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Ultrashort optical pulses are used to excite and interferometrically detect picosecond longitudinal-acoustic
pulses in thin films of liquid mercury sandwiched between sapphire plates. We show that the shape of the strain
pulses in the mercury can be directly measured through ultrafast changes in optical reflectivity. By analyzing
consecutive acoustic echoes, we derive the dispersion of the ultrasonic attenuation and sound velocity for this
liquid at frequencies up to 10 GHz. Significant effects of structural relaxation are observed and are compared
to a simple model that indicates the presence of picosecond relaxation times in mercury.
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I. INTRODUCTION

Ultrasonic propagation in liquids is of much interest be-
cause the dispersion of the sound velocity and acoustic at-
tenuation is closely related to the rate at which the liquid can
recover from a local change in strain, this rate being depen-
dent on the microscopic ordering in the liquid. At high
enough frequencies the local atomic environment remains
frozen on the passage of an acoustic strain wave, leading to a
different—generally higher—elastic modulus at the limit of
high frequency compared to at lower frequencies. This phe-
nomenon, known as structural relaxation, can therefore be
studied by frequency-dependent ultrasonic velocity and at-
tenuation measurements.1,2 Conventional ultrasonics tech-
niques with piezoelectric excitation and detection,3,4 as well
as nanosecond laser acoustics,5,6 can be used effectively up
to �1 GHz for the study of longitudinal-acoustic waves in
liquids, both transparent and opaque. Frequencies up to
�20 GHz in transparent liquids are accessible by Brillouin
scattering, a technique relying on the spontaneous or stimu-
lated scattering of light by phonons.7–10 In addition, inelastic
x-ray11–13 or neutron-scattering measurements13,14 can be
implemented to probe vibrational dynamics in the
�300 GHz to terahertz regime in liquids.

A new addition to this array of techniques for probing
structural relaxation in liquids is the method of picosecond
laser acoustics, initially developed for solids.15–20 Like im-
pulsive stimulated light scattering,21 it is a time domain tech-
nique and has the potential for measurements on liquids up
to the terahertz range. The principle relies on generating pi-
cosecond ultrasonic pulses using ultrashort pump light pulses
and then detecting the ultrasonic pulses using synchronous
probe light pulses. It was recently proved to be useful for
observing the propagation of longitudinal-acoustic waves in
water at �4 GHz by monitoring backscattered probe light

from the sound in the liquid.22 Reflections from solid-liquid
interfaces at frequencies up to 300 GHz have also been stud-
ied by this technique with acoustic incidence from the
solid.23 Laser acoustics at megahertz frequencies has also
been successful for investigating absorbing liquids, although
these frequencies are in general too low to be useful for
studies of structural relaxation in many liquids.24 Sound gen-
eration with ultrashort light pulses has also been investigated
in the ablative regime in transparent liquids.25

To investigate structural relaxation in opaque liquids, par-
ticularly in liquid metals, one would ideally like to measure
the sound velocity and the ultrasonic attenuation over a wide
frequency range. This has proven difficult in the gigahertz
range owing to the short optical penetration depths that
broaden the optical spectra in Brillouin scattering.13,26 How-
ever, this frequency range is of particular interest in mon-
atomic liquids and those of relatively low molecular weight
because it corresponds to the regime of the onset of structural
relaxation. In this paper we describe a pulse-echo implemen-
tation of picosecond laser acoustics to probe the ultrasonic
dispersion in liquid Hg up to 10 GHz. The sound pulses are
directly generated in a thin film of liquid Hg sandwiched
between two sapphire plates, allowing us at the same time to
probe the generation of sound in a liquid metal with ul-
trashort light pulses. The case of liquid Hg is particularly
interesting because it is known to exhibit a huge positive
dispersion effect: the longitudinal sound velocity increases
by �50% at terahertz frequencies.13 However, the way the
sound velocity rises from its low-frequency value
��1 GHz� to its high-frequency value is completely un-
known.

In addition to investigating the structural relaxation, we
also describe a method for direct measurement of the shape
of the strain pulses propagating in the mercury. This method
exploits the short optical penetration depth compared to the
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spatial extent of the acoustic pulses in mercury and allows
the strain pulse shape to be measured from photoelastically
induced changes in optical reflectivity at a buried interface.
This is simpler than previous methods for strain pulse shape
measurement in picosecond laser acoustics that rely on the
optical phase variation.17,27 We also make use of a theoretical
model that accounts for the interface displacements in the
sample and the photoelastic effect in the mercury to relate
these reflectivity changes to measured optical phase changes.

In Sec. II we describe the experimental technique. In Sec.
III we describe the experimental results for the acoustic ech-
oes and describe how to use them to interpret the shape of
the generated longitudinal strain pulses in the liquid Hg. In
Sec. IV we present detailed results for both the first and
second echoes and derive the acoustic dispersion in liquid
Hg by comparison of successive echoes. In Sec. V we dis-
cuss the results for the acoustic dispersion and present our
conclusions.

II. EXPERIMENTAL TECHNIQUE

The liquid Hg �Ref. 28� is clamped to a thickness of
�1 �m between two flat sapphire plates of thickness 3 mm
with �0001� surfaces of rms roughness of �3 nm as deter-
mined by atomic force microscopy. The choice of sapphire,
with longitudinal sound velocity vl=11 100 ms−1 and den-
sity �0=3990 kg m−3,29 localizes the sound within the
acoustically mismatched Hg �vl=1450 ms−1 and �0
=13 500 kg m−3� �Ref. 3� and avoids a significant photoelas-
tic coupling to the strain propagating in the plates �below 10
GHz�. In the clamped state the plates are sufficiently parallel
�within �0.01°� to prevent the perturbation of acoustic echo
shapes. The plates are mounted vertically, but the relatively
high surface tension of the Hg prevents it leaking.

