
Multiple Andreev reflections in a quantum dot coupled to superconducting leads:
Effect of spin-orbit coupling

Fabrizio Dolcini1,* and Luca Dell’Anna2,3,†

1Scuola Normale Superiore di Pisa and NEST CNR-INFM, I-56126 Pisa, Italy
2Institut für Theoretische Physik, Heinrich-Heine Universität Düsseldorf, D-40225 Düsseldorf, Germany

3Scuola Internazionale Superiore di Studi Avanzati, via Beirut 2-4, I-34014, Trieste, Italy
�Received 13 May 2008; published 25 July 2008�

We study the out of equilibrium current through a multilevel quantum dot contacted to two superconducting
leads and in the presence of Rashba and Dresselhaus spin-orbit couplings, in the regime of strong dot-lead
coupling. The multiple Andreev reflection �MAR� subgap peaks in the current-voltage characteristics are found
to be modified �but not suppressed� by the spin-orbit interaction in a way that it strongly depends on the shape
of the dot confining potential. In a perfectly isotropic dot the MAR peaks are enhanced when the strength �R

and �D of Rashba and Dresselhaus terms are equal. When the anisotropy of the dot confining potential
increases, the dependence of the subgap structure on the spin-orbit angle �=arctan��D /�R� decreases. Further-
more, when an in-plane magnetic field is applied to a strongly anisotropic dot, the peaks of the nonlinear
conductance oscillate as a function of the magnetic-field angle and the location of the maxima and minima
allows for a straightforward read-out of the spin-orbit angle �.
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I. INTRODUCTION

Spin-orbit �SO� interaction is one of the most striking
relativistic effects that can be observed in solid-state sys-
tems. The seminal proposal of a spin-polarized field effect
transistor, by Datta and Das,1 and the range of possible ap-
plications in spintronics2 led to a remarkable progress in
controlling3 and measuring4–6 not only the overall spin-orbit
coupling constant7 but also the Dresselhaus and Rashba
ratio.8–10 Recently an increasing interest has been devoted to
study the interplay between SO coupling and superconduc-
tivity. In particular many studies11–17 have widely analyzed
the influence of SO interaction on the equilibrium supercur-
rent �dc Josephson effect�, pointing out that the multilevel
nature of the dot is a crucial ingredient. Indeed SO coupling
induces—in the presence of many levels—interband spin-flip
processes, which can affect the Josephson current in a non-
trivial way.

On the other hand, also nonequilibrium transport proper-
ties of nanodevices contacted to two superconducting elec-
trodes have been a subject of intensive research since many
years, from both theoretical18–25 and experimental26 sides. In
particular, semiconductor-superconductor hybrid systems are
currently under the spotlight because techniques have been
developed to realize highly transparent semi/super
interfaces27 by suppressing Schottky barriers and enhancing
the measured signal. In many cases such devices are based
on In-As-related materials,28,29 which are known to exhibit
Rashba and Dresselhaus SO interaction. Nevertheless, a sys-
tematic analysis of the interplay between finite bias super-
conducting transport and spin precession induced by SO is
lacking. The aim of the present work is to bridge this gap,
investigating the effects of SO on electron transport through
a quantum dot connected to two superconducting leads bi-
ased by a voltage V, as sketched in Fig. 1.

It is well known that the subgap I-V curve of transport
through a quantum dot is characterized by Andreev peaks,

originating from the resonance of the dot level with a mul-
tiple Andreev reflection �MAR� trajectory, i.e., a sequence of
odd Andreev reflections occurring at the interfaces with the
leads.25 In each Andreev reflection the incoming and outgo-
ing electron-hole pairs have opposite spins.20,21 In the pres-
ence of spin-orbit, however, the dot levels lack of a definite
spin orientation. The question thus arises whether the reso-
nances with dot levels and Andreev processes persist or
whether spin-orbit coupling suppresses the MAR peaks. An-
other interesting issue is the role of the shape of the dot
confining potential; its anisotropies indeed affect not only the
number of effective levels involved in transport but also the
relative weight of Rashba and Dresselhaus components. The
scenario is expected to be even richer in the presence of an
in-plane magnetic field since the latter introduces a preferred
spin direction competing with the spin-orbit precession.

Here we analyze how the subgap MAR pattern is affected
by these phenomena. Our approach is based on the Keldysh
technique, which allows us to account for nonequilibrium
regime induced by the finite voltage. In order to single out
the effects of spin-orbit interaction, we neglect the Coulomb
interaction in the dot so that the tunneling between the leads
and the dot can be treated exactly. Our results thus apply to
the regime of relatively high dot-lead transparency �the line-
widths are assumed to be some fraction of the superconduct-
ing gap� so that spurious effects due to charging are avoided.
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FIG. 1. �Color online� Scheme of the setup under investigation:
a quantum dot is coupled to two superconducting electrodes biased
by a voltage V.
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We also consider different shapes for the dot confinement
potential and we analyze the role of anisotropy. The structure
of the paper is the following: In Sec. II we describe the
model. The expression for the current is presented and briefly
outlined in Sec. III. Results are then presented in Sec. IV,
which is divided into three subsections: addressing the ef-
fects of spin-orbit on the subgap structure for an isotropic
dot, the role of anisotropy, and the role of an in-plane mag-
netic field, respectively. Conclusions can be found in the last
Sec. V, and details of the calculation in the appendixes.

