
Current noise of a superconducting single-electron transistor coupled to a resonator

T. J. Harvey, D. A. Rodrigues, and A. D. Armour
School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom

�Received 30 April 2008; revised manuscript received 10 June 2008; published 16 July 2008�

We analyze the current and zero-frequency current noise properties of a superconducting single-electron
transistor �SSET� coupled to a resonator, focusing on the regime where the SSET is operated in the vicinity of
the Josephson quasiparticle resonance. We consider a range of coupling strengths and resonator frequencies to
reflect the fact that in practice the system can be tuned to quite a high degree with the resonator formed either
by a nanomechanical oscillator or a superconducting stripline fabricated in close proximity to the SSET. For
very weak couplings the SSET acts on the resonator like an effective thermal bath. In this regime the current
characteristics of the SSET are only weakly modified by the resonator. Using a mean-field approach, we show
that the current noise is nevertheless very sensitive to the correlations between the resonator and the SSET
charge. For stronger couplings, the SSET can drive the resonator into limit-cycle states where self-sustained
oscillation occurs and we find that regions of well-defined bistability exist. Dynamical transitions into and out
of the limit-cycle state are marked by strong fluctuations in the resonator energy, but these fluctuations are
suppressed within the limit-cycle state. We find that the current noise of the SSET is strongly influenced by the
fluctuations in the resonator energy and hence should provide a useful indicator of the resonator’s dynamics.
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I. INTRODUCTION

The dynamics of a resonator coupled to a superconducting
single-electron transistor �SSET� is rather rich with a range
of different behaviors expected to occur. Recent experiments
in which the resonator was formed by a nanomechanical
beam demonstrated ultrasensitive displacement detection and
cooling of the mechanical motion.1,2 In another experiment3

the resonator was formed by a superconducting stripline and
the SSET was used to drive it into a laserlike state4–6 of
self-sustained oscillation.

A SSET consists of a superconducting island which is
connected to two superconducting leads via tunnel junctions
and capacitively coupled to a gate electrode, as shown sche-
matically in Fig. 1. The gate electrode forms part of the
resonator, either as a metal wire deposited on top of a nano-
mechanical beam2 or by forming the central electrode of a
superconducting stripline.3 Depending on the gate and bias
voltages applied, the SSET can support a wide variety of
current carrying processes.7 Here we focus on a particular
current resonance, the Josephson quasiparticle �JQP�
cycle.8–10 At the JQP resonance current flows via a combina-
tion of the coherent tunneling of a Cooper pair at one of the
junctions followed by the successive tunneling of two quasi-
particles across the other junction. The center of the reso-
nance occurs when the electrostatic energy of the two states
linked by Cooper pair tunneling is the same. When the SSET
is biased away from the center of the resonance, the charges
flowing through the SSET can either absorb energy from the
resonator2,11,12 or emit energy into it.3,5,11,13,14 Interestingly,
the charge dynamics in the JQP cycle is closely related to
that of another mesoscopic conductor, namely, a double
quantum dot in the Coulomb blockade regime and a so-
called wide bias limit.15,16

When the SSET is detuned from resonance in such a way
as to emit energy into the resonator, the latter is effectively
pumped by the flow of charges. For sufficiently strong cou-

pling the resonator can be driven into a state of self-sustained
oscillation. Useful analogies can be made between the SSET-
resonator system and quantum optical systems such as the
laser.3–5,17 In particular, there are a number of similarities
between the predicted dynamics of a resonator driven by a
SSET and a micromaser. In a micromaser18 a superconduct-
ing cavity interacts with a stream of two-level atoms which
pass through it one at a time. The ordered flow of atoms
which interact one at a time with the cavity leads to an in-
teresting range of effects which are not seen in standard la-
sers such as the existence of a whole set of dynamical tran-
sitions and the regimes where the cavity is driven into
nonclassical states.18,19 In the SSET-resonator system the
resonator interacts with only one pair of charges moving
through the SSET island at any one time, but the SSET cur-
rent is not independent of the resonator dynamics. Neverthe-
less, features similar to the micromaser such as the existence
of a sequence of dynamical transitions and the possibility of
driving the resonator into nonclassical states are predicted to
occur for the SSET-resonator system.4,14,17

In the micromaser system the state of the atoms emerging
from the cavity provides the information about the cavity
dynamics.19 Similarly, The SSET current provides a natural
source of information about the dynamics of the resonator.3
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FIG. 1. �a� Schematic diagram of the system consisting of a
superconducting island formed by two tunnel junctions and a gate
capacitor incorporating a resonator. �b� The JQP cycle involving
coherent Cooper pair oscillations between the �0� and �2� charge
states and incoherent quasiparticles tunneling to go from the �2�
state to the �0� state via the �1� state.
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However, as with many mesoscopic systems,20 the fluctua-
tions in the current contain much more information about the
dynamics of the system than the average current alone. A
number of recent studies21–30 have shown how the current
noise of a nanoelectromechanical system can be used to infer
quite a lot about the dynamics of the system. For example, it
has been recognized that a bistability in the dynamics of the
mechanical resonator can lead to an extremely large peak in
the current noise.25,27 In the case of the SSET-resonator sys-
tem it has already been shown that the onset of self-sustained
oscillations in the resonator can be associated with strong
features in the SSET current noise.5

In this paper we present a systematic study of the current
characteristics of a SSET when it is coupled to a resonator as
a function of the SSET-resonator coupling strength, the
choice of SSET bias point, and the frequency of the resona-
tor. In particular, we use a numerical approach based on the
master equation to explore the relation between the resona-
tor’s state �measured by the average resonator energy and
associated variance� and the SSET current and zero-
frequency current noise. For sufficiently strong coupling,
strong correlations develop between fluctuations in the reso-
nator energy and the current noise. This means that measure-
ments of the current noise could provide a very useful probe
of the resonator dynamics.

In addition to the full numerical calculations, we also use
a series of simpler approximate methods to gain more insight
into the coupled dynamics of the system. When the SSET-
resonator coupling is sufficiently weak, the SSET acts on the
resonator like an effective thermal bath. In this regime we
use a mean-field approach that allows us to include informa-
tion about the resonator dynamics as well as the correlations
between the SSET and the resonator progressively and hence
discover how these affect the current noise without influenc-
ing the average current. In the strong-coupling regime, where
the resonator undergoes oscillations driven by the current,
we use an eigenfunction expansion of the Liouville operator
in the master equation24,31–33 to understand the current noise.
In the vicinity of a bistability the current noise is dominated
by the slow switching of the system between the two effec-
tive states of the system which is manifested by one eigen-
value for the Liouvillian which is much smaller �in magni-
tude� than all the others.25 Interestingly, we find elsewhere
that the noise can also be approximated quite well using a
single term in the eigenfunction expansion even when a wide
separation between the smallest few eigenvalues does not
exist.

The organization of this paper is as follows. In Sec. II we
introduce the master equation we use to model the SSET-
resonator system. We also describe how the steady-state
properties of the resonator and the current noise can be cal-
culated numerically. Then in Sec. III we present calculations
of the SSET current and zero-frequency current noise to-
gether with the associated resonator energy and energy fluc-
tuations for a wide range of system parameters. We then
focus on the weak-coupling regime in Sec. IV where we
present details of how simple models based around the
mean-field equations of the system can be used to understand
the current and noise in this regime. Then in Sec. V we
consider the regime where the coupling is strong enough to

drive the resonator into limit-cycle states. We use eigenfunc-
tion expansions of the relevant Liouville operator to explore
the extent to which the presence of a very slow time scale in
the resonator motion affects the current noise. Finally in Sec.
VI we draw our conclusions. Appendixes A–C contain fur-
ther details on certain aspects of the calculations.