Optical pump pulses of duration of 200 fs, wavelength of
750 nm, pulse energy of �2 nJ, and with a repetition rate of
82 MHz are focused on the Hg surface to a 35 �m diameter
spot at full width at half maximum. Thermal expansion oc-
curs as the acoustic strain propagates out of the laser-heated
region. For our laser spot size �� initially heated depth�,
longitudinal strain pulses in approximately plane wave form
travel directly away from the Hg-sapphire interface in both
directions. The strain pulse duration in the Hg is determined
by the sound propagation time across the initially heated
depth, which depends on the optical-absorption depth in Hg
��=10.1 nm at 750 nm30� and on electron and thermal
diffusion,15,27,31,32 as discussed later. The transient and
steady-state temperature rises of the Hg above our room-
temperature conditions are �40 and 15 K, respectively.33 In
contrast to previous nanosecond laser acoustics experiments
in liquid Hg,34 the conditions for generation here are nonde-
structive. Related experiments on other liquid metals have
also been carried out in the megahertz regime.35,36

Synchronous delayed optical probe pulses of the same
wavelength and spot size and with a pulse energy of
�0.15 nJ measure the transient changes in reflectance and
phase to an accuracy of �10−5 in a Mach-Zehnder interfer-
ometer arrangement incorporating two photodiodes.37 Opti-
cal delays are produced in a delay line and also using a

vibrating corner cube, the latter facilitating measurements of
single acoustic echoes. Two different optical incidence con-
figurations are adopted: �1� with both the pump and probe
beams focused to the same spot at the angles of incidence 0°
and �10°, respectively, and �2� with the pump and probe
beams incident from opposite sides of the sample at the same
angles of incidence �see insets of Figs. 1 and 2, respectively�.
The pump beam is chopped �at 1 MHz�, and lock-in detec-
tion is used to improve the signal-to-noise ratio.

For small changes in probe reflectance, the relative
change in the complex amplitude-reflection coefficient r of
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FIG. 1. �Color online� Experimental variations in the optical
amplitude-reflection coefficient � and the optical phase �� for a
thin film of liquid Hg with a nominal thickness of 1.22 �m when
pumping and probing from the same side. The arrows indicate the
positions of the first and second echoes. The inset shows a sche-
matic diagram of the optical incidence on the Hg film with the
optical pump and probe beams on the same side of the sample.
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FIG. 2. �Color online� Experimental variations in the optical
amplitude-reflection coefficient � and the optical phase �� for a
thin film of liquid Hg with a nominal thickness of 1.20 �m when
pumping and probing from opposite sides of the sample. The first
and second echoes are evident. Inset: normalized magnitude of the
frequency spectrum for � for the first echo obtained from the tem-
poral Fourier transform of ��t�. The inset shows a schematic dia-
gram of the optical incidence on the Hg film with the pump beam
on the opposite side to the probe beam.
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the sample is given by �r /r=�+ i��, where �, the real part,
is related to the relative intensity change �R /R through the
equation �=�R / �2R� �where R is the reflectivity for inten-
sity�, whereas ��, the imaginary part, is the optical phase
change. Detection of � and �� gives two independent mea-
sures of the picosecond acoustic pulses, allowing the photo-
elastic response of the sample to be probed more
effectively.19,32,38,39

III. RESULTS AND STRAIN PULSE SHAPE
MEASUREMENT

Typical results for the variations ��t� and ���t� are shown
in Fig. 1 for a film of Hg with a thickness of 1.22 �m when
pumping and probing from the same side �see inset of Fig.
1�. Near delay time t=0, a sharp spike arising from the ex-
citation and subpicosecond decay of nonequilibrium elec-
trons in the Hg is evident in both the variations of � and ��.
This is followed by changes �positive for � and negative for
��� that are determined for � by the temperature changes in
the Hg and sapphire and their decay through thermal diffu-
sion and determined for �� by temperature changes and by
the relaxation of the thermal expansion in the region of the
interface. The first and second acoustic echoes are indicated
by the arrows in Fig. 1. The 1.22 �m thickness of the Hg is
calculated from the acoustic round trip time using the known
value of vl, assumed here to be equal to that measured at
lower acoustic frequencies up to �1 GHz.3 The acoustic
echoes in reflectance ��� , �200 ps in duration, have a uni-
polar shape, whereas the echoes in phase have a rounded
steplike shape. The duration of the acoustic echoes is consis-
tent with the presence of frequency components up to
�10 GHz.

In the above arrangement the relevant propagation dis-
tance for the first echo is twice the Hg film thickness. In
order to investigate smaller distances we use pumping and
probing from opposite sides of the sample �see inset of Fig.
2�, as illustrated by typical results for a film of Hg with a
thickness of 1.20 �m in Fig. 2. We again refer to the acous-
tic pulse arrivals as the first and second echoes, although the
first echo is not a returning pulse but a transmitted pulse in
this case. Since the excitation and detection regions are now
separate, there is no spike near t=0, and for � there is neg-
ligible background variation. For �� there is still a back-
ground variation caused by the relaxation of the strain distri-
bution in the near-surface region that is produced by the
reflection of the unipolar strain pulses at the Hg-sapphire
interface.

