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We have developed a nonperturbative functional renormalization group approach for random field models
and related disordered systems for which, due to the existence of many metastable states, conventional per-
turbation theory often fails. The approach combines an exact renormalization group equation for the effective
average action with a nonperturbative approximation scheme based on a description of the probability distri-
bution of the renormalized disorder through its cumulants. For the random field O�N� model, the minimal
truncation within this scheme is shown to reproduce the known perturbative results in the appropriate limits,
near the upper and lower critical dimensions and at a large number N of components, while providing a unified
nonperturbative description of the full �N ,d� plane, where d is the spatial dimension.
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I. INTRODUCTION

The effect of quenched disorder on the long-distance
physics of many-body systems largely remains an unsettled
question, despite decades of intensive research. Ongoing
controversies persist, for instance, on the equilibrium and
out-of-equilibrium behavior of spin glasses and systems
coupled to a random field.1,2 Even though progress has been
made, it has so far proven difficult to construct a proper
renormalization group �RG� approach that provides a de-
scription of ordering transitions and criticality in these sys-
tems. A technical reason for this unsatisfactory situation is
that quenched disorder makes the system intrinsically inho-
mogeneous and that one should, in principle, follow the
renormalization of the whole probability distribution of the
disorder. A physical reason is that the presence of disorder
and of the resulting spatial inhomogeneity lead, for at least
some range of the control parameters, to multiple “meta-
stable states.” �At this point, we use the term metastable state
in a loose acceptance to describe configurations that mini-
mize some energy or free energy, action or effective action in
field-theoretical terminology, but differ from the true ground
state.� How such metastable states evolve upon coarse grain-
ing under RG then represents the central issue: at large
length scales, their influence could vanish, leaving only be-
nign signatures in the thermodynamics, or else it could
modify the critical behavior of the system, the nature of its
phases, and, often in an even more spectacular way, the re-
laxation and out-of-equilibrium dynamical properties.

A well known example of the kind of puzzles associated
with quenched disorder and metastable states is the failure of
the so-called “dimensional reduction” property in the random
field Ising model �RFIM�.3–6 Standard perturbation theory
predicts to all orders that the critical behavior of the RFIM in
dimension d is the same as that of the pure Ising model, i.e.,
in the absence of random field, in two dimensions less, d
−2. The property has been shown in a compact and elegant
manner by Parisi and Sourlas7 by means of a supersymmetric
formalism. However, dimensional reduction predicts a lower
critical dimension for ferromagnetism in the RFIM of dlc
=3, which is in contradiction to rigorous results.8,9 The di-

mensional reduction property must therefore break down in
low enough dimension. The supersymmetric approach gives
a hint at the origin of the breakdown, which appears to be
related, yet in a somewhat obscure way, to the presence of
multiple metastable states10 �in this case, local minima of the
Hamiltonian�.

Over the years and on top of numerous computer simula-
tions and scarce exact analytical results, theoretical ap-
proaches have been devised to cope with disordered systems
characterized by multiple metastable states, such as spin
glasses and random field models.1 To list the main ones, we
mention the following:

�i� phenomenological approaches such as the heuristic
domain-wall arguments11,12 and the “droplet” descrip-
tion,13–15 in which one directly focuses on rare excitations
and the associated low-energy metastable states;

�ii� mean-field theories combined with the replica formal-
ism in order to handle the average over disorder; for models
with spin-glass ordering, the potentially dramatic effect of
the metastable states is captured through a spontaneous
breaking of the replica symmetry;1,2,16,17

�iii� specific RG techniques for low-dimensional �d
=1,2� systems, for instance, the Coulomb gas RG approach
for two-dimensional disordered XY models18,19 or the real
space RG for strongly disordered one-dimensional sys-
tems;20–22

�iv� the perturbative functional RG for energy-dominated
disordered models considered in the vicinity of a critical di-
mension at which the fundamental fields are dimen-
sionless;23–28 one must then follow the flow of a whole func-
tion, an appropriate renormalized cumulant of the disorder.
As first shown by Fisher28 for an elastic manifold pinned by
a random potential, the long-distance physics is controlled by
a zero-temperature fixed point at which the renormalized cu-
mulant is a nonanalytic function of the fields, with the
nonanalyticity encoding the effect of the many metastable
states at zero temperature.

All of these approaches, however, are either questionable
or not easily generalizable: on one hand, the phenomenologi-
cal approaches lack rigorous foundations and the relevance
of mean-field descriptions to finite-dimensional systems is,
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to say the least, far from guaranteed; on the other hand, the
perturbative functional RG becomes extremely complex and
soon untractable in practice for random field systems when
going beyond one-loop calculations;29–31 moreover, it does
not allow one to study the RFIM. �As for specific RG tech-
niques, they are not extendable by construction.�

The purpose of the present work, which is described here
and in a companion paper,32 is therefore to propose a general
theoretical framework that leads to a consistent description
of the equilibrium behavior of the random field models and
related disordered systems. To achieve this, we rely on a
version of Wilson’s continuous RG via momentum shell
integration.33 Under various terminologies, “exact RG,”
“functional RG,” and “nonperturbative RG,” it has been de-
veloped in the past 15 years to become a powerful method
for investigating both universal and nonuniversal properties
in statistical physics and quantum field theory.34–38 The ap-
proach is “exact” in the sense that the RG flow associated
with the progressive account of the field fluctuations over
larger and larger length scales is described through an exact
functional differential equation. It is “functional” because
through the exact equation, one follows the flow of an infi-
nite hierarchy of functions of the fields in place of simply
coupling constants. It is “nonperturbative” �beyond the mere
tautology that an exact description automatically includes all
of the perturbative as well as the nonperturbative effects�
because it lends itself to efficient approximation schemes
that are able to capture genuine nonperturbative phenom-
ena:36 to name a few, in the case of the standard O�N� scalar
model, �numerically� tractable approximations describe the
Kosterlitz–Thouless transition of the XY model in d=2,
which is known to be associated with the binding /unbinding
of topological defects �vortices�, as well as the convexity
property of the thermodynamic potential in the case of spon-
taneous symmetry breaking, which is recovered in other
treatments through nonperturbative configurations such as
instantons.

To study the problem at hand, we combine the ideas of the
perturbative functional RG for disordered systems with the
general formalism of the exact/functional/nonperturbative
RG. In the following, we shall denote our approach nonper-
turbative functional RG �NP-FRG�. It provides a framework
in which to study both the perturbative and the nonperturba-
tive effects in any spatial dimension d and for any number of
components of the fundamental fields N. From the scope of
the present series of papers, we exclude the relaxation and
out-of-equilibrium dynamic phenomena, as well as spin-
glass ordering. We also postpone to a forthcoming publica-
tion the development of the NP-FRG in a superfield formal-
ism able to directly address the failure of supersymmetry in
connection with that of dimensional reduction. Short ver-
sions of the present work appeared in Refs. 30 and 39.

The present paper is organized as follows: In Sec. II, we
present the models and the formalism. We first introduce the
models and discuss their physical relevance and the main
open questions. From the corresponding replica field theo-
ries, we then derive the exact RG equation for the effective
average action, which is the generating functional of the one-
particle irreducible correlation functions at the running scale.
We next relate the replica formalism, in which the replica

symmetry is explicitly broken through the application of
sources, to the cumulants of the renormalized disorder. We
close the section by writing down the exact RG flow equa-
tions for these cumulants.

In Sec. III, we introduce a systematic nonperturbative ap-
proximation scheme. After first discussing the symmetries of
the problem and the way to implement them in the effective
average action formalism, we introduce the nonperturbative
truncation scheme of the exact RG equation: it relies on �i�
an expansion in cumulants of the disorder and �ii� a well
tested approximation of the nonperturbative RG, the “deriva-
tive expansion,” which uses the fact that the relevant physics
is dominated by long wavelength modes to perform an ex-
pansion in the number of spatial derivatives of the funda-
mental fields. Finally, we detail the minimal truncation that
we use in our numerical investigation of the random field
O�N� model �RFO�N�M�.

In Sec. IV, we specialize the formalism to the study of the
RFO�N�M. We introduce the scaling dimensions suitable to a
search for the putative zero-temperature fixed point control-
ling the ordering transition. We first consider the case of the
RFIM and then extend our description to the RFO�N�M.
With the help of these dimensions, the RG flow equations are
then cast in a scaled form. We also briefly comment on the
possible application to other disordered systems.

In Sec. V, we next discuss an important property of the
truncations previously described: because of the one-loop
structure of the exact flow equations and of the appropriate
choice of the approximations, one recovers the perturbative
results both near the upper critical dimension, duc=6, and in
the N→� limit of the RFO�N�M. Even more interestingly,
we also show that our minimal truncation near the lower
critical dimension for ferromagnetism of the RFO�N�1�M,
dlc=4, reduces to the perturbative functional RG result �at
one loop� obtained from the nonlinear sigma version of the
model.23 To the least, the truncated NP-FRG thus provides a
nonperturbative interpolation in the whole �N ,d� plane of the
known perturbative results near d=4, d=6, as well as N
→�. Finally, the presentation and discussion of the results
obtained for the RFO�N�M within the present NP-FRG ap-
proach will be described in the companion paper.32

II. MODELS AND FORMALISM

A. Models

We focus on the equilibrium long-distance behavior of a
class of disordered models, in which N-component classical
variables with O�N� symmetric interactions are coupled to a
random field. Depending on whether the coupling is linear or
bilinear, the models belong to the “random field” �RF� or the
“random anisotropy” �RA� subclasses. Such models with N
=1, 2, or 3 are relevant to describe a variety of systems
encountered in condensed matter physics or physical chem-
istry. To name a few, one can mention dilute antiferromag-
nets in a uniform magnetic field,40 critical fluids and binary
mixtures in aerogels �both systems being modeled by the N
=1 RF Ising model�,41–43 vortex phases in disordered type-II
superconductors �described in terms of an elastic glass
model, whose simplest version is the N=2 RF XY mod-
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el�,44–46 amorphous magnets, such as alloys of rare-earth
compounds,47,48 and nematic liquid crystals in disordered po-
rous media �described by N=2 or N=3 RA models�.49

Other related models can be described as well within the
same formalism, but will only be alluded to: the “random
elastic” model describing an elastic system, such as an inter-
face or a vortex lattice, which is pinned by the presence of
impurities; the “random temperature” model associated with
impurity-generated bond or site dilution in a ferromagnetic
Ising model. For reasons that will become clear further down
in this section, from the present study we exclude spin-glass
ordering and we rather concentrate on ferromagnetic order-
ing �in which the O�N� symmetry is spontaneously broken�
or “quasiordering” �phases with quasi-long-range order�.