II. MODEL

We start by describing the isolated dot. The Hamiltonian
reads15

HD =� drd†�r�� p2

2m�
+ V0�r� + Hmagn + VSO�d�r� , �1�

where d�r�= �d↑�r� ,d↓�r��T is the two spin component elec-
tron field operator in the dot. The first term in the brackets of
Eq. �1� describes the kinetic energy, with p=−i�� being the
momentum operator and m� the electron effective mass. The
second term,

V0�r� = V��x,y� + V��z� , �2�

models the dot confining potential, for which we have as-
sumed a harmonic confinement,

V��x,y� =
m�

2
��xx

2 + �yy
2� , �3�

with frequencies �x,y in the two-dimensional electron gas
�2DEG� x-y plane and a hard wall potential V� along the
growth direction z. The third term,

Hmagn = g�BH� ·
��

2
=

g�BH

2
��x cos 	H + �y sin 	H� , �4�

describes the coupling with an in-plane magnetic field H�

with intensity H and angle 	H with the x axis. In Eq. �4� g is
the gyromagnetic factor, �B the Bohr magneton, and �x and
�y the Pauli matrices. Finally,

VSO =
�R

�
��xpy − �ypx� +

�D

�
��xpx − �ypy� , �5�

is the spin-orbit coupling accounting both for Rashba and
Dresselhaus components with coupling constants �R and �D,
respectively.

We adopt, as a basis, the orbital eigenstates 
n�r� of the
dot in the absence of spin-orbit coupling and magnetic field,

�−
�2�2

2m�
+ V0�r��
n�r� = �n

0
n�r� , �6�

where �n
0 are the related eigenvalues measured with respect

to the equilibrium Fermi energy EF. Typically transport prop-
erties within a voltage range comparable to ��� only involve
a few dot levels. We assume that the width in the growth
direction z is small, i.e., the level spacing due to z confine-

ment is large compared to ���, so that only the lowest state
along z is involved and that the electron dynamics is actually
two-dimensional. Thus one has

�nx,ny

0 = E0 + ���xnx + �yny�, nx,ny = 0,1 . . . , �7�

with E0 denoting the ground-state level. The levels contrib-
uting to transport thus depend on the ratio of the confining
energies ��x,y with respect to ���. Denoting by N the number
of these effective orbital levels, only 2N states determine the
current-voltage characteristics �the factor two arising from
spin� and the electron field can fairly be approximated as

d��r� � 	
n=1

N


n�r�dn�, �8�

where dn,�
† and dn� �n=1, . . .N� denote the related creation

and annihilation operators, respectively. Inserting Eq. �8� into
Eq. �1�, one obtains a 2N2N matrix representation HD for
the dot Hamiltonian,

HD = �d1↑
† , . . . ,dN↑

† ,d1↓
† , . . . ,dN,↓

† � · HD ·

d1↑

]

dN↑

d1↓

]

dN↓

� , �9�

which can be diagonalized.
For the leads we adopt the customary three-dimensional

�3D� s-wave BCS model. Labeling the left �right� lead by
p= + �p=−�, one has

Hlead,p = 	
k,�=↑,↓

�kckp�
† ckp� + 	

k
����eip	/2ckp↑

† ckp↓
† + H.c.� ,

�10�

where ckp�
† denotes the electron creation operator with mo-

mentum k in the pth lead and with spin projection �= ↑ ,↓,
��� is the half-gap �supposed the same in both electrodes�, 	
describes the equilibrium superconducting phase difference
between the two leads, and �k=k2 /2m−EF denotes the exci-
tation energy with respect to the Fermi level EF. Here EF is
the Fermi level of the two leads at equilibrium; the applied
bias V is included as a time-dependent tunneling amplitude
�see below�.

Finally, a term,

Htun,p = 	
�=↑,↓

	
k

	
n=1

N

�tp,n�t�ck,p,�
† dn� + H.c. , �11�

describes the tunneling between dot and leads. We have as-
sumed for simplicity that the tunneling amplitudes tp,n be-
tween the pth lead and the level n of the dot are spin and k
independent. A generalization is straightforward. The explicit
time dependence tp,n�t�= tp,n�0�exp�ip�Vt /2� accounts for the
bias V applied between the superconductors,25 where
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�V =
eV

�
, �12�

is the frequency related to the bias. The energies �p,n
=����F��tp,n�0��2 are the tunneling linewidths associated
with tunneling from the nth dot level into the p �the lead,
with ���F� being the DOS in the normal state.

In conclusion the total Hamiltonian of the system reads

H = HD + Hlead,+ + Hlead,− + Htun,+ + Htun,−, �13�

where HD, Hlead,�, and Htun,p are given by Eqs. �1�, �10�,
and �11�, respectively.