To understand the shapes of these echoes, we examine the
theory of strain pulse generation, propagation, and detection
for a boundary between an opaque material and a transparent
solid. Picosecond acoustics experiments with a similar
optical detection configuration have previously been carried
out on silica-Ge and silica-metal boundaries.40–42 Since
the acoustic impedance �Z=�0vl, where �0 is the mass
density� of the sapphire �Z2=4.3	107 kg m−2 s−1�29 is
larger than that of the Hg �Z1=1.96	107 kg m−2 s−1�,3 the
acoustic strain reflection coefficient from the Hg-sapphire
interface �with incidence from the Hg� is positive: rac

= �Z2−Z1� / �Z2+Z1��0.39. Simple thermoelastic generation
theory15,40 in the absence of diffusion processes leads to a
unipolar strain pulse shape �for rac
0� in the form

��z,t� = −
1

2
�0e−�z−vlt�/� for z 
 vlt , �1�

��z,t� = −
1

2
�0race

−�z−vlt�/� for z � vlt , �2�

where

�0 =
B��1 − R�Q

AC��0vl
2 =

��1 − R�Q
AC�

. �3�

Here we have introduced the bulk modulus B �=�0vl
2 in liq-

uids�, the volume thermal-expansion coefficient �, the heat
capacity per unit volume C, the optical-absorption depth �,
and the pump spot area A.43 The coordinate z is directed
away from the interface �at z=0� in the Hg. Equations �1�
and �2� apply when the strain pulse has left the near-surface
region. The shape of the predicted strain pulse in space is
shown by the solid line in Fig. 3. The strain is compressive,
and the leading edge of the strain pulse is about 2.6 �1 /rac�
times stronger than the trailing edge �although the eye is not
good at discerning the difference on the scale in Fig. 3�. The
predicted spatial width of the pulse is of the order of
���10 nm�, and the temporal width is �� /vl��7 ps�. The
strain amplitude �0 /2�7	10−3 for the pump fluences used
in experiment predicted using literature values for the physi-
cal constants.30,44 This relatively large value compared to
that obtained with solid metals at similar optical pump flu-
ences owes much to the relatively high thermal-expansion
coefficient of liquid Hg, �=1.8	10−4 K−1,44 not atypical
for liquids. However, the effect of electron and thermal dif-
fusion will reduce the prediction by a factor ��� /�, where ��
is an effective penetration depth.

To estimate these effects let us consider separately the
cases of electron and thermal diffusions. A more rigorous
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FIG. 3. �Color online� Calculated normalized initial spatial pro-
file of the strain pulse in the sample according to a thermoelastic
model ignoring thermal and electron diffusions �solid line�. This is
compared with the final strain profile for a liquid Hg film with a
nominal thickness of 1.48 �m, as derived from the experimental
��t� using pumping and probing from the opposite side of the
sample �dashed line�. The distance is defined as positive toward the
right in the inset of Fig. 2, and the zero of distance is chosen to
correspond to the minimum of the strain.
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treatment is possible using the two-temperature model that
has been applied to solids, in which the electron and lattice
temperatures are considered to be independent but coupled.
This model has been implemented to explain picosecond
acoustic echo shapes in similar experiments on Au, Ag, Cu,
Ni, and Cr.27,32,45,46 However, we shall content ourselves here
with a qualitative discussion because this will suffice to show
that the ultrafast dynamics turns out to have a negligible
effect on the acoustic echo shapes for the acoustic propaga-
tion distances ��1 �m� in the present study. After the opti-
cal pump pulse arrival and during a time of the order of the
energy relaxation time of the nonequilibrium electrons
�given by 
e=Ce /g, where Ce is the electron specific-heat
capacity per unit volume and g is the electron-phonon cou-
pling constant�, nonequilibrium electrons diffuse and trans-
port their energy to a typical depth ze= �De
e�1/2= ��0 /g�1/2,
where �0 is the thermal conductivity �assumed to be domi-
nated by electron transport� and De is the electron diffusion
coefficient �De=�0 /Ce�. This results in a spatially distributed
collection of acoustic sources, giving acoustic pulse broad-
ening to a temporal duration �ze /vl for ze
��. The relative
values of ze and � therefore determine the importance of
electron diffusion on the picosecond acoustic phonon genera-
tion. For liquid Hg, direct measurements of 
e are not avail-
able, but we may estimate g from the equation47,48

g =
3�����2	

�kB
, �4�

where Ce=�Te, � �Te the electron temperature� is the dimen-
sionless electron-phonon coupling parameter, ��2	 is the
mean-square phonon frequency, � is Planck’s constant, and
kB is Boltzmann’s constant. Taking the value ��1 from
solid Hg,49 the known value of ���140 Jm−3 K−2� for liquid
Hg,50 and assuming ��2	��D

2 for liquid Hg, where �D is the
Debye frequency for Hg ��2	1013 rad s−1�,51 Eq. �4� gives
g�400	1015 Wm−3 K−1. Using the known value of �0
��7.8 Wm−1 K−1�44 gives ze�5 nm. Since ze�� /2, we
conclude that electron diffusion will contribute a broadening
effect to the acoustic pulses. As a rough estimate, instead of
� one can substitute �+ze�3� /2 for an effective penetration
depth. Incidentally, the above physical constants give

e�0.1 ps for Te�300 K. Our time resolution is not suffi-
cient to test this estimate, a value not atypical for transition
metals.52 The relatively small value of 
e implies that the
broadening effect of electron diffusion takes place first be-
fore the onset of significant thermal diffusion.