II. MASTER-EQUATION FORMALISM

In the vicinity of the JQP resonance8,34,35 the SSET island
is confined by charging effects to one of three charge states,
as shown in Fig. 1. These states correspond to the presence
on the island of no excess charges, �0�, one Cooper pair �2�,
or one quasiparticle, �1�. The master equation describing the
SSET and resonator at the JQP resonance is given by4,14

�̇�t� = −
i

�
�Hco,��t�� + Lqp��t� + Ld��t� = L��t� . �1�

The first term describes the coherent evolution of the density
matrix under the Hamiltonian Hco, while the second and third
terms describe the dissipative effects of quasiparticle tunnel-
ing and the resonator’s environment, respectively. The SSET
operators are defined in terms of the three accessible charge
states,

p0 � �0��0�, p1 � �1��1�, p2 � �2��2� ,

c � �0��2�, q1 � �1��2�, q2 � �0��1� . �2�

The Hamiltonian, Hco, written in terms of these operators
takes the form

Hco = �Ep2 −
EJ

2
�c + c†� +

p2

2m
+

1

2
m�2x2

+ m�2xsx�p1 + 2p2� , �3�

where �E is the detuning from the JQP resonance, EJ is the
Josephson energy, and the resonator has frequency �, mass
m, momentum operator p, and position operator x. The final
term represents the linear coupling of the resonator to the
charge on the SSET island. The length scale xs is the shift in
the resonator position due to the addition of a single-
electronic charge to the island. The coupling strength is con-
veniently expressed in terms of the dimensionless parameter

�=
mxs

2�2

eVds
, where Vds is the drain source voltage and e the

electron charge. Note that here we use the language and no-
tation appropriate for a nanomechanical resonator, but the
Hamiltonian takes essentially the same form for a supercon-
ducting stripline resonator.3

Quasiparticle decay at the right-hand junction is described
by the superoperator Lqp,

Lqp��t� = ��q1 + q2���t��q2
† + q1

†� −
�

2
	p1 + p2,��t�
 , �4�

where � is the quasiparticle tunneling rate and 	· , · 
 is the
anticommutator.14,36 For simplicity, we have neglected both
the differences between the rates for the two quasiparticle
decay processes and the �weak� dependence of the rates on
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the position of the resonator.14 The final term in Eq. �1� rep-
resents the damping of the resonator by its external environ-
ment,

Ld��t� = −
�extm�

�
�n̄ext +

1

2
��x,�x,��t��� −

i�ext

2�
�x,	p,��t�
� ,

�5�

where �ext is the damping rate and n̄ext= �e��/kBText−1�−1

where Text is the temperature of the resonator’s surroundings.
The whole master equation can be represented by the

single superoperator L, known as the Liouvillian. The Liou-
villian operates in Liouville space where a Hilbert-space op-
erator a becomes a vector ��a�� and both premultiplication
�left� and postmultiplication �right� of the operator a can be
represented by an appropriate matrix multiplying
��a��.24,31–33,37 The inner product for two vectors in Liouville
space is defined as ��a �b���Tr�a†b�. Using this notation Eq.
�1� takes the form

����t��� = L����t��� . �6�

Since we are dealing with an open system, the Liouvillian is
not Hermitian and hence has different right and left eigen-
vectors,

L��rp�� = 	p��rp�� , �7�

��lp��L = 	p��lp�� . �8�

We choose to label the set of eigenvalues such that �	0�

 �	1�
¯. Neglecting the possibility of degeneracy,32 we
assume that the eigenvectors form a complete orthonormal
set, ��lp �rq���Tr�lp

†rq�=�pq. The solution to Eq. �6� can
therefore be expanded in terms of the eigenvectors to give

����t��� = 
p=0

��lp���0���e	pt��rp��

= ��r0�� + 
p=1

��lp���0���e	pt��rp�� , �9�

where ��0� is the initial density matrix of the system. For a
master equation with a well-defined steady state �such as the
one we consider here� the lowest eigenvalue will be 	0=0, a
property which we used to obtain the second line above. The
other eigenvalues must obey32 Re�	p�0�
0 and the steady-
state-density operator is ���ss��= �������= ��r0��. The normal-
ization of ��r0�� is determined by Tr���t��=1, which gives

��l0��= ��Î��, where Î is the identity operator �in Hilbert
space�. While ��r0�� corresponds to the steady state, the
eigenvectors ��rp�� for p�0 each represent a change to the
steady-state-density matrix that decays exponentially with
rate −Re�	p�.

The problem of finding the steady-state-density matrix is
reduced to finding the right-hand eigenvector of L corre-
sponding to the eigenvalue 	0=0. By truncating the oscilla-
tor basis, Eq. �6� can be solved numerically to find the first
few eigenvalues and eigenvectors of L. Details of the nu-
merical method and the approximations made are contained
in Appendix A.

Our aim in this paper is to understand to what extent
information about the dynamical state of the resonator be-
comes imprinted on the transport properties of the SSET. As
well as calculating the current we also consider the zero-
frequency current noise, which is independent of the junction
at which it is measured. We choose to calculate the noise at
the junction at which the Cooper pair tunneling takes place
�the left-hand junction� as the current operator here is com-
posed of system operators alone, which, along with the Mar-
kovian nature of the master equation, allows the use of the
quantum regression theorem.16 �The results have also been
calculated for the right-hand junction and are in agreement.�

The symmetrized current noise at the left-hand junction is
defined as

SILIL
��� = �

−



d���	IL�t + ��,IL�t�
� − 2�IL�t��2�ei��,

�10�

where the current operator at the left-hand junction, IL, can
be calculated by considering the flow of charge across the
left-hand junction.24 The operator is given by

IL = i
eEJ

�
�c† − c� . �11�

For the current noise a symmetrized current operator can be
defined in Liouville space,

IL����t��� �
1

2
�IL��t� + ��t�IL� . �12�

Using the quantum regression theorem to evaluate the corre-
lation function, the current noise can be written in terms of
Liouville space operators as

SILIL
��� = 2�

−



d����l0��ILeL���IL��r0�� − ��l0��IL��r0��2�ei��.

�13�

In the zero-frequency limit this has the solution24

SILIL
�0� = − 4��l0��ILRIL��r0�� , �14�

where R=QL−1Q is the psuedo-inverse of the Liouvillian
and the projector Q=1− ��r0����l0��. With this projection, the
inversion takes place only in the space where L is regular.
The current noise is conveniently parametrized by the Fano
factor, which is defined as

FI =
SILIL

�0�

2e�I�
, �15�

where 2e�I� is the Poissonian or shot-noise limit correspond-
ing to the current noise for a single tunnel junction.20

III. FEATURES OF THE CURRENT NOISE

In this section we give a survey of the current and noise
characteristics of the SSET and the corresponding resonator
dynamics calculated numerically over a range of different
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parameters. In Secs. IV and V we will provide a more de-
tailed analysis of the most interesting regimes.

The SSET-resonator system is rather complex, even
within the framework of the simple model we are using here.
In particular, the behavior of the system depends on a rather
large number of different parameters. Some of the system
parameters such as the detuning �E and the SSET-resonator
coupling � can be changed during a particular experiment,
while many of the other system parameters can be tuned by
appropriate design of the device, including the frequency of
the resonator which can be in the region of 10 MHz for a
mechanical device2 or of order 10 GHz for a superconduct-
ing stripline resonator.3 We have not attempted a systematic
survey of all feasible parameter regimes but instead focus
primarily on the effects of changing �E, �, and the resonator
frequency.