III. CURRENT

The current flowing from pth lead into the dot can be
written as

Ip�t� =
ie

�
	

�=↑,↓
	
k

	
n=1

N

�tp,n�t��cp,�
† dn�� − H.c. , �14�

Combining the nonequilibrium Green’s-function technique
with the Dyson equation, one can rewrite Eq. �14� as

Ip�t� = − 2eR�
−�

�

dt�Tr4N���z�4N��p�t,t��G�t�,t�+−� .

�15�

Here bold notations denote matrices in the Keldysh space of
the quantum dot with the superscript +�−� labeling the upper
�lower� Keldysh time contour branch. In particular �p and G,
respectively, describe the self-energy due to pth lead and the
dot Green’s function evaluated in the presence of the leads,

G = �G0
−1 − �+ − �−�−1, �16�

where G0 describes the isolated dot. Details of the derivation
of Eq. �15� can be found in Appendix A. Here we emphasize
that, differently from the customary treatment of supercon-
ducting transport through a quantum dot, in our case one has
to adopt a Nambu space for the dot with dimension 4N �in-
stead of 2N� due to the spin-orbit term, which effectively
induces spin-flip tunneling processes. For these reasons in
Eq. �15� the symbol Tr4N denotes the trace on the
4N-dimensional �extended� Nambu space of the dot, and
��z�4N=�z � I2N—where �z is the usual Pauli matrix and I2N
is the 2N2N identity matrix.

The presence of a finite bias yields the current to be time-
dependent �ac Josephson effect�; it is thus suitable to derive a
harmonic time series representation of it. By applying a dis-
crete Fourier transform �see Appendix B� to �p�t , t�� and
G�t� , t�, one obtains

Ip�t� = −
e

�
R 	

m=−�

�

e+im�Vt�
F

d�Tr4N��z�4N

 � 	
n1,n2=−�

�

�p�n1,n2;��G�n2,n1 + m;���+−

,

�17�

where

F = �−
�V

2
,
�V

2
� , �18�

is the voltage-dependent fundamental domain and m is the
harmonic. The Fourier coefficients, �p�n1 ,n2 ;�� and
G�n1 ,n2 ;��, of the self-energy and the dot Green’s function
are computed in Appendix B. We emphasize that since Eq.
�17� is formally exact, charge conservation implies that

I+�t� = − I−�t� � I�t� . �19�

In the explicit calculation the series in n1 and n2 must be
truncated to a cutoff, which is chosen in order to ensure
convergence of I� and the fulfillment of Eq. �19�.

The dc component of the current �Eq. �19� corresponds to
the m=0 harmonic and thus reads

I0 = − p
e

�
R�

F

d�Tr4N��z�4N

 � 	
n1,n2=−�

�

�p�n1,n2;��G�n2,n1;���+−

, �20�

where p= �1. While the case of equilibrium Josephson cur-
rent �V=0 and 	�0� was thoroughly analyzed in Ref. 15,
here we focus on the out of equilibrium case �V�0� and
henceforth set 	=0. The current �Eq. �20� is then evaluated
with numerical integration in the frequency.

IV. SPIN-ORBIT AND MULTIPLE ANDREEV
REFLECTIONS

Here we present the results concerning the dc component
�Eq. �20� of the current, analyzing the effects of spin-orbit
interaction on the multiple Andreev reflections pattern and
subgap structure. We consider different types of shapes for
the confining potential V�, from isotropic ��x=�y� to
strongly anisotropic ��y ��x� �as shown in Fig. 2�. Experi-
mentally, a tuning of the frequencies �x,y �see Eq. �3� can be
achieved through side gates, which do not substantially alter
Rashba and Dresselhaus spin-orbit coupling. For clarity, it is
worth pointing out that throughout the paper we used the
term isotropy as referring to the confining potential V� only
and not to the full dot Hamiltonian. It is indeed easily
checked that, even for an isotropic potential V� and in ab-
sence of in-plane magnetic field, the Hamiltonian of the dot
is not invariant under rotation around z axis because the
Dresselhaus term in Eq. �5� does not commute with the total
angular momentum Jz=Lz+Sz.

We start by some general remarks. In the first instance,
simple perturbation-theory arguments lead to conclude that
spin-orbit effects can only be observed in a multilevel quan-
tum dot: for one single level quantum dot, spin-orbit interac-
tion does not play any role because the momentum operator
appearing in Eq. �5� can only couple dot levels with different
quantum numbers nx and ny �see Eq. �7�.30 For these rea-
sons, in the following we shall consider only multilevel
quantum dots. The number 2N of states contributing to trans-
port depends on the parameters of V��x ,y� and is chosen in
such a way that the subgap I-V curve remains unaffected by
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inclusion of higher-energy levels. Notice that for intermedi-
ate level spacing �i.e., for ��x,y � ���� the dot excited levels
are energetically too high to contribute to transport directly
but close enough to the unperturbed ground state to modify
its resonance conditions via spin-orbit interaction, hence, af-
fecting transport indirectly. In this sense the effect of spin
orbit can be considered as due to a single level.