We are now in a position to estimate the additional broad-
ening effects of thermal diffusion. Provided that the thermal
diffusivity D�=�0 /C� is reasonably small, the total broaden-
ing effect of thermal and electron diffusions is roughly de-
termined by thermal diffusion during the acoustic propaga-
tion time 
ac= ��+ze� /vl. The corresponding thermal
diffusion length zi can be defined as zi= �D
ac�1/2. From the
known values of �0 and C��1.86	106 J m−3 K−1� for liq-
uid Hg,44 we find zi�7 nm, implying that the acoustic
pulses are broadened by a factor ���+ze+zi� /��2 by diffu-
sion processes. The quantity �+ze+zi represents an upper
limit for the effective penetration depth ��. �Thermal diffu-
sion from the Hg to the sapphire will also produce acoustic

sources in the sapphire. However, we estimate that their
strength is negligible compared to those in the Hg.�

The effect of the penetration ���2� reduces the strain
amplitude of the generated acoustic pulses by a factor of �2.
Our previous estimate of the initial strain amplitude should
therefore be reduced to �0� /2�4	10−3 for the pump flu-
ences used in experiment. This strain is still significantly
larger than that, �10−4, normally encountered at similar flu-
ences in solid metals. To check for nonlinear effects, we
carried out a series of measurements at different pump flu-
ences by varying the incident pump beam average power
from the value �87 mW� used above down to ten times
smaller, keeping the probe fluence constant. Both � and ��
over the whole temporal range were found to vary strictly
linearly with the pump power. Moreover, the shape of the
echoes was unchanged. Given the pronounced strain pulse
broadening on propagation, the peak strain amplitude of the
acoustic pulse is quickly reduced from its initial value. For
these reasons we shall therefore seek linear theories of
acoustic propagation to explain our observed results.

Even accounting for the factor of �2 that is expected to
broaden the initially generated acoustic pulses compared to
the predictions of the thermoelastic theory, there remains a
large discrepancy between the observed acoustic echo dura-
tion ��100 ps� and that predicted ��15 ps�. It is natural to
consider acoustic dispersion processes to explain the pulse
broadening observed in experiment. Before dealing with this
problem we shall first turn to the theory of detection in order
to clarify the relation between the results for � and ��.

The presence of the strain ��z , t� in the Hg and the dis-
placement u�t� of the Hg-sapphire interface leads to a change
in the complex amplitude-reflection coefficient,15,20,42,53

�r�t�
r

=
4iknSñ

nS
2 − ñ2
 dn

d�
+ i

d�

d�
��

0

�

��z�,t�e2ikñz�dz�

+ 2inSku�0,t� , �5�

where nS�=1.76�30 is the �ordinary� refractive index of the
�transparent� sapphire, ñ=n+ i��=2.6+5.9i� �Ref. 54� is the
refractive index of liquid Hg, dn /d� and dk /d� are the pho-
toelastic constants of liquid Hg, and k is the optical vacuum
wave number �=2� /�, where � is the 750 nm probe wave-
length�. The integral in Eq. �5� arises from a sum of contri-
butions to the photoelastic reflectance change from different
depths in the sample within ��. We do not include an extra
term42 due to the photoelastic effect in sapphire for reasons
explained later. The second term in Eq. �5�, equal in magni-
tude to 4�nSu�z=0, t� /�, accounts for the extra optical path
associated with the displacement u �positive for the +z direc-
tion that points into the Hg�,

u�0,t� = − �
0

�

��z�,t�dz�. �6�

Provided that the form of ��z , t� is known, one can therefore
predict the variation �r�t� /r.

For both the same-side and opposite-side experimental
configurations, we must deal with a longitudinal-acoustic
strain pulse that is reflected from the Hg-sapphire interface
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with acoustic incidence from the Hg. When removed from
the interface, let us assume that the strain pulse in the Hg has
the temporal form �1�t�, and spatiotemporal form

��z,t� = �1
t +
z

vl
� + rac�1
t −

z

vl
� . �7�

We choose the time t=0 here to be the time for the strain
pulse arrival at the interface �at z=0�. Examination of Eq.
�5�, given the relatively long ��100 ps� strain pulse duration
and corresponding spatial extent ��150 nm� in our experi-
ment, suggests a considerable simplification of the analysis.
The term exp�2iñkz��=exp�−z� /���2inkz�� only has a signifi-
cant value for z�����10 nm�. Assuming that the function
�1�t� is slowly varying allows the integrals in Eq. �5� to be
approximated, giving

�r�t�
r

=
2nS

ñ2 − nS
2
 dn

d�
+ i

d�

d�
���0,t� + 2inSku�0,t� . �8�

The result is that ��t�=Re��r /r�=�R�t� / �2R� is directly pro-
portional to ��0, t�, the strain at the interface between the Hg
and the sapphire. The phase ���t� is a linear combination of
terms proportional to ��0, t� and u�0, t�. The variation ��t� is
therefore a particularly useful quantity to monitor in the
present experiment as it gives a direct measure of the strain
pulse shape. This is thanks to the combination of the follow-
ing circumstances: �1� the detection occurs at a buried inter-
face at which the strain does not vanish, �2� the strain pulse
spatial extent is much greater than the probe beam optical
penetration depth in the Hg, and �3� the photoelastic re-
sponse of the sapphire is negligible because the acoustic
pulse �with a frequency of �10 GHz� contains negligible
frequency components at the Brillouin frequency40,55,56

2nSvl� /���50 GHz� of the sapphire �where vl�
=11100 ms−1 is the longitudinal sound velocity of sapphire
perpendicular to a �0001� surface29�.