We start by reviewing the characteristics of the SSET in
the uncoupled limit �→0. The current, �I��=0, and Fano fac-
tor, FI

�=0, for a SSET tuned to the JQP resonance are given
by35,38

�I��=0 =
2eEJ

2�

4�E2 + �2�2 + 3EJ
2 , �16�

FI
�=0 = 2 −

8EJ
2�EJ

2 + 2�2�2�
�4�E2 + �2�2 + 3EJ

2�2 . �17�

The current has a peak at the center of the resonance �E
=0, which has a width determined by � and EJ. Far from
resonance the current Fano factor has a value of 2. This is
because the rate at which the Cooper pairs tunnel onto the
island is much slower than the quasiparticle decay rate and
hence when a Cooper pair reaches the island it swiftly breaks
up into quasiparticles. The two quasiparticle tunneling pro-
cesses occur in quick succession35 �compared to the rate of
Cooper pair tunneling� and hence the charge is effectively
transferred in units of 2e. However, close to the center of the
resonance in the regime where EJ��� �which we study
here�, there is a strong interplay between the coherent trans-
fer of Cooper pairs and the quasiparticle tunneling which
results in a suppression of the noise. This suppression is
strongest at the center of the resonance where the coherent
motion of Cooper pairs is most important.

Coupling a resonator to the SSET can significantly
modify the behavior of the two individual systems. In par-
ticular, energy can be transferred between the SSET charges
and the resonator. For low to moderate coupling the resona-
tor reaches one of three types of steady state:4,14 a state in
which the resonator fluctuates about a fixed point, a limit-
cycle state where the resonator undergoes self-sustained os-
cillations and a “bistable” state, where the two coexist. At
larger couplings other states can be found for this system
such as multiple limit cycles,14 but these do not occur for the
parameters used here. The different resonator states are
readily identified from the steady-state number state distribu-
tion of the resonator, P�n�=Tr��n��n��ss�, where �n� is a Fock
state of the resonator. The fixed-point state has a single peak

in the P�n� distribution at n=0, while the limit cycle has a
peak at n�0 and we define the bistable state as having two
peaks.

The behavior of the resonator and the corresponding cur-
rent characteristics of the SSET for a slow resonator, � /�
�1, are illustrated in Figs. 2–5. The average energy of the
resonator is shown in Fig. 2 as a function of the detuning �E
and the coupling � for � /�=0.12. We have chosen a junc-
tion resistance r=RJe

2 /h=1 and the quasiparticle decay rate
is taken to be �=Vds /eRJ. The Josephson energy is assumed
to have a value EJ /eVds=1 /16 so that throughout we will be
in the regime where EJ��� and hence the quasiparticles
should be the dominant source of dephasing for the SSET
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FIG. 2. �Color online� Average energy of the resonator as a
function of the detuning from resonance and coupling strength for
� /�=0.12, EJ /eVds=1 /16, �ext /�=0.0001, r=1, and n̄ext=2. The
dashed lines indicate transitions between dynamical states: for most
of the range considered the resonator is in the fixed-point state, but
for large enough coupling a transition to the limit-cycle state occurs
close to the center of the resonance. The bistable region is the
smallest and occurs for ��0.0011 and �E /eVds�−0.15.
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FIG. 3. �Color online� Average current ��I� /e�� through the
SSET as a function of the detuning from resonance and coupling
strength. The dashed lines indicate transitions in the resonator’s
state. The parameters are the same as in Fig. 2.
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island charge. The damping �ext /�=1�10−4 �which is some-
what higher than might be expected in experiment� is chosen
to ensure numerical convergence and a small amount of ther-
mal noise has been included, n̄ext=2.

The transitions between the three different dynamical
states of the resonator are indicated by dashed lines in Fig. 2.
For �E
0 energy is transferred to the resonator and for
strong enough coupling the resonator is driven into the limit-
cycle state which grows in size continuously as �E becomes
more negative. However, for ��0.0011 when �E is suffi-
ciently negative ��E /eVds�−0.15� the resonator enters the
bistable regime and then undergoes a transition back to the
fixed-point state in which the limit cycle disappears
abruptly.4 The corresponding behavior of the current is
shown in Fig. 3. Although the current is clearly modified by
the coupling to the resonator, it does not contain any clear
signatures of the transitions in the resonator state.

An important measure of the resonator state is the Fano
factor of the resonator occupation number, defined as Fn
= ��n2� / �n�, where ��n2�= �n2�− �n�2 �where here n is the
number operator a†a�. Fn is plotted in Fig. 4. Unlike the
average energy of the resonator, Fn is strongly peaked around
the transitions between the fixed-point and limit-cycle states,
with the strongest feature occurring in the vicinity of the
bistable region.4

The current Fano factor FI is plotted in Fig. 5. The behav-
ior is rather complex, especially for relatively weak cou-
plings, but overall it is clear that the current noise is a much
better indicator of the presence of transitions in the resonator
state than �I�. The behavior is simplest for larger �, well
within the regime where the dynamical transitions occur and
in this region we see well-defined peaks in the noise at the
transitions into and out of the fixed-point state. The noise
peak is particularly prominent in the case of the bistability.
Although we have defined the bistable state on the basis of
just the number of peaks in the P�n� distribution rather than
the coexistence of two well separated states, it is certainly
possible to find regimes where a true bistability in this sense
exists �i.e., where the P�n� distribution not only has two
peaks but also has very small values for at least some range
of the n values between the peaks�. For a well-defined bista-
bility the current noise can become extremely large, a phe-
nomenon which has been shown to be due to the existence of
a very slow time scale associated with the switching of the
system between the metastable states of the system.27,39,40

We now turn to consider the opposite regime of a fast
resonator, � /��1. In this regime the coherent coupling be-
tween the resonator and the SSET is expected to give rise to
well-defined features when the resonator frequency matches
an eigenenergy of the SSET,

k�� = � ��E2 + EJ
2 � � �E , �18�

with k as an integer �for the relatively strong quasiparticle
decay rates considered here � /��1 means that EJ����.
Numerically we do indeed find that limit cycles occur at
these resonance points, almost always via continuous transi-
tions, with the higher order features ��k��1� appearing at
progressively larger couplings.

Figure 6 shows �I�, FI, and Fn around the k=−1 �one-
photon absorption� peak corresponding to �E=
−�����2−EJ

2 with the dashed line marking the onset of the
limit-cycle state. This resonance was recently observed in
experiments using a superconducting resonator.3 It is clear
that the peak in the current correlates well with the presence
of the limit cycle, but this peak is present at the resonance
even when the limit cycle is not formed, albeit with a very
small size. However, the behavior of the noise shows a clear
signature of the onset of the limit cycle with a distinctive
peak structure forming along the transition lines for both FI
and Fn �Figs. 6�b� and 6�c��. Within the limit-cycle regime
both FI and Fn show dips the size of which is an indication
of how well defined the limit cycle is.