Second, the shape of the confining potential has a crucial
role in determining spin-orbit effects: it is easy to verify that
entries of the dot Hamiltonian �Eq. �1� originating from
spin-orbit couplings �Eq. �5� scale as �R,D /�x,y, where

�x,y =� �

m��x,y
�21�

are the lengths associated with the frequencies of the confin-
ing potential V�. Indeed the value of �x /�y determines the
number of states in the x and y direction that contribute to
transport. It also changes the relative weight of spin-orbit
terms proportional to px with respect to those involving py.

Finally, since we account for both Rashba and Dressel-
haus terms, it is worth introducing a total Dresselhaus/
Rashba coupling constant,15

� = ��D
2 + �R

2 �22�

and a relative Dresselhaus/Rashba spin-orbit angle �, defined
through the relations,

cos � =
�R

�
, sin � =

�D

�
. �23�

With the help of Eqs. �22� and �23�, the spin-orbit coupling
�Eq. �5� can be rewritten as

VSO =
�

�
p� � · a� , �24�

where p� � = �px , py� is the x-y plane momentum and a�
= �ax ,ay� is a vector with components,

ax = �x sin � − �y cos � , �25�

ay = �x cos � − �y sin � . �26�

Equation �24� describes the well-known effect that, in the
presence of spin-orbit coupling, the spin orientation depends
on the momentum p� � direction in a manner that is also related
Rashba/Dresselhaus angle �. For the case of a two-
dimensional electron gas, this aspect was recently empha-
sized, e.g., in Ref. 9. In a quantum dot, however, states with
well defined momentum are not eigenstates due to the pres-
ence of the confining potential V�. Hence, in the presence of
spin-orbit coupling the dot levels do not exhibit a definite
spin orientation in general and the question arises whether
MAR resonances are suppressed by spin-orbit.

In the rest of the paper we present our results addressing
the following questions: �i� Does spin-orbit interaction in a
quantum dot suppress MAR peaks �see Fig. 3�? �ii� Does the
geometry of the dot matter in observing spin-orbit effect on
electron transport? �iii� What is the effect of the interplay
between the spin-orbit angle � and the magnetic field on the
I-V curves?

A. Spin-orbit effects for an isotropic dot

We start our analysis from the case of an isotropic con-
fining potential ��x=�y� without magnetic field. The solid

V
||
(x,y)

yx

y

x

c)

b)

a)

yx

FIG. 2. �Color online� Sketch of the dot confining potential �Eq.
�3� for different values of the frequencies in the x and y directions.
�a� ��x,y � ���: only one level takes part to transport; �b� ��x

=��y ����: multilevel isotropic dot; �c� ��x���� and ��y � ���:
multilevel strongly anisotropic dot.

|∆|

FIG. 3. �Color online� Pictorial scheme of multiple Andreev
reflections in a multilevel quantum dot. The left and right parts
represent the energy spectrum of the superconducting leads charac-
terized by a gap ���, whereas the horizontal lines in the central part
of the figure describe the dot levels. The subgap MAR processes
related to eV /2���=1 /n, with n=3,5 ,7 are depicted.

FABRIZIO DOLCINI AND LUCA DELL’ANNA PHYSICAL REVIEW B 78, 024518 �2008�

024518-4



curve of Fig. 4 shows the I-V characteristics for a dot with
E0=0 and confining potential frequencies ��x=��y =20���
so that only the ground state lies in the gap energy window.
The solid curve is obtained in the presence of spin-orbit cou-
pling �=10−11 eV m and Rashba/Dresselhaus angle �
=� /4. For comparison we have also plotted the case of van-
ishing spin-orbit �dashed curve�. Our result indicates that
spin-orbit coupling modifies, rather than suppress, the MAR
pattern. This is due to the fact that, although spin-orbit cou-
pling does not allow electrons in the dot to have a definite
spin orientation, it does not break time-reversal symmetry
�TRS�. As a consequence of TRS, the dot levels are always
doubly degenerate and the related pair of eigenstates mutu-
ally connected by the time-reversal transformation,

T = i�yK, �27�

where K is complex conjugation. An electron emerging from
an Andreev reflection at the interface can thus tunnel into the
doubly degenerate dot level, independent of its original spin
direction, even in the presence of a finite spin-orbit coupling
�. With respect to the case �=0, the electron simply redis-
tributes differently between the two TRS dot states. Although
spin-orbit effect does not destroy the MAR subgap pattern, it
does modify it because the location of MAR peaks and their
sharpness depend on the dot resonant levels and the dot-lead
linewidths, which are both affected by spin-orbit coupling.
The simple case of an isotropic quantum dot with three lev-
els �one s and two orbitally degenerate p levels� can eluci-
date this effect since the spectrum can be evaluated analyti-
cally, obtaining

�1 = E0 + ��x
1 − �1 + 2�2

2
, �28�

�2 = E0 + ��x, �29�

�3 = E0 + ��x
1 + �1 + 2�2

2
, �30�

where

� =
�

�
�2m�

��x
, �31�

is the dimensionless spin-orbit coupling.
In conclusion, the MAR pattern is quantitatively modified

by spin-orbit coupling �, although it qualitatively resembles
the one of a dot with appropriately renormalized levels and
linewidths.