Our starting point is the field theoretical �coarse-grained�
description of the systems in terms of an N-component scalar
field ��x� in a d-dimensional space and an effective Hamil-
tonian or bare action,

S��;h,�� = �
x
� 1

2 �
�=1

N

������x��2 + ����x�2�

+
u

4!
	�

�=1

N

���x�2
2

− �
�=1

N

h��x����x�

− �
�,�=1

N

����x����x����x�� , �1�

where �x 
�ddx and the superscript � spans the N compo-
nents of the field; h�x� is a random magnetic field and ��x� is
a second-rank random anisotropy tensor, which, for simplic-
ity, are both taken �see also the discussion below� with the
Gaussian distributions characterized by zero means and the
variances given by

h��x�h��y� = ������x − y� , �2�

����x��	
�y� =
�2

2
���	��
 + ��
��	���x − y� , �3�

where the overbar generically denotes the average over
quenched disorder. Higher-order random anisotropies could
be included as well. They will indeed be generated along the
RG flow. However, for symmetry reasons, when starting with
only a second-rank, or more generally an even-rank, random
anisotropy, only even-rank anisotropies are generated: this
corresponds to what is called the RA model. The model with
a nonzero �, for which anisotropies of both odd and even
ranks are generated under RG flow, is the RF model.

The equilibrium properties of the model are obtained from
the average over disorder of the logarithm of the partition
function,

Z�J� =� D� exp�− S��;h,�� + �
x

J�x� · ��x�� , �4�

where J�x� is a source linearly coupled to the fundamental
field and a �ultraviolet� momentum cutoff �, which is asso-
ciated with an inverse microscopic length scale such as a
lattice spacing, is implicitly considered in the functional in-

tegration over the field. With this definition, however, the
partition function and the corresponding thermodynamic po-
tential W�J�=ln Z�J� are still functionals of the random
fields: W�J�
W�J ;h ,��. As is well known from the theory
of systems with quenched disorder, the thermodynamics is
given by the average over disorder of the “free energy,” i.e.,

W�J� = ln Z�J� . �5�

Full information on the system, in particular, an access to the
correlation �Green’s� functions of the field, requires knowl-
edge of the higher moments of W�J�, which is viewed as a
random functional.50 As will be more thoroughly discussed
further below, such information can be conveniently ex-
tracted by using the replica formalism, whose starting point
is the replacement of ln Z by the limit of �Zn−1� /n when n,
i.e., the number of replicas of the original system, goes to
zero. Quite differently from the standard but controversial
use of this replica trick, in which the analytic continuation
for n�1 opens the possibility of a spontaneous breaking of
the replica symmetry,16 we will consider an a priori more
benign procedure, in which the symmetry between replicas is
explicitly broken by the introduction of external sources act-
ing on each replica independently. This procedure will allow
us to generate the cumulant expansion of the disorder-
dependent functional W�J�.

Within the replica formalism, the original problem is re-
placed by one with n replica fields ��a�x��, where a
=1,2 , . . . ,n, and the “replicated action,” which is obtained
after explicitly performing the average over the disorder in
the partition function, reads

Sn���a�� = �
x
� 1

2�
a=1

n ����a�x��2 + ���a�x��2 +
u

12
���a�x��2�2�

−
1

2 �
a,b=1

n

�� �a�x� · �b�x� + �2 ��a�x� · �b�x��2�� ,

�6�

with the corresponding partition function,

Zn��Ja�� =� �
a=1

n

D�a exp	− Sn���a��

+ �
a=1

n �
x

Ja�x� · �a�x�
 , �7�

where the linear sources Ja�x�, a=1,2 , . . . ,n, separately act
on each replica. Associated with this partition function is the
generating functional of the connected Green’s functions,
Wn��Ja��=ln Zn��Ja��, and the effective action, 
n���a��,
which is defined through a Legendre transform,


n���a�� = − Wn��Ja�� + �
a=1

n �
x

Ja�x� · �a�x� . �8�

The fields ��a� and the sources �Ja� are related by
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�a
��x� = ��a

��x�� =
�Wn��Ja��

�Ja
��x�

, �9a�

where �X� represents the average of X with the weight given
in Eq. �7�, and

Ja
��x� =

�
n���a��
��a

��x�
. �9b�

The effective action is the generating functional of the one-
particle irreducible �1− PI� correlation functions or proper
vertices.