In practice it is also possible to build devices where the
resistance of the junction where quasiparticle tunneling oc-
curs is much larger than the quantum of resistance3 �i.e., r
�1�. Increasing the resistance of the junction where quasi-
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FIG. 4. �Color online� Resonator Fano factor Fn as a function of
the detuning from resonance and coupling strength. The dashed
lines indicate transitions in the resonator’s state. The parameters are
the same as in Fig. 2 and the colors are on a logarithmic scale.
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FIG. 5. �Color online� Current Fano factor FI as a function of
the detuning from resonance and coupling strength. The dashed
lines indicate transitions in the resonator’s state. The parameters are
the same as in Fig. 2 and the colors are on a logarithmic scale.
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particle tunneling occurs enhances the coherent interaction
between the Cooper pairs and the resonator. Strictly speaking
one would expect other effects which give rise to dephasing
of the SSET charge �beyond just quasiparticle tunneling� to
become relevant in this regime. Nevertheless, for our simple
model we find that when r�1 and � /��1, the current
noise at �E�−�����2−EJ

2 can become sub-Poissonian �FI

1� and the resonator Fano factor can also drop below unity,
indicating a nonclassical resonator state. Interestingly, this
regime is quite distinct from the case discussed in Ref. 4 �for
which r�1 and ���� where Fn can also drop below unity.
We note, however, that the thresholds for the sub-Poissonian
regimes for Fn and FI are not perfectly correlated; these two
effects can occur at the same time or separately depending on
the parameters chosen.28

IV. THERMAL RESONATOR

The simplest regime for the SSET-resonator system is that
of very weak coupling where the resonator remains in the
fixed-point state for all values of the detuning �E. In this
regime the effect of the SSET on the resonator dynamics is
analogous to an additional thermal bath.11,12 In this section
we consider in detail how the SSET current and noise are
modified by the resonator in this regime and explore the
extent to which the behavior can be understood in terms of
simple models for the coupled SSET-resonator dynamics.

For sufficiently weak coupling the resonator’s steady state
is a thermal �i.e., Gaussian� state to a good
approximation.11,12 In this state the resonator position is de-
termined by the average charge on the SSET island which in
turn is proportional to the average �steady-state� current
flowing through the SSET �Refs. 12 and 14� �see also Ap-
pendix B�,

�x� = −
3xs

2e�
�I� . �19�

The average occupation number of the resonator, n̄, is given
by a weighted sum of the contributions arising from the reso-

nator’s thermal environment, n̄ext, and the effective thermal
bath it feels due to the SSET, n̄SSET,

n̄ =
�extn̄ext + �SSETn̄SSET

�ext + �SSET
. �20�

The weighting factors are the resonator damping rates due to
the true thermal bath, �ext, and the effective bath due to the
SSET, �SSET. For a slow resonator �����, both n̄SSET and
�SSET are given by relatively simple analytic
expressions,11,12,41

�SSET =
16mxs

2�4EJ
2�E

�
�4�E2 + 13�2�2 + 10EJ

2

�4�E2 + �2�2 + 3EJ
2�3 � ,

�21�

n̄SSET =
�2�2 + 4�E2

16�E��
. �22�

Both �SSET and n̄SSET are strongly dependent on the detuning
�E. Furthermore, �SSET becomes negative for �E
0. How-
ever, for weak enough coupling the resonator is stabilized in
a thermal state by the damping arising from the coupling to
the external bath.

For weak SSET-resonator coupling the changes in the
transport properties of the SSET due to the resonator are
relatively small so it makes sense to examine just the differ-
ence between the values for the coupled and uncoupled
cases. The change in the SSET current due to the resonator
�calculated numerically� is shown in Fig. 7. We consider a
slow resonator � /��1 and very weak coupling so that al-
though the SSET has quite a strong influence on the resona-
tor state, the resonator nevertheless remains in a thermal state
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FIG. 6. �Color online� �I�, FI, and Fn for � /�=10, �ext /�
=0.0003, and n̄ext=0; the other parameters are the same as in Fig. 2.
For the region within the dashed lines the resonator is in a limit-
cycle state and elsewhere it is in a fixed-point state.
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FIG. 7. �Color online� Change in current through the SSET as a
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which is well described by Eqs. �20�–�22�. From Fig. 7 we
see that near the center of the resonance the current is sup-
pressed by the resonator, but on either side of this there is an
enhancement. The current noise is modified in a similar way
to the current, but in the opposite sense, as shown in Fig. 8,
thus there is an increase in the noise near to the resonance
with a decrease on either side.

The simplest way of including the influence of the reso-
nator on the SSET is to include the effect of fluctuations in
the position of the resonator on the current. Because the reso-
nator acts as a gate for the SSET island, a shift of the posi-
tion of the resonator leads to an effective change in the de-

tuning energy �E �Eq. �3��. Hence, when the resonator
position fluctuates so will the detuning energy. We can incor-
porate the effect of the mechanical motion into the expres-
sions for the current and noise �Eqs. �16� and �17�� by cal-
culating them for a fixed position, making the replacement
�E→�E+2m�2xsx, and then averaging over the resonator
state. For the current Eq. �16� becomes

I�x� =
2eEJ

2�

4��E + 2m�2xsx�2 + �2�2 + 3EJ
2 . �23�

Assuming the shift term is small we can perform a Taylor
expansion and then take the average over the resonator.
Keeping terms up to order xs

2 and using Eq. �19�, we obtain

�I�fl = �I��=0�1 −
16m�2xs�E

�
�x� −

16�m�2xs�2

�
�x2�

��1 −
16�E2

�
��

= �I��=0�1 +
24m�2xs

2�E

�e�
�I��=0 −

16�m�2xs�2

�

���x2��1 −
16�E2

�
�� , �24�

where ��4�E2+�2�2+3EJ
2 and the averages are taken over

the �Gaussian� steady-state probability distribution for the
resonator. The value of ��x2� is calculated using Eq. �20�.

For the current noise we naively replace �E→�E
+2m�2xsx to obtain

SI�x�
2e

= 2I�x� −
16eEJ

4��EJ
2 + 2�2�2�

�4��E + 2m�2xsx�2 + �2�2 + 3EJ
2�3 .

�25�

After expanding to second order in xs and taking the average
over the resonator state, we can then calculate the corre-
sponding Fano factor,

FI
fl = 2 −

�

�2�� − 48m�2xs�E�x� − 48�m�2xs�2��x2��1 −
32�E2

�
�

� − 16m�2xs�E�x� − 16�m�2xs�2��x2��1 −
16�E2

�
�� , �26�

where ��8EJ
2�EJ

2+2�2�2�.
Looking first at the current �Fig. 7�, it is clear that Eq.

�24� accurately describes the modification due to the pres-
ence of the resonator. Thus in this weak-coupling regime
where the resonator remains in a thermal state, the modifica-
tion of the current is simply due to the shift in the resonator’s
position �which gives the asymmetric shape� and a smearing
out of the JQP current peak due to fluctuations in the reso-
nator position. In contrast, we can see from Fig. 8 that for the

Fano factor Eq. �26� does not capture the behavior correctly.
Although the qualitative shape is the same with a central
peak with dips either side, the curves do not match and the
asymmetry of the numerical curve is in the opposite direction
to that predicted by the simple model.

The reason for the disagreement in the current noise is
that the simple model of a fluctuating gate neglects both the
correlations between the electrical and mechanical motions,
and the dynamics of the resonator. The current noise �in con-
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FIG. 8. �Color online� Change in the zero-frequency Fano factor
of the SSET due to the resonator. The curves are labeled as num for
the numerical results, fl is obtained from Eq. �26�, mean2 is calcu-
lated using the second-order mean-field equations and mean3 using
the third-order mean-field equations. The parameters are the same
as in Fig. 7.
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trast to the average current� is sensitive to the correlations
between the SSET charge and the resonator motion and
hence to describe it accurately we need to include them in
some way. A straightforward and systematic way to include
correlations and information about the resonator dynamics
can be found using the mean-field equations of the system,
namely, the equations of motion for the expectation values of
the SSET and resonator operators. The mean-field equations
are generated in turn by multiplying the master equation by
an operator �or product of operators� and taking the trace
over the full system.14 The mean-field equations for the
SSET-resonator system are given explicitly in Appendix B
up to second order.

The set of mean-field equations for the SSET-resonator
system never forms a closed set with equations of motion for
the operators always including some higher order operators.
However, progress can be made by making a semiclassical
approximation, in which correlations between certain opera-
tors are neglected so that the system of equations then be-
comes closed. Here we retain at least some of the SSET-
resonator correlations by only applying the semiclassical
approximation to products of higher order than required. For
the set of second-order equations we approximate products
of three system operators, thus we make the substitution
�x2c�→2�x��xc�+ ��x2�−2�x�2��c�. Crucially the correlations
between products of any two operators are retained.