Let us now discuss the effects of the spin-orbit angle �. In
Fig. 5 the current-voltage characteristics is shown for differ-
ent values of �. One can notice that for an equal weight of
Rashba and Dresselhaus terms ��=� /4� the MAR peaks are
enhanced with respect to the two cases of purely Rashba
��=0� and purely Dresselhaus ��=� /2� interactions. Indeed
for the particular value �=� /4 electrons in the dot have a
well defined spin orientation since the Hamiltonian �1� com-
mutes with the spin operator ��x−�y� /�2. In contrast, for
arbitrary values of � spin is not a good quantum number. The
curves at �=0 and �=� /2 turn out to coincide since the
Hamiltonian corresponding to these two cases can be
mapped into each other by the unitary transformation on the
spin variables,

V:��x ↔ − �y

�z → − �z
� . �32�

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.00
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I 0
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2

e
|∆

|/h
)

eV/|∆|

FIG. 4. �Color online� Current �units of 2e��� /h� as a function of
the source-drain bias for a three-level quantum dot with isotropic
confining potential ���x=��y =20���� and linewidth ��,i= ��� /4�i
=1,2 ,3�. The solid curve refers to the case of spin-orbit coupling
�=10−11 eV m ��=0.174� and spin-orbit angle �=� /4. The
dashed curve describes the case of vanishing spin-orbit coupling
�=0. The spin-orbit coupling does not suppress the MAR subgap
pattern; it modifies the location and the number of the peaks.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

I 0
/(

2e
|∆

|/h
)

eV/|∆|

FIG. 5. �Color online� Current-voltage characteristics for a
three-level quantum dot with isotropic confining potential ���x

=��y =4���� and linewidths ��,i= ��� �i=1,2 ,3� in the presence of
a spin-orbit coupling constant �=0.5 �see Eq. �31� and for different
values of the Rashba/Dresselhaus angle �. The solid curve refers to
�=� /4, i.e., equal weight of Rashba and Dresselhaus terms,
whereas the dashed �dotted� curve refers to �=0��=� /2�, corre-
sponding to purely Rashba �purely Dresselhaus� coupling. The
mixed coupling enhances the MAR peaks, whereas the two other
cases turn out to coincide due to symmetry reasons �see text�.
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B. Effect of the anisotropy in the confining potential
in the absence of magnetic field

The equivalence discussed above between transport prop-
erties of a dot with purely Rashba and purely Dresselhaus
terms persists also in the presence of anisotropy in the con-
fining potential V� of the dot. However, when the anisotropy
of the dot increases, the dependence of the I-V curves on the
angle � becomes weaker �see Fig. 6�. In particular, for a dot
with a strongly anisotropic confining potential �e.g., for
��y ���x , ���� and in absence of magnetic field, electron
transport becomes insensitive to the spin-orbit angle � and
only the total intensity � of spin-orbit coupling matters. In
order to understand this effect one can observe that, due to
the anisotropy of the confining potential, only the lowest
quantum number related to the y effectively matters. Thus
the operator py appearing in the spin-orbit interaction in Eq.
�5� does not alter the dot levels involved in transport and can
effectively be dropped from the Hamiltonian. Importantly,
this implies that for a strongly anisotropic quantum dot the
spin-orbit interaction does not induce any spin precession but
rather determines one preferred orientation of the electron
spin in the x-y plane. Although such spin direction formally
depends on the spin-orbit angle �, the latter can indeed be
gauged away completely from the Hamiltonian by perform-
ing a unitary transformation only on the spin degrees of free-
dom,

V� = exp�i��

2
− ���z/2� , �33�

yielding a spin-orbit coupling,

VSO →
�

�
px�x, �34�

which involves only the x component of spin. In the absence
of magnetic field all directions are thus equivalent for elec-
tron transport. This explains the lack of dependence on � of
the I-V curves.

C. Effects of the in-plane magnetic field

In this section we discuss the effect of the in-plane mag-
netic field, analyzing both the dependence on its intensity H
and on the angle 	H. Figure 7 shows the subgap structure for
different values of the dimensionless magnetic field,

B =
g�BH

���
, �35�

in an isotropic three-level quantum dot. As one can see,
MAR peaks are suppressed by increasing B, as expected
since magnetic field breaks the time-reversal symmetry and
suppresses the probability that an electron emerging from an
Andreev reflection matches resonance conditions with the
appropriate spin direction.