The formalism we are about to describe also applies to
extensions of the replicated action of Eq. �6� that can be cast
in the form

Sn���a�� = �
x
��

a=1

n �1

2
���a�x��2 + U���a�x���

−
1

2 �
a,b=1

n

V���a�x�,�b�x�� + ¯� , �10�

where the subscript � recalls that the various terms are at
their bare value, which is defined at the microscopic scale �,
and the dots indicate possible functions involving higher
numbers of replicas. The functions U� ,V� , . . . satisfy the
O�N� symmetry as well as the Sn permutational symmetry
between replicas. Equation �1� is obviously a special case of
the above expression, and higher-order anisotropies are in-
cluded in a two-replica term, which is only function of
�a�x� ·�b�x�. RF and RA O�N� models with non-Gaussian
distributions of the random fields and anisotropies are de-
scribed by terms involving higher number of replicas. �Note
that the RA O�N� model is defined as such for N�1; the
Ising case, N=1, corresponds to another model, the random
temperature model introduced hereafter.�

Other disordered systems are also described by the form
of the replicated action in Eq. �10�. For instance, the random
temperature model corresponds to Eq. �10� with U� and V�

functions of the fields only through the O�N� invariants 	a

= 1
2 ��a�2 , 	b= 1

2 ��b�2. In the RF, RA, and random temperature
models, the one-replica part of the bare action simply de-
scribes n copies of the standard ferromagnetic O�N� model
without disorder.

The random elastic model is also a special case of Eq.
�10�. However, contrary to the models just discussed, the
one-replica potential U� is absent �or reduced to a purely
quadratic term� so that there is no mechanism triggering a
paramagnetic-ferromagnetic phase transition. The two-
replica potential V�, which is the second cumulant of a ran-
dom pinning potential, is now function of only the difference
between the two replica fields, �a�x�−�b�x�. As a result, the
model has an additional symmetry, i.e., the statistical tilt
symmetry,51 which guarantees that the one-replica part of the
action, including the kinetic term, is not renormalized: the
effective action has thus the same one-replica part as the bare
one. �Note that as shown in Ref. 30 and in the companion

paper,32 the random elastic model, although with an underly-
ing periodicity, also emerges as a low-disorder approxima-
tion of the RF and RA XY �N=2� models.�

B. Exact renormalization group equation for the
effective average action

The exact RG in the effective average action form-
alism34,36,52 relates the bare action �here Eq. �10�� to the full
effective action �Eq. �8�� through a progressive inclusion of
fluctuations of longer and longer wavelength. To do so, one
introduces an infrared regulator, which is characterized by a
scale k, which, in the functional integration leading to the
partition function, suppresses the contribution of the low-
energy modes with momentum �q��k, while including the
high-energy modes with �q��k. After Legendre transforma-
tion, this defines an “effective average action” at the running
scale k, 
k, which continuously interpolates between the mi-
croscopic scale k=�, at which 
k=� reduces to the bare ac-
tion, and the macroscopic one, k=0, at which 
k=0 equals the
full effective action.

More precisely, in the present context, a “masslike” qua-
dratic term is added to the bare action �Eq. �10��,

�Sk���a�� =
1

2 �
a,b=1

n

�
�,�=1

N �
q

Rk,ab
�� �q2��a

��− q��b
��q� , �11�

where �q 
�ddq / �2��d; Rk,ab
�� �q2� denotes infrared cutoff

functions which, in order to enforce that the additional term
satisfies the same O�N� and Sn symmetries as the bare action
�see above�, must take the following form:

Rk,ab
�� �q2� = �R̂k�q2��ab + R̃k�q2�����. �12�

The cutoff functions R̂k�q2� and R̃k�q2� are chosen such as
to realize the decoupling of the low- and high-momentum
modes at the scale k: for this, they must decrease sufficiently
fast for large momentum �q��k and go to a constant value �a
“mass”� for small momentum �q��k. The presence of an

off-diagonal component R̃k�q2� is somewhat unusual and will
be discussed later on. The cutoff functions must also satisfy
the two constraints that �i� they go to zero when k→0 so that
one indeed recovers the full effective action with all modes

accounted for and �ii� R̂k�q2� diverges while R̃k�q2� stays fi-
nite when k→� so that the effective average action does
reduce to the bare action. �In what follows, we are only con-
cerned with the long-distance behavior of the models and do
not pay attention to the microscopic details; we thus let � go
to � in the cutoff functions.� Different choices have been
proposed and tested in recent literature. Standard choices for

R̂k�q2� are of the form

R̂k�q2� = Zkq
2r�q2/k2� , �13�

where Zk is a field renormalization constant yet to be speci-
fied and r�y�=y−1�1−y���1−y�,53 where � is the Heaviside
function and r�y�= �ey −1�−1.52

From the partition function Zk��Ja�� obtained from the
bare action supplemented with the k-dependent regulator
�Eq. �11��, one defines the generating functional of the
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Green’s functions Wk��Ja��=ln Zk��Ja�� and through a Leg-
endre transform, one has access to the effective average ac-
tion at the running scale k, 
k,


k���a�� + Wk��Ja�� = �
a=1

n �
x

Ja�x� · �a�x� − �Sk���a�� ,

�14�

where the fields ��a� and the sources �Ja� are related by the
�k dependent� expression

�a
��x� = ��a

��x�� =
�Wk��Ja��

�Ja
��x�

. �15�

The Legendre transform is slightly modified by the addition
of the last term in Eq. �14�, which ensures that the effective
average action 
k does reduce to the bare action at the mi-
croscopic scale, with no contribution from the infrared regu-
lator. This addition does not change the behavior in the k
→0 limit since the regulator identically goes to zero. Physi-
cally and to use the language of magnetic systems, the effec-
tive average action is a coarse-grained Gibbs free energy. It
is the generating functional of the 1− PI correlation func-
tions, from which one can derive all of the Green’s functions
of the modified system at the scale k. Note, that here and in
the following, we omit the subscript n associated with the
number of replicas in order to simplify the notations.