The resulting set of equations is closed but nonlinear be-
cause of the terms generated by the semiclassical approxima-
tion. However, by again using what we know about the
steady state of the resonator in this regime �i.e., Eqs. �19� and
�20�� to replace the expectation values involving only the
resonator operators by their steady-state values, we can re-
cover a linear set of equations �full details are given in Ap-
pendix B�. This set of equations is then solved to obtain the
steady-state moments of the system using the same approach
as that employed to solve the master equation �namely, solv-
ing for the null eigenvector of the matrix of coefficients�.
The current is then obtained directly from the moments of
the SSET operators, �I�=e���p1�+ �p2��. The current noise
can be calculated using a slightly more elaborate calculation
which introduces an electron counting variable,42 full details
of which are given in Appendix C.

The results from the second-order mean-field equations
for the current agree very well with the numerical calculation
�and Eq. �24�� as one would expect. For the current noise the
second-order mean-field calculation is qualitatively correct
as can be seen in Fig. 8, capturing the asymmetry in the
numerical results though quantitative agreement is still lack-
ing. This is not surprising as the second-order mean-field
calculation only partly includes the SSET-resonator correla-
tions and does not describe the resonator dynamics fully.
However, the mean-field approach is readily extended to
third order �i.e., the semiclassical approximation is only ap-
plied to products of four operators�, thereby including higher
order correlations and more information about the resona-
tor’s dynamics. We find that the third-order calculation leads
to quantitatively correct results, as shown in Fig. 8. However,
we also note that reducing the coupling reduces the impor-
tance of the higher order correlations which the second-order
mean-field calculation neglects. Figure 9 provides a clear

illustration of this as it shows that the second-order calcula-
tion becomes accurate for low enough �.

V. TIME SCALES OF THE SYSTEM

In this section we discuss the signatures of the resonator
dynamics in the current and current noise when the coupling
is strong enough to drive the resonator into limit-cycle states.
In particular we investigate how simple approximations to
the noise based on the eigenfunction expansion in Liouville
space �Eq. �9�� can be used to give insights into the connec-
tions between the fluctuations in the resonator state and the
current noise.

Figure 10 shows the current calculated numerically as a
function of �E for three very different values of the resona-
tor frequency. For low resonator frequencies �� /�=0.12�,
the current is slightly suppressed at the center of the JQP
resonance and enhanced further away. This is qualitatively
the same as was seen for weak coupling in Sec. IV, even
though now the coupling is larger so the resonator is driven
into a limit-cycle state. For the �=� case small peak fea-
tures are seen for �E
0 at points corresponding to the k=
−1,−2, and −3 resonances in Eq. �18�. In the high-frequency
case �� /�=10�, the current is greatly enhanced at the k=
−1 resonance and relatively unchanged elsewhere.

Figures 11–13 show the current noise calculated numeri-
cally for the same parameters. For � /�=0.12 and � /�=1
the two peaks in the current noise correspond in both cases to
a continuous transition from a fixed-point state to a limit
cycle at �E�0 and the presence of a region of bistability
near the second �larger� peak in FI. In between these two
peaks the system is in a limit-cycle state. For the � /�=10
case the two peaks in FI both correspond to continuous tran-
sitions �from fixed-point to limit-cycle state� with the reso-
nator in a limit-cycle state between the peaks.

A. Bistability

As discussed in Sec. III, the current noise contains more
information about the dynamical state of the resonator than

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4

∆E/eVds

F
I
−

F
κ
=

0
I

num
fl
mean2

FIG. 9. �Color online� Change in the zero-frequency Fano factor
of the SSET due to the resonator for �=5�10−6. All other param-
eters and labeling of curves are the same as Fig. 8.
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the current alone. For example, the presence of a dip in the
noise between two strong peaks gives a clear indication that
the resonator is actually in a limit-cycle state.40 The current
noise can also tell us about the types of fluctuations present
in the system and the time scales over which these fluctua-
tions decay. This analysis is particularly clear in the case of a
bistability.

Current noise peaks for bistable regions in nanoelectro-
mechanical systems, such as the charge shuttle, have been
studied extensively.25,27,39,40 The current characteristics of a

conductor coupled to a truly bistable system �i.e., one with
only two accessible internal states� can be described by a
model specified in terms of four parameters: the �different�
currents associated with the two states I1 , I2 and the switch-
ing rates between them of �12,�21. The current and current
noise for this two-state model take the simple form,25,27

�I�bi =
�21I1 + �12I2

�21 + �12
, �27�
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FIG. 10. �Color online� Current as a function of �E for different
resonator frequencies � /�=0.12,1 ,10. In each case the values of �
and �ext have been chosen to ensure that the system reaches the
limit-cycle state for at least some values of �E while still remaining
at low enough energies to allow a numerical calculation. For � /�
=0.12, �=0.0015, and �ext /�=0.0001; for � /�=1, �=0.005, and
�ext /�=0.0008; and for � /�=10, �=0.003, and �ext /�=0.0003.
The other parameters are the same throughout: EJ /eVds=1 /16,r
=1, n̄ext=0.
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Sbi�0� =
4��I2�

�21 + �12
, �28�

where ��I2�=�21�12�I1− I2�2 / ��21+�12�2 is the variance in
the current.

This two-state model can be applied to a more complex
system in a bistable regime if the two metastable states are
well separated so that the switching rate between the states is
much slower than the other relevant time scales.25,27 From
Eq. �28� we can see how slow switching rates between the
two states can lead to a large value for the current noise in
this regime. However, we also note that when the two meta-
stable states give rise to very different currents, the large
variance that results can also make an important contribution
to the current noise.

For certain parameters the noise at the bistable transition
in our system is very well described by this two-state model
�with the two metastable states being the fixed point and
limit cycle�. In practice this means that a single set of the
four parameters I1 , I2 ,�21,�12 can be found which allow us
to fit the current and current noise to Eqs. �27� and �28�,
respectively. Furthermore, the same parameters can be used
to calculate higher cumulants of the current which can also
be compared with numerical results.25 The required param-
eters can be extracted as follows. The relative probabilities of
the two states �21 / ��21+�12� ,�12 / ��21+�12� are obtained by
inspection of the steady-state probability distribution P�n�.
Setting those elements of the steady-state-density matrix
which correspond to just one of the two states to zero and
recalculating the current then allows the currents I1 and I2 to
be obtained. Finally, the sum of the rates �12+�21 can be
determined by comparing the current noise �calculated nu-
merically� with Eq. �28�.

The two-state model can only be applied when a true
bistability exists in the sense described in Sec. III �i.e., the
P�n� distribution for the resonator steady state should have
two peaks with a vanishingly small probability for some
range of n values in between� which we find generally occurs
for ���. Using the methods described above, we found that
the two-state approximation can be used to describe the cur-
rent and current noise for the bistable state seen around
�E /eVds�−0.5 in Fig. 12 �� /�=1�, but not for the one
around �E /eVds�−0.12 in Fig. 11 �� /�=0.12�, where there
is significant overlap between the limit-cycle and fixed-point
states. For the former case we obtained further confirmation
that the two-state model could be applied by checking that
the numerically calculated third cumulant agreed with that
obtained using the two-state model �an approach discussed in
detail in Ref. 25� and also by checking that the smallest
�nonzero� eigenvalue of the Liouvillian matched up well
with the total rate �12+�21 �as we will discuss below�.