A more interesting scenario emerges when analyzing the
dependence of the subgap structure on the magnetic-field
angle 	H. To this purpose, it is worth discussing how the
spectrum of the dot varies with 	H while keeping the inten-
sity H constant. The shape of the confining potential turns
out to play a crucial role on it. We start with the case of an
isotropic quantum dot with three orbital levels �one nonde-
generate s level and one doubly degenerate p level�. Figure
8�a� shows �some of� the levels of a dot with level spacing
��x=��y = ��� /2, in the presence of a spin-orbit coupling

0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0
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/(

2e
|∆

|/h
)

eV/ |∆|

FIG. 6. �Color online� Current �units of 2e��� /h� as a function of
the source-drain bias, for a three-level dot in an anisotropic confin-
ing potential ��y =16�x� with dot-lead linewidths ��,i= ��� �i
=1,2 ,3� and spin-orbit coupling constant �=0.5 �see Eq. �31� for
different values of the Rashba/Dresselhaus angle �. The solid curve
refers to �=� /4, i.e., equal weight of Rashba and Dresselhaus
terms, whereas the dashed �dotted� curve refers to �=0 ��=� /2�,
corresponding to purely Rashba �purely Dresselhaus� coupling.
With respect to the isotropic case, the dependence on � is much
weaker in the presence of an anisotropic confining potential.
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FIG. 7. �Color online� Effects of the magnetic field on the MAR
subgap structure. The case of an isotropic three-level dot with E0

=0, level spacing ��x,y =4���, spin-orbit parameters �=0.5 and �
=� /4, and dot-lead linewidths ��,i= ����i=1,2 ,3�. The solid curve
describes the case without magnetic field �B=0�, whereas the
dashed and dotted curves refer to an applied magnetic field along
the x axis with intensity B=0.5 and B=1, respectively. The presence
of a magnetic field suppresses the current at low bias and the MAR
peaks.
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�=0.5 �see Eq. �31� and under a magnetic field of intensity
B=0.5 �see Eq. �35�. As one can see, the eigenvalues oscil-
late as a function of 	H and exhibit maxima and minima
located at 	H=� /4 and 	H=3� /4. Notice that in this case
the spin-orbit angle � only affects the amplitude of the oscil-
lations and not the location of the minima and maxima as a
function of 	H. The origin of this effect boils down to the
symmetry of the Hamiltonian. Indeed for an isotropic dot the
Hamiltonian characterized by a magnetic field with an angle
	H=� /4−�	H can be mapped into the one with an angle
	H=� /4+�	H through the unitary transformation,

V:� �x ↔ �y

�z → − �z

�x,px� ↔ − �y,py�
� , �36�

and it therefore exhibits the same spectrum as the latter. For
an isotropic dot, as far as the dependence of I-V curves on
the in-plane magnetic field is concerned, the role of � is not
qualitatively different from the one of spin-orbit strength �,
and it is thus difficult to extract information about spin-orbit
angle by the analysis of the MAR pattern as a function of
	H.

The situation is quite different for a strongly anisotropic
confining potential V�. The dependence of �some� dot levels
is shown in Fig. 8�b� for a three-level dot with spin-orbit
coupling �=0.5 and magnetic-field intensity B=0.5. As one
can see, the maxima and minima do depend on the spin-orbit
angle and are precisely located at 	H

� =��n� /2 �n
=0,1 ,2 ,3�. To understand this effect, we recall that when the
anisotropy of the dot confining potential is strong the elec-

tron exhibits a well defined spin orientation, which depends
on �; the introduction of a magnetic field simply induces a
spin precession around its direction.31 More formally, the
transformation �Eq. �33� yields an effectively rotated mag-
netic field,

H� · �� → H�cos�	H − � + �/2��x + sin�	H − � + �/2��y ,

�37�

whose direction depends on the spin-orbit angle �. The struc-
ture of Eq. �37� shows that, in the presence of an in-plane
magnetic field, there are resonances �antiresonances� when-
ever the angle 	H of the physical magnetic field equals �
−� /2 ���, corresponding to an effective magnetic field point-
ing in the parallel �orthogonal� direction as the spin-orbit
term �Eq. �34�. A simple example can illustrate this effect:
let us consider the case where only the two levels in the x
direction are present. In this case the four nondegenerate
eigenvalues of the dot can be computed analytically as

E = E0 +
��x

2
�1 � �1 + �2 + b2 � 2b�1 + �2 sin2�� − 	H� ,

�38�

where � is the dimensionless spin-orbit coupling �Eq. �31�
and b=g�BH /��. The resonances between � and 	H are
described by the last oscillatory term in Eq. �38�.

An interesting effect thus arises for a strongly anisotropic
dot under an in-plane magnetic field: by analyzing the non-
linear conductance G=dI /dV as a function of the bias V and
the magnetic-field angle 	H, one can see that in the presence
of spin-orbit G exhibits maxima and minima located at 	H
=� and 	H=�−� /2, i.e., when the magnetic-field direction
matches the Rashba/Dresselhaus spin-orbit angle. The analy-
sis of the oscillations of the MAR peaks as a function of 	H
allows us to gain the spin-orbit angle �, as illustrated by the
contour plots in Fig. 9 for quantum dot with two levels. The
upper panel refers to the case without spin-orbit coupling
where no oscillations as a function of 	H are present since
the magnetic field simply determines the preferred spin di-
rection. The lower panel describes the case of SO coupling
�=0.3 and �=0.3�. In this case the magnetic-field direction
interplays with the SO angle so that the maxima and minima
appear at 	H=� and 	H=�−� /2, as indicated on the right
side of the figure.