The evolution of the effective average action with the
infrared cutoff k is governed by an exact flow equation,

�k
k���a�� =
1

2
�

q
Tr��kRk�q2���k

�2� + Rk�q,−q
−1 � , �16�

where the trace involves a sum over both replica indices and
N-vector components; Rk�q2� is defined in Eq. �12� and �k

�2�

is the tensor formed by the second functional derivatives of

k with respect to the fields �a

��q�,

�
k
�2��ab

���q,q�� =
�2
k

��a
��q���b

��q��
. �17�

The above RG flow equation is a complicated functional
integrodifferential equation that cannot be exactly solved in
general; however, due to its one-loop structure and its rea-
sonably transparent physical content, it provides a conve-
nient starting point for nonperturbative approximation
schemes.

At this point, it is quite clear to see why we have excluded
spin-glass ordering from our considerations. The quadratic
form of the infrared regulator in Eq. �11� suppresses the fluc-
tuations of the low-momentum modes of the fundamental
fields �a. On the other hand, spin-glass ordering involves
fluctuations of composite fields, which are associated, e.g.,
with the “overlap” between different replicas.16 Proper RG
treatment of such fluctuations implies the introduction of a
masslike regulator for composite fields, i.e., in the simplest
case, a functional that is quartic in the fundamental fields
instead of the quadratic term used here. We do not consider
this case in the present work.

C. Explicit replica symmetry breaking and cumulants
of the renormalized disorder

Among the technical difficulties encountered when mak-
ing use of the exact RG equation �Eq. �16��, there is one
which is specific to disordered systems and to the present
replica formalism: one must invert the matrix �k,ab

�2� +Rk,ab for
arbitrary replica fields �since all replicas are different due to
the independently applied sources�. Before delving into this
problem, it is worth giving some physical insight into the
meaning of the explicit replica symmetry breaking used here.

As discussed in Sec. II A, after a full account of the fluc-
tuations, the bare disorder is renormalized to a full random
�“free energy”� functional W�J�, which, to make its depen-
dence on the bare quenched disorder explicit, we now denote
W�J ;h�. This random object can be characterized by
the infinite set of its cumulants, W1�J1� ,W2�J1 ,J2� ,
W3�J1 ,J2 ,J3� , . . ., where

W1�J1� = W�J1;h� , �18�

W2�J1,J2� = W�J1;h�W�J2;h� − W�J1;h� W�J2;h� ,

�19�

etc. The first cumulant W1 gives access to the thermodynam-
ics of the system and the higher-order cumulants describe the
distribution of the renormalized disorder �we define, as in the
bare action, a disorder with zero mean�. Note that by con-
struction, the cumulants are invariant under permutations of
their arguments.

The cumulants can be generated from an average involv-
ing copies, or “replicas,” of the original disordered system as
follows:

exp	�
a=1

n

W�Ja;h�
 = exp�W��Ja���

= exp	�
a=1

n

W1�Ja� +
1

2 �
a,b=1

n

W2�Ja,Jb�

+
1

3! �
a,b,c=1

n

W3�Ja,Jb,Jc� + ¯
 , �20�

where the n copies have the same bare disorder but are
coupled to different external sources. To fully characterize
the random functional W�J ;h�, it is indeed important to de-
scribe its cumulants for generic arguments, i.e., for different
sources. �Be aware that the subscripts 1 ,2 , . . . used to denote
the cumulants of W should not be confused with the sub-
script n that denotes the number of replicas in Sec. II A and
is omitted since; here, for instance, W1 denotes the one-
replica component, which corresponds to the first cumulant,
whereas in the previous notation, Wn=1 is given by the sum of
all cumulants with all their arguments equal.�

A convenient trick to extract the cumulants with their full
functional dependence is to let the number of replicas be
arbitrary and to view the expansion on the right-hand side of
Eq. �20� as an expansion of the functional W��Ja�� defined
below Eq. �7� in increasing number of “free,” or uncon-
strained, sums over replicas. The term of order p in the ex-
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pansion is a sum over p replica indices of a functional de-
pending on exactly p replica sources; this functional is
precisely equal to the pth cumulant of W�J ;h�. This proce-
dure, which rests on an explicit breaking of the replica sym-
metry and an analytic continuation to arbitrary numbers of
replicas �including the limit n→0 previously introduced�, is
a priori different from the standard use of replicas, in which
all the sources are equal; it avoids the delicate handling of a
spontaneous replica symmetry breaking.1,2,16,17 It was used in
a similar context by Le Doussal and Wiese.54,55 The practical
implementation of the expansion in free replica sums will be
detailed in Sec. II D.