In an ideal experiment one would be able to monitor the
current with sufficient time resolution to observe the slow
switching between two distinct values of the current directly.
However, measuring the current noise as well as the average
current in a region where the theory predicts a bistability
would provide convincing evidence if agreement was ob-
tained. One could also make use of further generic predic-
tions of the two-state model,27 such as the presence of a

Lorentzian peak in the finite frequency current noise �at zero
frequency� with a width given by �12+�21.

B. Eigenvector expansions

In general, we cannot describe our system in the vicinity
of the dynamical transitions by a simple two-state model. As
we have seen, even where the transition involves a region of
coexistence between the limit-cycle and fixed-point states,
the states may not be well enough separated for a two-state
model to apply. Near the continuous transitions between the
limit-cycle and fixed-point states, there are clearly not just
two states involved. However, one element of the two-state
model which might be expected to apply more widely is the
emergence of a single very slow time scale which dominates
the current noise. In the case of the continuous transition
such a slow time scale might result from the vanishing ef-
fective damping ��SSET+�ext� of the system at the transition.
In what follows we use the eigenvector expansion of the
Liouvillian to investigate the extent to which the current
noise at each of the dynamical transitions can be described
by a single slow process.

We begin by rewriting Eq. �14� for the current noise in
terms of the eigenvectors and eigenvalues of the Liouvillian,

SILIL
�0� = − 4

p=1

1

	p
��l0��IL��rp����lp��IL��r0�� . �29�

This should be compared with a similar expansion for the
variance in the current also for the left-hand junction,

��IL
2� = �IL

2� − �IL�2 = 
p=1

��l0��IL��rp����lp��IL��r0�� .

�30�

The variance is given by a sum over the same matrix ele-
ments as the current noise but this time unmodified by the
eigenvalues, 	p. Each of the eigenvectors of the Liouvillian
��rp�� describe a change to �or fluctuation away from� the
steady state that decays with a purely exponential rate
−Re�	p� �see Eq. �9��. Thus, the matrix element
��l0��IL��rp����lp��IL��r0�� can be thought of as the variance in
the current due to a fluctuation of type p. We then see that
the current noise consists of a sum over the variances due to
each type of fluctuation, each divided by the rate at which
that fluctuation decays.

It is clear from Eq. �29� that if �	1�� �	2� then we could
expect the current noise to be dominated by the first term,
which corresponds to the slowest time scale in the system.
This is in indeed what happens when the system has a well-
defined bistability. In this case an obvious connection can be
made with an appropriate two-state model �i.e., Eq. �28��,
with the relevant eigenvalue corresponding to the sum of the
rates −	1=�12+�21 and the numerator gives the current vari-
ance, ��l0��IL��r1����l1��IL��r0��= ��I2�. More generally, it is
not just a slow time scale that is important. For a single term
in the eigenvector expansion to accurately describe the noise,
the matrix element divided by the eigenvalue
��l0��IL��rp����lp��IL��r0�� /	p for p=1 must be much larger
than for all p�2.
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In Figs. 11–13 we compare the full current Fano factor
with approximations using just the first term in Eq. �29�. The
peaks at the transitions are described quite well by just the
first term in the eigenvector expansion. Away from the peaks,
however, we find that the noise is not captured by the ap-
proximation based on the first eigenvector. It is particularly
clear in Fig. 13 that something is missing from this approxi-
mation. The features that are simply due to the SSET alone
are not captured, such as the dip at �E=0 and the Fano
factor of 2 far from resonance. We can understand this better
by considering the meaning of the eigenvectors and eigen-
values of the Liouvillian.31,43

In the limit �→0 the resonator-SSET system becomes
uncoupled and the eigenvectors and eigenvalues of the sys-
tem can be expressed in terms of those of the individual
subsystems, namely, the SSET and the resonator. When the
resonator is decoupled from the SSET it still remains
coupled to the external bath and its smallest �nonzero� eigen-
values are integer multiples43 of �ext. Thus the smallest of
these eigenvalues corresponds to the energy relaxation rate
of the resonator, −�ext, and hence we can infer that the cor-
responding eigenvector describes fluctuations in the resona-
tor’s energy �something which we will justify further below�.
There are also a set of eigenvectors �and corresponding ei-
genvalues� that describe fluctuations in the SSET charge
state. In the uncoupled regime the current noise of the SSET
can be obtained using Eq. �29�, with the sum running over
just the SSET eigenvalues, though we already know the re-
sult will be given by Eq. �17�.

For the coupled SSET-resonator system we can still iden-
tify the eigenvalues and eigenvectors as corresponding to
one or other of the subsystems by looking at their behavior
for large detunings �i.e., large ��E�� where the systems are
effectively decoupled. The first few eigenvalues, which cor-
respond to the resonator, are shown �for the slow resonator
case � /�=0.12� in Fig. 14 as a function of �E. These first
few eigenvalues indeed converge toward −�ext, −2�ext, ¯ for

large detunings. Thus at least for large detunings the first
eigenstate, ��r1��, should therefore represent fluctuations
which change the resonator energy. This can be confirmed by
comparing the resonator variance to an expansion in terms of
the eigenvectors,

��n2� = 
p=1

��l0��N��rp����lp��N��r0�� , �31�

where N����t����n��t�=a†a��t�. The full calculation of the
energy variance is compared with approximations based on
the first term in the eigenvector expansion in Fig. 15. It is
clear that only the first eigenvector is needed to describe the
energy fluctuations for large detunings as we expect. How-
ever, the approximation based on the first eigenvector also
describes the energy fluctuations rather well at the peaks
where the transitions occur, but not in between where the
resonator is in a limit-cycle state. However, Fig. 15 also
shows that we can describe the energy fluctuations through-
out by using more terms in the eigenvector expansion.

We are now in a position to understand why the calcula-
tion of the current noise using just the first term of the ei-
genvector expansion works as well as it does and to see how
and why this can easily be improved upon. Comparing Figs.
11 and 15 it is clear that the single-eigenvector approxima-
tion to the current noise matches the numerical results well
around the two peaks marking the transitions �between the
fixed-point and limit-cycle states� where the first term in the
eigenvector expansion also describes the energy fluctuations
in the resonator accurately. The fact that the first term in the
eigenvector expansion does not capture the current noise far
from resonance is not surprising as it only describes fluctua-
tions in the resonator state and does not include the fluctua-
tions of the SSET degrees of freedom. We can easily obtain
better agreement for large detunings by extending our ap-
proximation to include the contribution of the uncoupled
SSET, FI

�=0. Better agreement within the limit-cycle regime
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FIG. 14. �Color online� The four smallest �nonzero� eigenvalues
as a function of the detuning, �E. The parameters are the same as in
Fig. 11. The eigenvalues differ from each other by more less than 1
order of magnitude throughout and converge toward integer mul-
tiples of �ext for large ��E�.
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as a function of �E. The three curves show the full numerical
calculation, num, and approximations using just the first term, app
and the first five terms, app5, of the eigenfunction expansion �Eq.
�31��, respectively. The parameters are the same as in Fig. 11.
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can be attained by using sufficient eigenvectors in our ap-
proximation to ensure that the fluctuations in the resonator
energy are described accurately. Thus we arrive at our final
approximate expression for the current noise,

FI � FI
�=0 − 2

p=1

m ��l0��IL��rp����lp��IL��r0��
	pe�I�

, �32�

where m should be large enough so that the corresponding
number of terms can be used to calculate ��n2� accurately
�via Eq. �31��. In this case we find m=5 is sufficient, and the
current noise calculated this way agrees very well at almost
all points, as shown in Figs. 11–13. The one area where good
agreement is still lacking using Eq. �32� is within the limit-
cycle region for � /�=10, shown in Fig. 13. This is because
we have simply used the uncoupled contribution to the cur-
rent noise arising from the SSET eigenvectors. In fact, these
SSET terms are strongly modified due to the resonant ab-
sorption of energy by the resonator from the Cooper pairs at
this point.