In order to obtain a more accurate measure of the echo
shape, higher-resolution data were taken in the region of
�200 ps around the first echo for the opposite-side geom-
etry, as shown in Fig. 4 for � and �� �plotted on the same
scale� together with the variation d� /dt �i.e., d�� /dt� for the
first echo in a Hg film with a thickness of 1.48 �m. �The
background variation in �� is relatively small, and we have

not subtracted it from the data.� The quantity d� /dt is also a
useful quantity to plot because it is more directly related to
the shape of the strain pulse compared to ��.17 The asym-
metry of ��t� is particularly clear. Zero time is defined here
to correspond to the maximum of ��t�. The shape of the
d� /dt variation is superficially similar to that of �, but d� /dt
is peaked slightly ��10 ps� before. The variation ��t� allows
us to immediately determine to a high accuracy the spatial
shape of the strain pulse by use of the real part of Eq. �8�:
��z��−��−z /vl�, where the distance z �=0 at the center of
the strain pulse� is defined as the direction to the right in the
inset of Fig. 2. The negative sign multiplying � is chosen
because a compressive strain pulse is expected. �This is ex-
perimentally justified by the sign of ��.� The strain pulse
��z�, determined in this way using the known value of vl, is
plotted as the dashed line in Fig. 3. Clearly the strain pulse is
significantly broadened compared to the initial strain profile
calculated according to the thermoelastic model �as shown
by the solid line in Fig. 3�.

Measuring both ���t� and ��t� allows the photoelastic
constants dn /d� and dk /d� to be derived. We proceed by
assuming a negative incident strain in the form of the experi-
mental variation ��t� �as in the dashed line in Fig. 3� and then
use Eqs. �5�–�7� to obtain the resulting �, ��, and d� /dt
variations. The method of least squares is used to fit these
variations to the data using only the photoelastic constants
dn /d� and d� /d� as adjustable parameters. The best fits are
shown in Fig. 5 by the dotted lines using
�dn /d�� / �d� /d��=−0.85��0.1� and dn /d�=17��7� �at our
750 nm optical wavelength�, where the errors reflect the scat-
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FIG. 4. �Color online� Normalized experimental variations in
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and the time derivative d� /dt for the first echo in a thin film of
liquid Hg with a nominal thickness of 1.48 �m when pumping and
probing from opposite sides of the sample. Zero time is defined at
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cient �, optical phase ��, and time derivative d� /dt according to a
model in which the temporal strain profile is taken to be equal to the
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tion. Dotted line: theoretical �� variation.
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ter of different measurements.57 We are not aware of any
literature values for comparison. As expected, the derived
variation ��t� is essentially the same as the assumed strain
pulse shape shown by the solid line in Fig. 5�a� �tiny differ-
ences only arising because of the slight smoothing caused by
the probe beam penetration into the Hg�. This confirms the
validity of the approximation of Eq. �8�. The derived varia-
tions for d� /dt and ��, shown by the dotted lines in Figs.
5�b� and 5�c�, respectively, are also in good agreement with
experiment �solid lines�; in particular, the peak in d� /dt oc-
curs slightly before that of ��t�, as required. The shape of the
derived �� and d� /dt variations is sensitive to the ratio
dn /d� :d� /d� and to the sign of these constants, whereas the
ratio of the variations ��t� and ���t� depends on the absolute
values of the photoelastic constants.57

Unlike ��t�, which arises purely from the photoelastic ef-
fect, the �� and d� /dt variations are made up of contribu-
tions from both the photoelastic effect and surface displace-
ments. These contributions to �� and d� /dt are shown in
Fig. 6. The displacement contribution to d� /dt, shown by
the dashed line in the lower plot, is the same as the strain
pulse shape �as expected from Eqs. �6� and �7��. The contri-
butions from the photoelastic effect, shown by the dashed-
dotted lines in Fig. 6, are significant in both �� and d� /dt,
and the photoelastic contribution is responsible for the slight
temporal advance in the peak of d� /dt.

IV. RESULTS FOR THE ACOUSTIC DISPERSION

Let us now turn to the analysis of the echo shape, focus-
ing on the variation ��t�. Figure 7�a� shows on the same scale
the first and second echoes �dashed and solid lines� for �

obtained with opposite-side detection for the 1.48 �m film
of Hg of Fig. 4. The height of the two echoes is adjusted to
be the same for better comparison in Fig. 7�b�, demonstrating
the broadening effect of propagation. Background-subtracted
results obtained with same-side detection for a 1.47 �m film
of Hg are shown in Fig. 8. �The relative noise level for the
second echo is noticeably larger owing to the longer propa-
gation distance.�

The measurement of two echoes allows the extraction of
the dispersion in the ultrasonic attenuation. This has previ-
ously been reported in picosecond laser acoustics for a vari-
ety of thin films.15,32,58,59 As is common in lower frequency
acoustic pulse-echo measurements,60,61 the dispersion in the
sound velocity may also be extracted. To this end we decom-
pose the initial acoustic wave packet �when free from the
near-surface region� in the form

f�z,t� = �
−�

�

F�z,��e−i�td� , �9�

F�z,�� =
1

2�
�

−�

�

f�z,t�e−i�tdt , �10�

and assume only propagation in the +z direction �since the
effect of acoustic reflections from the Hg-sapphire interface
can be accounted for by multiplying the acoustic strain pulse
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FIG. 6. �Color online� Plots of the normalized variations in op-
tical phase �� and time derivative d� /dt �dotted lines� according to
the theoretical model, showing in addition the components of the
variations arising from the photoelastic effect �dashed-dotted lines�
and the surface displacement �dashed lines�.
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FIG. 7. �Color online� �a� Comparison between the normalized
variation in the optical amplitude-reflection coefficient � for the first
echo �dashed curve� and the second echo �solid curve� in a thin film
of liquid Hg with a nominal thickness of 1.48 �m when pumping
and probing from opposite sides of the sample. The dotted curve
shows the theoretical prediction when only frequency-dependent
ultrasonic attenuation is incorporated in the model using the ther-
moelastic theory of the generation process. �b� The same two ex-
perimental variations for � as in �a� except that the data for the
second echo is also normalized to 1 �for ease of observation of the
difference in temporal profiles�. The time between the two echoes is
2022 ps.
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by a constant�. We may then expand the real function f�z , t�
in the general form

f�z,t� =
1

2
�

0

�

F0���eik���ze−i�td�

+
1

2
�

−�

0

F0
��− ��e−ik*�−��ze−i�td� ,

where k̃=k1+ ik2 is the complex acoustic wave number,
F0��� is a function defined for �
0 that represents the
acoustic spectrum, and � represents the complex conjugate.
If the same time origin is chosen for two consecutive echoes,
and t=0 is defined at the first echo, then

F�0,�� =
1

2
F0��� ,

F�z�,�� =
1

2
rac

2 F0���eik1���z�e−k2���z�,

where z� is now defined as the propagation distance and rac
is the acoustic reflection coefficient from the Hg-sapphire
interface �assumed to be independent of � to a good
approximation62�. It is convenient to define the origin of time
for the second echo in its vicinity �t= t��. In that case F�z� ,��
should be replaced by

G�z�,�� =
1

2
rac

2 F0���eik1���z�e−k2���z�e−i�t�, �11�

as can be seen by replacing f�z , t� by f�z , t+ t�� in Eq. �10�. It
is now straightforward to derive the dispersions k1��� and
k2��� from the real part and modulus of the following equa-
tion:

G�z�,��
F�0,��

= rac
2 ei�k1���z�−�t��e−k2���z�,

where k1���=� /v��� is related to phase velocity v���
�where v=vl� and k2���=���� is the ultrasonic amplitude
attenuation coefficient. When applying this method, one
must ensure that the phase k1���z�−�t� over the frequency
spectrum of the pulse should be known without ambiguity.
For the Hg film thicknesses in question this is not a problem
because the phase variation remains within � /2.63 This
analysis also requires a knowledge of the film thickness, de-
rived in this study using the low-frequency longitudinal
sound velocity of liquid Hg. In this respect our measure-
ments of the velocity dispersion are accurate for the relative
changes as a function of frequency, but do not provide an
absolute determination of vl.

64

The solid curve in Fig. 9�a� shows the measured disper-
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FIG. 8. �Color online� �a� Comparison between the normalized
variation in the optical amplitude-reflection coefficient � for the first
echo �dashed curve� and the second echo �solid curve� in a thin film
of liquid Hg with a nominal thickness of 1.47 �m when pumping
and probing from the same side of the sample. The dotted curve
shows the theoretical prediction when only frequency-dependent
ultrasonic attenuation is incorporated in the model using the ther-
moelastic theory of the generation process. �b� The same two ex-
perimental variations for � as in �a� except that the data for the
second echo is also normalized to 1 �for ease of observation of the
difference in temporal profiles�. The time between the two echoes is
2026 ps.

1

0.8

0.6

0.4

0.2

0

A
TT
EN

U
A
TI
O
N

α
(m

)

EXPT.
QUADRATIC FIT
NON-THERMALα
FIT: τ =0.05 ps
FIT: τ =0.8 ps

EXPT.

FIT: τ =0.05 ps
FIT: =0.8 ps

10
-6

(a)

(b)
NON-THERMAL∆v

12

8

4

0C
H
A
N
G
E

∆v
(m
s-
1 )

1086420
FREQUENCY (GHz)

V
E
LO
C
IT
Y

FIG. 9. �Color online� �a� Ultrasonic attenuation coefficient �
and �b� phase velocity change �v plotted as a function of frequency
for a thin film of liquid Hg with a nominal thickness of 1.48 �m
when pumping and probing from opposite sides of the sample.
Solid curves: experimentally derived variations. Dashed-dotted
curve: least-squares fit to � with a quadratic frequency variation.
Solid squares: experimental contribution to � and �v from struc-
tural relaxation �with the constant contribution to � and the calcu-
lated thermal contributions to � and �v subtracted out�. Dashed
curves: theoretical predictions from the simple structural relaxation
model with single time constant 
=0.8 ps. Dotted curves: the same
with time constant 
=0.05 ps. �The absolute position of the dashed
curve for �v has been offset to fit the data.�
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sions using the opposite-side results of Figs. 4–7. The attenu-
ation can be fitted by the equation ��f�=A+Bf2 �dashed-
dotted line� with B=6000 m−1 GHz−2, a value in reasonable
agreement with B=5700 m−1 GHz−2 determined at frequen-
cies below 1 GHz at room temperature.3 The nonzero value
found for A=85 000 m−1, not expected in liquid metals, is
likely to be an artifact of the choice of the acoustic reflection
coefficient �rac=0.39� assumed for the Hg-sapphire bound-
ary. The value of A only affects the echo height, not the echo
shape. The reflection coefficient rac may be lower than the
calculated value �reducing the value of A� if the sound ve-
locity is slightly higher than the low-frequency value vl
=1450 ms−1 assumed. Another possible cause might be the
presence of imperfect interfaces.65 At room temperature it is
known that liquid Hg does not wet sapphire, precluding the
possibility of interdiffusion.66,67 However, the surface rough-
ness of the sapphire, measured to be ��3 nm rms, can in-
troduce a frequency-dependent ultrasonic reflection coeffi-
cient rac� ���, where rac�

2���=rac
2 exp�−�2�2 /vl

2�,68,69 since
account should be taken of two reflections �relevant to the
comparison of the first and second echoes�. In comparison
with the magnitude of ��f� and propagation distances in
question here for Hg, the effect of this surface roughness is
not significant. �Owing to the experimental uncertainty in
measuring ��f�, we have not attempted to correct ��f� for
the slight effect of surface roughness.� Yet another possible
cause is slight changes in the optical spot size at the sample
surface as a function of the optical delay �associated with the
use of Gaussian optical beams�. Since it is the constant B that
is of most interest, we did not pursue this point further. Mea-
surements on other Hg films with thicknesses of �1 �m
give B=6000�2000 m−1 GHz−2. A more general fit to ��f�
in the form of a power law is also possible, as discussed in
Sec. V.

The constant B determines the distortion of the strain
pulse caused by ultrasonic attenuation. It is interesting to
calculate the expected form of the strain pulses when includ-
ing only this effect in the case when the Bf2 variation of �
holds up to the frequencies, �100 GHz, contained in the
initial acoustic pulse. Starting with the thermoelastic model
for the initial strain profile shown in Fig. 3, we have calcu-
lated the strain pulse shape at the time of the first echo in
Figs. 7�a� and 8�a� for the opposite-side and same-side re-
sults, respectively �see dotted lines�. Although in both cases
the leading edges of the echoes are reproduced well, the
predicted strain pulse shapes fail to account for the asymmet-
ric broadening of the trailing edges. This result is not af-
fected by the broadening of the initial strain pulse through
diffusion processes because the high-frequency components
of the acoustic pulse are removed by the frequency-
dependent attenuation. These considerations show that the
dispersion in the sound velocity is essential to understand the
observed echo shapes.

In the absence of a well-known functional form for the
sound velocity variation �v�f�, we shall not attempt to re-
produce the first echo shape including velocity dispersion.
Instead we use Eq. �11� to calculate the velocity dispersion.
The result is shown by the solid curve in Fig. 9�b�. �The
absolute value of �v is adjusted to make �v�f →0��0.�
Over the accessible acoustic frequency range �1–10 GHz�,

the sound velocity increases approximately linearly. A posi-
tive dispersion, approximately linearly increasing with fre-
quency, was also recorded for other Hg film thicknesses of
�1 �m.70 This velocity dispersion has not been detected in
liquid Hg at lower frequencies ��1 GHz�.71,72 Interpretation
in terms of a more general �v�f� variation in the form of a
power law in frequency is also possible, as discussed in Sec.
V.

V. DISCUSSION AND CONCLUSIONS

The simplest approach to understand these results for dis-
persion is to make use of the standard models for structural2

and thermoelastic relaxation in liquids. At low frequencies
�well below the reciprocals of the volume and shear relax-
ation times 1 /
v and 1 /
s, respectively�, under approxi-
mately adiabatic conditions, and for �v /��1 �as for our
case�, the following equations apply:

� =
1

2v

B� − B0

B0

v +

4

3

G�

B0

s +

�� − 1�D
v2 ��2, �12�

�v
v

=
1

2

B� − B0

B0

v

2 +
4

3

G�

B0

s

2 −
�� − 1�D2

2v4 ��2, �13�

where B0 and B� are, respectively, the low- and infinite-
frequency bulk moduli, G� is the infinite-frequency shear
modulus, v is a shorthand for the adiabatic longitudinal ve-
locity, � is the ratio of the specific heats ��=cP /cV=1.15�,73

and D is the thermal diffusivity. The terms proportional to
�-1 result from the thermal diffusion associated with stress-
induced temperature changes and are correct under approxi-
mately adiabatic conditions that hold provided that frequen-
cies are small compared to v2 / �2��D��70 GHz.74 One can
see that associated with the characteristic �2 dependence of
the ultrasonic attenuation coefficient is a velocity dispersion
that also varies with �2. �In the absence of structural relax-
ation, the longitudinal sound velocity falls from its adiabatic
value v to its isothermal value v /�� as the frequency is
increased.� We estimate that the thermal term in � amounts
to a contribution of 4100 m−1 GHz−2 to the coefficient B.73

In addition, by writing �v=B��2 we estimate that the ther-
mal term in the sound velocity change �v amounts to a con-
tribution of −0.017 ms−1 GHz−2 to the coefficient B�. Sub-
tracting these quantities from our experimental data for �
and �v allows the evaluation of the “nonthermal” contribu-
tion to these quantities, as shown by the square symbols in
Fig. 9 �ignoring the constant term A in ��. These are the parts
of the attenuation and velocity dispersion that are expected to
arise from structural relaxation.