In our present NP-FRG approach, however, the central
object is the effective action 
, not W. The expansion of

���a�� in increasing number of free replica sums reads


���a�� = �
a=1

n


1��a� −
1

2 �
a,b=1

n


2��a,�b�

+
1

3! �
a,b,c=1

n


3��a,�b,�c� + ¯ , �21�

where for later convenience, we have introduced a minus
sign for all the even terms of the expansion. 
���a�� and
W��Ja�� are related to a Legendre transform, so if one also
expands the sources Ja��� f�� �where �� f� denotes the n rep-
lica fields to avoid confusion in the indices� in increasing
number of free replica sums, one can relate the terms of the
expansion of the effective action to the cumulants of the
random functional W�J ;h�. The relation is straightforward
for the first terms but gets more involved as the order in-
creases.

More precisely, 
1��� is the Legendre transform of
W1�J�, namely,


1��� = − W1�J� + �
x

J�x� · ��x� , �22�

with

���x� =
�W1�J�
�J��x�

, �23�

and the second-order term is given by


2��1,�2� = W2�J��1�,J��2�� , �24�

where J��� is the nonrandom source defined via the inverse
of the Legendre transform relation in Eq. �22�, i.e.,
J�����x�=�
1��� /����x�. �Note that the J�x� that is intro-
duced here differs from the source Ja�x� introduced in Eq.
�9b�: through the Legendre relations, the latter depends on all
the fields ��a�, while the former depends on only one replica
field.� The above expression motivates our choice of signs
for the terms of the expansion in free replica sums of

���a��, Eq. �20�: 
2��1 ,�2� is directly the second cumulant
of W�J ;h� �with the proper choice of J����.

For the higher-order terms, one finds


3��1,�2,�3� = − W3�J��1�,J��2�,J��3��

+ �
xy

�W2,x
�10��J��1�,J��2���W1

�2��J��1���xy
−1

�W2,y
�10��J��1�,J��3�� + perm�123�� , �25�

etc., where perm�123� denotes the two additional terms ob-
tained by cyclic permutations of the fields �1 ,�2 ,�3 and
where we have used the following short-hand notation,

W1,x1¯xp

�p� �J1� =
� pW1�J1�

�J1�x1� ¯ �J1�xp�
, �26�

W2,x1¯xp,y1¯yq

�pq� �J1,J2� =
� p+qW2�J1,J2�

�J1�x1� ¯ �J1�xp��J2�y1� ¯ �J2�yq�
,

�27�

etc. Note that for clarity, the O�N� indices have been omitted
in the above expressions.

We point out that 
p��1 , . . . ,�p� for p�3 cannot be di-
rectly taken as the pth cumulant of a physically accessible
random functional, in particular, not of the disorder-
dependent Legendre transform of W�J ;h� �although it can
certainly be expressed in terms of such cumulants of order
equal to or lower than p�. In the following and by an abuse of
language, we will nonetheless generically call the 
p’s “cu-
mulants of the renormalized disorder” �which is true for p
=2�.

In complement to the above picture and more specifically
for random field systems, it is also interesting to introduce a

renormalized random field �or random force� h̆����x�, which
is defined as the derivative of a random free-energy func-
tional,

h̆�����x� = −
�

����x�
„W�J���;h� − W�J���;h�… , �28�

and whose first moment is equal to zero by construction.
It is easy to derive that its pth cumulant �p�2� is given
by the derivative with respect to �1 , . . . ,�p of
Wp�J��1� , . . . ,J��p��, which can then be related to deriva-
tives of 
2 ,
3 , . . .; for instance,

h̆��1��x�h̆��2��y� = 
2,xy
�11���1,�2� , �29�

where we have used a short-hand notation similar to that of
Eqs. �26� and �27� and omitted the N-vector indices for sim-
plicity. Terms of order 3 and higher are again given by more
complicated expressions.

We close this discussion by noticing that in the simpler
case of the random manifold model, where 
1 and W1 are
trivial and unrenormalized due to the statistical tilt symmetry
�see above�, J��� has a simple explicit expression. For in-
stance, if the bare action has a quadratic one-replica term,

1��� is equal to this quadratic functional and J��� is a
known linear functional of �, which further simplifies when
considering uniform fields. This allows one to devise ways to
directly measure the second cumulant of the renormalized
disorder.56,57 Nothing similar occurs in random field and ran-
dom anisotropy models: the thermodynamics of such sys-
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tems being highly nontrivial �with a phase transition and a
critical point�, the expression of J��� is involved and a priori
unknown.

D. Exact renormalization group equations for the
renormalized disorder cumulants

The reasoning developed in Sec. II C can be applied to the
effective average action 
k and its expansion in free replica
sums. As a result, Eqs. �18�–�29� can be extended to any
running scale k. Yet, to make the expansion in free replica
sums an operational procedure, one needs to be able to per-
form systematic algebraic manipulations, as for instance the
inversion of the matrix appearing on the right-hand side of
the exact RG equation �Eq. �16��. Here, we detail the method
for matrices depending on two replica indices but functionals
of the n replica fields. Extension to higher-order tensors is
presented in Ref. 55.