From these approximations it is clear that in the vicinity
of the resonator transitions, the current noise is largely deter-
mined by the slow fluctuations in the energy of the resonator.
This is because the current depends in the first instance on
the resonator position and hence on the latter’s energy �as
this is slowly changing compared to its period�. Thus the
current fluctuations depend strongly on the fluctuations of
the resonator energy rather than those of higher moments of
the resonator. Thus when ��n2� depends on more than one
eigenvector, the current noise does too.

It is important to note that even in the regions where
including just the first term in the eigenvector expansion de-
scribes the current noise fairly well this is not simply be-
cause the associated eigenvalue is very much smaller than all
the others. We can see from Fig. 14 that �for these param-
eters� an overwhelming difference between the slowest two
eigenvalues never develops and from Fig. 16 that the relative
size of the corresponding matrix elements is important in
causing the first term in the eigenvector expansion to domi-
nate.

VI. CONCLUSIONS

We have investigated the current and current noise of a
SSET coupled to a resonator and how they relate to the lat-
ter’s dynamics. The steady-state properties of the system and
the zero-frequency current noise are readily calculated using
a numerical approach based on a representation of the master
equation as a matrix equation in Liouville space. Overall we
found that the current noise varies widely depending on the
precise choice of SSET bias point, the resonator frequency,
and the strength of the SSET-resonator coupling. For suffi-
ciently strong couplings, the SSET current noise is strongly
influenced by the fluctuations in the resonator energy. In par-
ticular, the resonator energy displays strong fluctuations in
the regions where transitions between dynamical states occur
and this behavior is reproduced in the current noise. This
means that measuring the current noise could provide clear
signatures of dynamical transitions in the resonator.

In addition to the full numerical calculations, we used a
range of approximate methods to provide further insights
into the coupled dynamics of the system. For very weak
SSET-resonator couplings the SSET acts on the resonator
like an effective thermal bath. We found that in this regime
mean-field equations for the system operators provided a
convenient way of establishing the importance of the SSET-
resonator correlations and the resonators dynamics in deter-
mining the SSET current and noise. For stronger couplings
we used eigenfunction expansions of the Liouvillian matrix
to demonstrate the strong connection between the energy
fluctuations in the resonator and the current noise. In many
cases the current noise is well approximated by just a few
terms in the eigenfunction expansion, but we found that it
cannot be approximated accurately without including all of
the eigenvectors that are needed to describe the energy fluc-
tuations in the resonator state.
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APPENDIX A: NUMERICAL METHOD

This appendix describes in more detail the numerical
method used to solve the master equation and the approxi-
mations that are made. To find the steady state of the system
numerically the basis of the resonator must be truncated.
External damping sets a limit on the resonator energy. We
therefore use a Fock state basis for the oscillator truncated to
N states, where N is chosen to be large enough that the prob-
ability for the resonator to have an energy larger than ��N is
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negligible. In Liouville space the density matrix is a vector
and L is a matrix with dimensions 9N2�9N2.

To obtain the steady-state-density matrix we need the ei-
genvector corresponding to the zero eigenvalue, or null ei-
genvector, of the Liouvillian. In Sec. V we also require the
first few nonzero eigenvalues with the corresponding right
and left eigenvectors. Due to the large dimension, complex
nature and unsymmetric structure of the Liouvillian the in-
verse iteration method is used.44,45 Starting from a random
vector ��v��0 the iteration is

��v��i+1 = �L − �I�−1��v��i = 
p=0

��lp�v��i

	p − �
��rp�� , �A1�

where we have expanded ��v��i in terms of the eigenstates of
the Liouvillian and I is the identity in Liouville space. Re-
peating the iteration, the value of ��v��i will converge to the
eigenvector of L closest to �. To find the null eigenvector � is
set to 10−16 so that the matrix to be inverted is not singular.
To find the other eigenvalues and eigenvectors we must start
from an initial guess for the eigenvalue to be found. This
guess can be updated every few iterations until the solution
is found. The efficiency of the algorithm depends on how
close � is to the exact eigenvalue in comparison to the next
closest eigenvalue. If the eigenvalue is known to high accu-
racy then convergence is found in a single iteration.44

In order to use the largest possible value of N we make
two approximations. These approximations are based on the
knowledge that if certain elements of the density matrix are
known to be zero in the steady state, then they can be omit-
ted from the calculation by removing the appropriate rows
and columns of the Liouvillian. We note that these terms
must further be very rapidly decaying for the current noise
not to be affected by their omission.

The first approximation we make is to neglect the density
matrix elements corresponding to the q1, q2, q1

†, and q2
† op-

erators. This is valid since there is no coherence between the
p1 state and the p0 or p2 states so these elements must decay
to zero in the steady state. This approximation reduces the
dimensions of the Liouvillian to 5N2�5N2.

The second approximation is made in terms of the oscil-
lator basis. The coherence between resonator Fock states
which are widely separated in energy is small. Elements of
the oscillator density matrix far from the diagonal can there-
fore be neglected. To check that this is a valid approximation
the largest value on the last included diagonal of the resona-
tor density matrix is found. So as long as this value is below
10−8 the results are found to be indistinguishable from the
exact solution. After making these approximations the prob-
lem can be solved for N�200 using an inverse iteration
method on a desktop computer. The limiting factor is the
memory required to calculate �L−�I�−1��v��i in the iteration
procedure.

APPENDIX B: MEAN-FIELD EQUATIONS

This appendix describes in detail the mean-field equation
approach used in Sec. IV to solve the SSET-resonator system
in the weak-coupling limit. The mean-field equations up to

first order in the system operators were calculated in Ref. 14.
Here we go further and work to second order in the first
instance,

�ẋ� = �v� , �B1�

�v̇� = − �2�x� − xs�
2��p1� + 2�p2�� − �ext�v� , �B2�

�ṗ0� = i
EJ

2�
��c� − �c†�� + ��p1� , �B3�

�ṗ1� = − ��p1� + ��p2� , �B4�

�ṗ2� = − i
EJ

2�
��c� − �c†�� − ��p2� , �B5�

�ċ� = �− i
�E

�
−

�

2
��c� + i

EJ

2�
��p0� − �p2�� − i

2m�2xs

�
�xc� ,

�B6�

�ċ†� = �i
�E

�
−

�

2
��c†� − i

EJ

2�
��p0� − �p2�� + i

2m�2xs

�
�xc†� ,

�B7�

�xp0�˙ = i
EJ

2�
��xc� − �xc†�� + ��xp1� + �vp0� , �B8�

�xp1�˙ = − ��xp1� + ��xp2� + �vp1� , �B9�

�xp2�˙ = − i
EJ

2�
��xc� − �xc†�� − ��xp2� + �vp2� , �B10�

�xc�˙ = �− i
�E

�
−

�

2
��xc� + i

EJ

2�
��xp0� − �xp2��

− i
2m�2xs

�
�x2c� + �vc� , �B11�

�xc†�˙ = �i
�E

�
−

�

2
��xc†� − i

EJ

2�
��xp0� − �xp2��

+ i
2m�2xs

�
�x2c†� + �vc†� , �B12�

�vp0�˙ = i
EJ

2�
��vc� − �vc†�� + ��vp1� − �2�xp0� − �ext�vp0� ,

�B13�

�vp1�˙ = − �� + �ext��vp1� + ��vp2� − �2�xp1� − xs�
2�p1� ,

�B14�

�vp2�˙ = − i
EJ

2�
��vc� − �vc†�� − �� + �ext��vp2� − �2�xp2�

− 2xs�
2�p2� , �B15�
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�vc�˙ = �− i
�E

�
−

�

2
− �ext��vc� − �2�xc� + i

EJ

2�
��vp0�

− �vp2�� −
i2m�2xs

�
�vxc� , �B16�

�vc†�˙ = �i
�E

�
−

�

2
− �ext��vc†� − �2�xc†� − i

EJ

2�
��vp0�

− �vp2�� +
i2m�2xs

�
�xvc†� , �B17�

where here the averages imply a trace over the SSET and
resonator weighted by the density operator.

