /2��h. Note also that the
contribution of the LRTC to the DOS is of the same order as
the one of the SR components provided the width of the DW
is comparable with the length �h.

We considered the case of the DW parallel to the SF in-
terface. However, this fact is not crucial: the LRTC created
by DWs perpendicular to the SF interface may be of the
same order as the LRTC induced by the DW parallel to the
SF interface. The amplitude of the LRTC for the case of the
Néel DWs perpendicular to the SF interface has been calcu-
lated in Ref. 42. One can show that similar results can be
obtained for the case of the Bloch DWs perpendicular to the
SF interface.60 In order to carry out a more detailed compari-
son with experiments, more data are required. In particular,
one has to know the parameters of the magnetic structure of
the F film.
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