A generic matrix Aab��� f��, where again �� f� denotes the
n replica fields to avoid confusion in the indices, can be
decomposed as

Aab��� f�� = Âa��� f���ab + Ãab��� f�� . �30�

In the above expression, it is understood that the second term

Ãab no longer contains an explicit Kronecker delta. Each
component can now be expanded in increasing number of
free replica sums,

Âa��� f�� = Â�0���a� + �
c=1

n

Â�1����a��c� + ¯ , �31�

Ãab��� f�� = Ã�0���a,�b� + �
c=1

n

Ã�1���a, ��b��c� + ¯ ,

�32�

where the superscripts in square brackets denote the order in
the expansion �and should not be confused with superscripts
in parentheses indicating partial derivatives�.

As an illustration, the expansion of the matrix �k
�2� defined

in Eq. �17� reads, in terms of the expansion of the effective
average action itself,

�̂k
�2���� f��a = �k,1

�2���a� − �
c=1

n

�k,2
�20���a,�c� + ¯ , �33�

�̃k
�2���� f��ab = − �k,2

�11���a,�b� + �
c=1

n

�k,3
�110���a,�b,�c� + ¯ ,

�34�

where the permutational symmetry of the arguments of the

k,p’s has been used.

Algebraic manipulations on such matrices can be per-
formed by term-by-term identification of the orders of the
expansions. For instance, the inverse B=A−1 of the matrix A
can also be put in the form of Eq. �30� and its components,

B̂a and B̃ab, can be expanded in a number of free replica

sums. The term-by-term identification of the condition A ·B
=1 leads to a unique expression of the various orders, B̂�p�

and B̃�p�, of the expansion of B in terms of the Â�q�’s and

Ã�q�’s with q� p. The algebra becomes rapidly tedious, but
the first few terms are easily derived,

B̂�0���1� = Â�0���1�−1, �35�

B̃�0���1,�2� = − B̂�0���1�Ã�0���1,�2�B̂�0���2� , �36�

B̂�1����1��2� = − B̂�0���1�Â�1����1��2�B̂�0���1� , �37�

B̃�1���1, ��2��3� = − B̂�0���1��Ã�1���1, ��2��3�

− Ã�0���1,�3�B̂�0���3�Ã�0���3,�2�

− Â�1����1��3�B̂�0���1�Ã�0���1,�2�

− Ã�0���1,�2�B̂�0���2�Â�1����2��3��B̂�0���2� ,

�38�

etc.
We can apply the above procedure to the exact RG equa-

tion for the effective average action. For convenience, we
introduce the modified propagator at the scale k,

Pk��� f�� = ��k
�2� + Rk�−1, �39�

with

Pk,ab��� f�� = P̂k,a��� f���ab + P̃k,ab��� f�� , �40�

where P̂k,a and P̃k,ab are still tensors with respect to the mo-
menta and vector component indices. Equation �16� then
leads to an infinite hierarchy of flow equations for the cumu-
lants of the renormalized disorder,

�k
k,1��1� =
1

2
�

q
��k�R̂k�q2� + R̃k�q2��tr P̂k,q−q

�0� ��1�

+ �kR̂k�q2�tr P̃k,q−q
�0� ��1,�1�� , �41�

�k
k,2��1,�2� = −
1

2
�

q
��k�R̂k�q2� + R̃k�q2��tr P̂k,q−q

�1� ���1��2�

+ �kR̂k�q2�tr P̃k,q−q
�1� ��1, ��1��2�

+ �kR̃k�q2�tr P̃k,q−q
�0� ��1,�2� + perm�12�� ,

�42�

and so on, where tr indicates a trace over N-vector compo-
nents and perm�12� denotes the expression obtained by per-
muting �1 and �2. �Some care is needed in the term by term
identification in order to properly symmetrize the expres-
sions and satisfy the permutational property of the various
arguments of the cumulants.�

By expressing the higher-order terms P̂k
�p� and P̃k

�p� with

p�1 only by means of P̂k
�0� and the derivatives of the 
k,p’s

and by introducing the short-hand notation �̃k to indicate a
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derivative acting only on the cutoff functions, i.e., �̃k


�kR̂k � /�R̂k+�kR̃k � /�R̃k, Eq. �42� can be rewritten as

�k
k,2��1,�2�

=
1

2
�̃k Tr�P̂k

�0���1���k,2
�20���1,�2� − �k,3

�110���1,�1,�2��

+ P̃k
�0���1,�1��k,2

�20���1,�2� +
1

2
P̃k

�0���1,�2�

���k,2
�11���1,�2� − R̃k1� + perm�12�� , �43�

and similarly for higher-order cumulants, where 1qq�
��

= �2��d��q+q����� and the trace Tr is now over both mo-
menta and N-vector components; the modified propagators

P̂k
�0� and P̃k

�0� are explicitly given by

P̂k
�0���1� = ��k,1

�2���1� + R̂k1�−1, �44�

P̃k
�0���1,�2� = P̂k

�0���1���k,2
�11���1,�2� − R̃k1�P̂k

�0���2� .