The first thing to note is that Eqs. �B1� and �B2� can be
used to obtain a simple approximation for the average reso-
nator position. In the steady state we find14 �x�=−xs��p1�
+2�p2��, but from Eq. �B4� we see that �p2�= �p1�. Using the
fact that the average current is related to the average charge
on the SSET island, we then readily find that �x�=
−3xs�I� / �2e��.

In order to obtain a closed set of mean-field equations at
second order we need to make a semiclassical approximation
to eliminate the third-order terms �e.g., �x2c†� , �vxc��. This is
done by setting the third-order cumulant46 to zero. In this
context we apply the semiclassical approximation to prod-
ucts of three operators a, b, and c by assuming that

�abc� = �a��bc� + �b��ac� + �c��ab� − 2�a��b��c� ,

provided a, b, and c all commute. Where the operators in-
volved do not commute the expectation value should be sym-
metrized appropriately in order for the commutation relations
to be preserved.

Applying the semiclassical approximation to the term
�x2c�, in Eq. �B11�, we make the replacement �x2c�
→2�x��xc�+ ��x2�−2�x�2��c� and similarly for �x2c†� in Eq.
�B12�. The resulting approximate equations are given by

�xc�˙ = �− i
�E + 4m�2xs�x�

�
−

�

2
��xc� + i

EJ

2�
��xp0� − �xp2��

+ �vc� − i
2m�2xs

�
��x2� − 2�x�2��c� , �B18�

�xc†�˙ = �i
�E + 4m�2xs�x�

�
−

�

2
��xc†� − i

EJ

2�
��xp0� − �xp2��

+ �vc†� + i
2m�2xs

�
��x2� − 2�x�2��c†� . �B19�

These equations can be linearized by treating �x� and �x2� as
parameters. To a good approximation the average resonator
position is given by Eq. �19� in the steady state �with the
current evaluated in the �→0 limit� and as discussed in Sec.
IV, within the weak-coupling regime it is also possible to use
Eq. �20� to obtain �x2�.

The other third-order terms we need to consider are �vxc�
and �xvc†�, which arise in Eqs. �B16� and �B17�, respec-
tively. Since x and v do not commute we must first rewrite
the expectation values in the following way before expansion

so that the commutation relations are obeyed.

�vxc� =
1

2
��vx + xv�c� − i

�

2m
�c� . �B20�

Performing the expansion as before we can make the re-
placement,

1

2
��vx + xv�c� → �x��vc� + �v��xc� +

1

2
�c��xv + vx�

− 2�x��v��c� . �B21�

These equations are readily linearized by treating �x� as a
parameter and using the fact that �xv�+ �vx�= �v�=0 when
the resonator is in a thermal steady state. The same proce-
dure can be followed for the �xvc†� term to give

�vc�˙ = �− i
�E + 2m�2xs�x�

�
−

�

2
− �ext��vc�

+ i
EJ

2�
��vp0� − �vp2�� − xs�

2�c� − �2�xc� ,

�B22�

�vc†�˙ = �i
�E + 2m�2xs�x�

�
−

�

2
− �ext��vc†�

− i
EJ

2�
��vp0� − �vp2�� − xs�

2�c†� − �2�xc†� ,

�B23�

which completes the set of linearized equations. In order to
solve this set of equations, we write the moments as a vector
p so that the equations of motion can be rewritten in the form
ṗ=Ap, where A is the matrix of coefficients. The steady
state for the moments is then obtained from the null eigen-
vector of A. This method is readily extended to obtain the
third-order mean-field equations by instead setting the
fourth-order cumulant to zero and following the same proce-
dure.

APPENDIX C: CURRENT NOISE CALCULATION IN THE
MEAN FIELD

This appendix describes the calculation of the current
noise within the mean-field model using the counting vari-
able approach.23,24,42 We carry this out in terms of the
second-order equations, but the method is easily extended to
higher orders. First we write the master equation in a modi-
fied form, where the number of quasiparticles, m, to have
tunneled across the right-hand junction �since t=0� are in-
cluded,

�̇�m,t� = −
i

�
�Hco,��m,t�� + Ld��m,t�

+ ��q1 + q2���m − 1,t��q2
† + q1

†� −
�

2
	p1 + p2,��m,t�
 .

�C1�

Mean-field equations can be calculated for this master equa-
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tion in the same manner as before, where we now include a
subscript to indicate the number of quasiparticles to have
tunneled. The majority of the equations are the same but with
a subscript m, with averages now defined by
�·�m=Trsys���m , t��, with the trace taken over the system op-
erators but not m. The following equations have a modified
form,

�ṗ0�m = i
EJ

2�
��c�m − �c†�m� + ��p1�m−1, �C2�

�ṗ1�m = − ��p1�m + ��p2�m−1, �C3�

�xp0�˙
m = i

EJ

2�
��xc�m − �xc†�m� + ��xp1�m−1 + �vp0�m,

�C4�

�xp1�˙
m = − ��xp1�m + ��xp2�m−1 + �vp1�m, �C5�

�vp0�˙
m = i

EJ

2�
��vc�m − �vc†�m� + ��vp1�m−1 − �2�xp0�m

− �ext�vp0�m, �C6�

�vp1�˙
m = − �� + �ext��vp1�m + ��vp2�m−1 − �2�xp1�m

− xs�
2�p1�m. �C7�

Due to the normalization condition, the total probability that
m electrons have passed since t=0 is given by

P�m,t� = �p0�m + �p1�m + �p2�m. �C8�

The current noise is obtained using the MacDonald
formula,47

S��� = 2�e2�
0



dt sin��t�
d

dt�
m=0



m2P�m,t� − �
m=0



mP�m,t��2� = 2�e2�
0



dt sin��t��2��m�p1� + m�p2�� +
�I�
e

−
2�I�2t

e2 �
= 2e�I� −

2�e2�

i
�m̂�p1,i�� − m̂�p1,− i�� + m̂�p2,i�� − m̂�p2,− i��� , �C9�

where we have defined

m�a� � 
m=0



m�a�m, �C10�

and its Laplace transform

m̂�a,z� � �
0



dte−ztm�a� . �C11�

To solve for the current noise we make use of the matrix
notation introduced for the mean-field equations introduced
at the end of Appendix B. We start by defining the vector m,

m = 
m=0



mp . �C12�

The equation of motion for m is found by multiplying the
m-resolved equations of motion by m and performing the
sum. For terms involving �a�m−1 we can use


m=0



m�a�m−1 = m�a� + �a� �C13�

and the equation of motion for m is

ṁ = Am + y , �C14�

where y is a vector containing the relevant inhomogeneous
terms. Laplace transforming and rearranging

m̂�z� =
1

z
�zI − A�−1y , �C15�

where I is the identity. The final solution is written in terms
of the vectors,

k+ � �i�I − A�−1y , �C16�

k− � �− i�I − A�−1y . �C17�

The current noise is then given by

S��� = 2e�I� + 2e2��k+�p1� + k−�p1� + k+�p2� + k−�p2�� ,

�C18�

where k+�p1� indicates the element of k corresponding to p1.
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