For a quantitative theory one needs to make assumptions
concerning the relaxation times. If we assume for simplicity
an identical value 
 for the volume and shear relaxation
times, Eqs. �12� and �13� provide a well-defined relation be-
tween the variations ���� and �v���. Figure 9 shows the
predicted variations of the nonthermal components of the
velocity dispersion and attenuation under the following as-
sumptions: �B�−B0� /B0=1 �in rough accord with the large
dispersion in the sound velocity13�, G� /B0=1.7 �in accord

WRIGHT et al. PHYSICAL REVIEW B 78, 024303 �2008�

024303-8



with the ratio of the measured bulk to shear viscosities in
liquid Hg3�, with 
=0.05 ps �dotted lines� and 0.8 ps
�dashed lines�. For 
=0.05 ps the frequency dependence of
the nonthermal component of � is approximately reproduced
but the nonthermal component of �v is underestimated,
whereas in the latter case the frequency dependence of the
nonthermal component of �v is approximately reproduced
but the nonthermal component of � is overestimated. In ad-
dition, the predicted quadratic variation in �v does not agree
with the approximately linear rise observed in experiment.
When 
=0.8 ps this simple model gives the same order of
magnitude for 
 as that obtained from neutron-scattering
studies �
�1 ps�.75

It is possible to obtain a better fit to both the velocity
dispersion and attenuation if the parameters �B�−B0� /B0 and
G� /B0 are varied and if we abandon the low-frequency ap-
proximation for the structural relaxation to allow for lower
values of 
s and 
v.2 For example, we could obtain reason-
ably good fits to our data in this way using �B�−B0� /B0
=0.005, G� / �B�−B0�=1.7 �as above�, and 
=15 ps, giving
approximately quadratic and linear dependences of � and �v
with �, respectively. This result with �B�−B0� /B0�1, how-
ever, does not agree with the expected significant high-
frequency stiffening observed in liquid Hg in other
experiments.13 There are in fact a wide range of possible
models including those with a distribution of relaxation
times.2,76 For example, our results can be reproduced by
combining a relaxation time 
1=15 ps associated with the
reduced values of �B�−B0� /B0 and G� /B0 above with a re-
laxation time 
2�0.01 ps associated with the values �B�

−B0� /B0=1 and G� /B0=1.7. However, given the limited fre-
quency range of our measurements we cannot distinguish
between these different possibilities.

Further insight into these results for dispersion can be
obtained by applying the relevant Kramers-Krönig relations
arising from the requirements of causality in acoustics:77–79 it
has been shown that in the case when the experimental at-
tenuation can be approximated as a power law, it is particu-
larly straightforward to predict the velocity change from the
measured attenuation.79,80 In Fig. 10�a� we have fitted the
frequency-dependent component of the measured ultrasonic
attenuation to the law ����=�0�y, where y=1.7 for the
best fit in the frequency range up to 10 GHz �with
�0=2.6	10−13 when � is expressed in rad s–1�. �The rela-
tively small deviation of the optimum value of y=1.7 from
the value y=2 explains why we were previously also able to
fit with the latter value.� This fit with y=1.7 is shown by the
dotted curve in Fig. 10�a�, and agrees extremely well with
the data �solid curve�. The Kramers-Krönig relations for
1�y�3 yield �v=−�0v2�y−1 tan�y� /2� when �=0 is
taken as a reference frequency.79,80 For the case y=1.7 one
therefore obtains �v�0.51�0v2�0.7. The predicted �v���
based on the fit in Fig. 10�a� is shown by the dotted line in
Fig. 10�b�. The agreement with experiment is good, suggest-
ing that the power-law variation of ���� extends beyond the

frequency range probed. These power-law variations that we
obtain for ���� and �v��� emphasize that valid theories for
the experimental behavior probably do not involve a single
relaxation time.

In conclusion, we have investigated the generation of
sound in a liquid metal with ultrashort light pulses. We excite
and interferometrically detect picosecond longitudinal-
acoustic pulses in thin films of a liquid mercury sandwiched
between sapphire plates. By analyzing consecutive echoes
we derive the dispersion in the ultrasonic attenuation and in
the sound velocity for this liquid at frequencies up to 10
GHz. The observed structural relaxation produces strong
broadening and asymmetric distortion of the acoustic pulses.
The magnitude of both the velocity dispersion and ultrasonic
attenuation dispersion suggest the presence of picosecond
relaxation times in liquid mercury.

In addition, we have shown how the longitudinal strain
pulse shape in mercury can be directly probed using detec-
tion at a buried interface. This allowed us to measure the
characteristic asymmetric strain pulse shape caused by
acoustic velocity dispersion. This strain detection method
should prove useful for analyzing the ultrafast optical gen-
eration and propagation of strain in opaque liquids under
conditions in which the probe optical penetration depth is
small compared to the spatial extent of the acoustic pulses.
Measurements on thinner liquid films, perhaps down to be-
low 100 nm in thickness, should allow the investigation of
structural or thermoelastic relaxation at frequencies up to
100 GHz. This method should apply equally well to other
liquid metals or to opaque liquids in general.
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FIG. 10. �Color online� �a� Ultrasonic attenuation coefficient �
and �b� phase velocity change �v plotted as a function of frequency
for a thin film of liquid Hg with a nominal thickness of 1.48 �m
when pumping and probing from opposite sides of the sample.
Solid curves: experimentally derived variations. A constant attenu-
ation has been subtracted from the experimental �. Dotted curve in
�a�: fit to the frequency dependent component of � with a power-
law variation: �� f1.7. Dotted curve in �b�: prediction for �v from
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