V. CONCLUSIONS

To conclude, we have investigated the effect of Rashba
and Dresselhaus spin-orbit couplings on the out of equilib-
rium transport properties of a quantum dot coupled to two
superconductors. We have analyzed how the I-V is affected
by the total coupling constant � �see Eq. �22� and by the
Rashba/Dresselhaus angle � �see Eq. �23�, discussing also
the role of the anisotropy of the confining potential and the
in-plane magnetic field for multilevel dots. We have found
that, although SO effect prevents electrons tunneling in the
dot to have a definite spin orientation, the MAR subgap
structure is not suppressed by SO interaction due to the con-
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FIG. 8. �Color online� Behavior of �some� dot energy levels as a
function of the angle 	H of the in-plane magnetic field with dimen-
sionless intensity B=0.5 �see Eq. �35� and for different values of
the spin-orbit Rashba/Dresselhaus angle � �solid curves refer to �
=� /4 and dashed curves to �=� /20�. �a� Case of an isotropic
three-level dot with ��x=��y = ��� /2; the maxima and minima of
the dot level oscillations are located at 	H

� =��2n+1� /4 �n
=0,1 ,2 ,3� and are independent of the spin-orbit angle �, which
determines only the oscillation amplitudes. �b� Case of a strongly
anisotropic three-level dot with ��x= ��� /2 and ��y / ���→�. The
maxima and minima of the dot level oscillations are located at the
spin-orbit angle 	H

� =��n� /2�n=0,1 ,2 ,3�. Vertical dotted lines
are guide for the eye.
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servation of time-reversal symmetry. The MAR pattern is
nevertheless quantitatively modified by �, which changes the
resonance conditions and the linewidths, affecting the loca-
tion and the number of the Andreev peaks �see Fig. 4�. The
role of � is strongly dependent on the shape of the dot con-
fining potential and the magnetic field. In absence of mag-
netic field, an isotropic dot with equal weights for Rashba
and Dresselhaus terms exhibits higher MAR current peaks
than the cases with purely Rashba and purely Dresselhaus
terms �see Fig. 5� whose I-V curves coincide due to Hamil-
tonian symmetry. By increasing the dot anisotropy the de-
pendence on � vanishes and the MAR peaks are only af-
fected by the total coupling constant � �see Fig. 6�. When an
in-plane magnetic field is applied, the scenario is even richer,
especially as a function of the angle 	H between the
magnetic-field direction and the x axis. For an isotropic po-
tential the dot energy levels oscillate as a function of 	H,
with maxima and minima located at 	H

� =��2n+1� /4 �n
=0,1 ,2 ,3�, independent of the spin-orbit angle �; the latter
only determines the oscillation amplitudes and plays a simi-
lar role as the coupling �. In contrast, in a dot with strongly

anisotropic confining potential the maxima and minima
are located at magnetic-field angles 	H

� =��n� /2 �n
=0,1 ,2 ,3�. This enables a direct read-out of the spin-orbit
angle through the inspection of the nonlinear conductance as
a function of the bias and the angle of the magnetic field 	H
�see Fig. 9�.
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APPENDIX A: EVALUATION OF THE CURRENT

In this appendix we show how to obtain Eq. �15� from Eq.
�14�. As a first step, we observe that, due to the spin-orbit
term, states of different orbital levels and opposite spins are
coupled. The Hamiltonian matrix �Eq. �9� can be diagonal-
ized through a unitary transformation U on the dot level
operators,

dn� = �U��njDj, j = 1, . . . 2N , �A1�

obtaining

HD = 	
i=1

2N

�iDi
†Di, �A2�

where �i�i=1,2N� are the eigenvalues. In Eq. �A1� U↑�U↓� is
the N2N upper �lower� submatrix of the unitary transfor-
mation U. Introducing a block-diagonal 24N tunneling
matrix,

T̂p = ��tp,1, . . . ,tp,N�U↑ 0

0 − �tp,1
� , . . . ,tp,N

� �U↓
� � , �A3�

with time-dependence given by

T̂p�t� = �eip�Vt/2 0

0 e−ip�Vt/2 � · T̂p�0� , �A4�

one can rewrite Eq. �11� in a Nambu notation as follows:

Htun,p = 	
k

�ck,p,↑
† ,c−k,p,↓� · T̂p�t� ·


D1

]

D2N

D1
†

]

D2N
†

� + H.c.

Similarly, the current �Eq. �14� can be rewritten as

Ip�t� = −
2e

�
R	

k
Tr4N���z�4N�Tp

†�t�Gkp,0�t,t�+−� , �A5�

where

Tp
† = �T̂p

† 0

0 − T̂p
†
� , �A6�

and
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FIG. 9. �Color online� Nonlinear conductance G=dI /dV �in
units of 2e2 /h� as a function of the applied bias V �units of ��� /e�
and of the angle 	H of the in-plane magnetic field with intensity
B=0.7 for a strongly anisotropic quantum dot ���x= ��� and
��y / ���→�� with two levels and dot-lead linewidths ��,1,2

= ��� /2. �a� Without spin-orbit coupling; �b� in the presence of a
spin-orbit coupling with parameters �=0.3 and angle �=0.3�. The
spin-orbit coupling yields oscillations of the conductance in 	H

with minima and maxima given by the spin-orbit angle � and �
−� /2.
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Gkp,0 = �Gkp,0
++ Gkp,0

+−

Gkp,0
−+ Gkp,0

−− � , �A7�

denotes the lead-dot Green’s functions with entries,

iGkp,0
�1�2�t1,t2� =�� ckp↑

��1�

c−kp↓
†��1� ��t1� · �D1

†��2�, ... ,

D2N
†��2�,D1

��2�, ... ,D2N
��2���t2�� , �A8�

with �1,2=� Keldysh labels. Exploiting Keldysh-Dyson
equation,

Gkp,0�t,t� =
1

�
�

−�

�

gkp,kp�t,t��Tkp�t��G�t�,t�dt�, �A9�

one can express Gkp,0 in terms of the Green’s function gkp,kp
of the p lead and the Green’s function G of the dot. The latter
are defined similarly to Eq. �A7� with entries,

igkp,kp
�1�2 �t1,t2� =�� ckp↑

��1�

c−kp↓
†��1� ��t1� · �ckp↑

†��2�c−kp↓
��2� ��t2�� ,

�A10�

and

iG�1�2�t1,t2� =�

D1

]

D2N

D1
†

]

D2N
†

��t1� · �D1
† . . . D2N

† D1 . . . D2N��t2�� ,

�A11�

respectively. Inserting Eq. �A9� into Eq. �A5� and recalling
that the self-energy due to the p th lead, the result reads

�p�t1,t2� =
1

�2	
k

Tkp
† �t1�gkp,kp�t1,t2�Tkp�t2� , �A12�

one obtains Eq. �15�.

APPENDIX B: DISCRETE FOURIER TRANSFORM

In this appendix we sketch the calculation that leads to the
evaluation of �p�n1 ,n2 ;�� and G�n1 ,n2 ;�� appearing in the
current formula �17�. One first introduces25 a discrete Fourier
transform f�n ,m ;�� of an arbitrary two time arguments
function f�t1 , t2�, defined through the relation,

f�t1,t2� = 	
n,m=−�

� �
F

d�

2�
e−i��+n�V�t1ei��+m�V�t2f�n,m;�� ,

�B1�

where F is the fundamental domain introduced in Eq. �18�.
The inversion formula reads

2����1 − �2�f�n1,n2;�1� = �
−�

�

dt�
−�

�

dt�f�t,t��ei��1+n1�V�t

e−i��2+n2�V�t�, �B2�

where �1 ,�2�F. For a function that depends only on time
differences f�t1 , t2�= f�t1− t2�, the discrete Fourier transform
reads

f�n1,n2;�� = �n1,n2
f̃�� + n1�V� , �B3�

where f̃��� is the usual Fourier transform.
The function �p�n1 ,n2 ;�� is thus obtained by inserting

Eq. �A12� as f into the right-hand side of Eq. �B2�, and
making use of Eq. �A4� and of the definition,

gp��� = �
−�

+�

dtei�t	
k

gkp,kp�t� , �B4�

obtaining

�p�n1,n2;�� =
1

�2Tp
†�0�
 �n2,n1�gp�� + n1�V −

p�V

2
��

11
�n2,n1−p�gp�� + n1�V −

p�V

2
��

12

�n2,n1+p�gp�� + n1�V +
p�V

2
��

21
�n2,n1�gp�� + n1�V +

p�V

2
��

22

�Tp�0� , �B5�

where �. . .ij�i , j=1,2� denote the entries in the two-dimensional Nambu space of the leads. A standard calculation yields32

gp��� = ����F��h1����1 0

0 − 1
�

K
+ ih2����2fp��� − 1 2fp���

2fp��� − 2 2fp��� − 1
�

K
� � 
 1 −

�p

��

−
�p

��
1 �

N

, �B6�

where fp denotes the Fermi function of the p—the lead—and

h1��� =
− ������p� − ����

���p�2 − �2
, �B7�
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h2��� =
��������� − ��p��

��2 − ��p�2
, �B8�

with � being the Heaviside function. In Eq. �B6� the sym-
bols �. . .�N and �. . .�K denote matrices acting on the lead
Nambu and Keldysh space, respectively.

Finally the dot Green’s function G can be evaluated by
means of the second Dyson Eq. �16�, where G0 describes the
Green’s function of the isolated dot. Explicitly
G0

−1�n1 ,n2 ;��=�n1,n2
G0

−1��+n1�V�, where

G0
−1��� = �I4N − �z � diag��1, . . . ,�2N� , �B9�

with I4N being the 4N4N identity matrix.
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