�45�

This provides a hierarchy of exact RG equations for the
cumulants of the renormalized disorder �including the first
one that leads to a description of the thermodynamics�. One
should note that �i� the cumulants are functionals of the fields
and contain full information on the complete set of 1− PI
correlation functions and �ii� the flow equations are coupled,
with the �p+1�th cumulant appearing on the right-hand side
of the equation for the pth cumulant. As such, these RG
equations remain untractable and their resolution requires ap-
proximations.

III. NONPERTURBATIVE APPROXIMATION SCHEME

A. Symmetries in the effective average action
formalism

When writing the RG flow for the effective average action
and when devising an approximation scheme to solve it, one
should as far as possible make sure that the symmetries of
the theory are not explicitly violated at any scale. Such a
requirement is easily implemented as far as elementary sym-
metries, such as invariance by translation and rotation in Eu-
clidean space, O�N� symmetry, and Sn replica permutational
symmetry, are concerned: the infrared regulator �Sk added to
the bare action must be chosen such that it is invariant under
the appropriate transformations, which is indeed guaranteed
by the expressions in Eqs. �11� and �12�. The exact effective
average action at any scale k then also possesses the symme-
tries of the bare action, and one just has to be careful that the
truncations do not explicitly break the symmetries, which is
easily implemented.36

A similar treatment can be applied to most additional
symmetries of the disordered systems under consideration.
For instance, the “statistical tilt symmetry” of the random
manifold model is easily extended to a k-dependent statisti-
cal tilt symmetry with any regulator of the form given in

Eqs. �11� and �12�, which implies that the one-replica part
�first cumulant� of the effective average action is unrenor-
malized along the flow. Similarly, the additional inversion
symmetries of the random anisotropy ��a ·�b→−�a ·�b� and
the random temperature ��a , ��b�b�a→−�a , ��b�b�a� models

are readily accounted for with the choice R̃k
0. Truncation
schemes naturally follow.

Taking into account the underlying supersymmetry that
characterizes the random field model for a Gaussian distri-
bution of the random field7 is much more involved. First,
because one knows that the supersymmetry, which goes with
the dimensional reduction property, must be broken in low
enough dimensions �at least, in d=3� so that, even if the RG
flow is started with an initial condition obeying supersym-
metry, a mechanism should be provided to describe a spon-
taneous breaking of the supersymmetry. Second, the super-
symmetry shows up in a superfield formalism built with
auxiliary fermionic and bosonic fields, but it is far from
transparent in the present framework based on the fundamen-
tal fields. �This is already true at the level of the initial con-
dition of the RG flow.� We shall therefore defer the proper
resolution of this problem to a forthcoming publication.58

Note that an underlying supersymmetry is also present in the
random manifold model, where it also �incorrectly� leads to
the d→d−2 dimensional reduction. However, the pure
model with no disorder is merely a free field theory, and this
is easily accounted for.59

B. Truncation schemes

We have already stressed that solving the exact RG equa-
tion for the effective average action requires approximations.
The general framework has proven quite versatile for devis-
ing efficient and numerically tractable approximations that
are able to describe both universal and nonuniversal proper-
ties in any spatial dimension and to capture genuine nonper-
turbative phenomena �see Sec. I�. Such approximations gen-
erally amount to truncating the functional form of the
effective average action, which results in a self-consistent
flow that preserves the fundamental structure of the theory
�as the symmetries, see above�.

If one is interested in the long-distance physics of a sys-
tem and in observables at small momenta, a systematic trun-
cation scheme is provided by the so-called derivative
expansion.34,36 It consists in expanding the effective average
action in increasing number of derivatives of the field�s� and
retaining only a limited number of terms. The lowest order is
the “local potential approximation” �LPA�,60 in which one
only considers the flow of the effective average potential,
i.e., the effective average action for a uniform field configu-
ration. The field is not renormalized and the associated
anomalous dimension � is equal to zero. Field renormaliza-
tion, which is important in the present problem wherein one
expects the anomalous dimension to be quite sizeable in low
dimensions �e.g., numerical estimates give ��0.5 for the
RFIM in d=3�, requires to go beyond the LPA and to con-
sider the first order of the derivative expansion. Previous
studies on a variety of systems, including the pure O�N�
model, have shown that the system’s behavior is quantita-
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tively very well described at this level of approxima-
tion.36,37,61,62 Higher-order terms improve the accuracy,63,64

but they rapidly become untractable except in simple models.
For the disordered systems considered here, one more

step is needed. We have seen in Sec. II C that an expansion
in number of free replica sums can be used to generate the
cumulants of the renormalized disorder. Keeping only a lim-
ited number of terms in the expansion therefore leads to a
systematic truncation scheme. To describe both the thermo-
dynamics and the renormalized probability distribution of the
disorder, one must consider at least the first two cumulants,
or equivalently, the second order in the expansion in free
replica sums.

Finally, on top of the two previous approximations, it may
be useful, and numerically more tractable, to expand the
functions appearing in the truncated effective average action
in powers of the field considered around a given �uniform�
configuration. This configuration can be taken either as zero
everywhere or as a nontrivial configuration that minimizes
the effective average potential �here, more precisely, its one-
replica component that gives access to the thermodynamics�.
Again, the accuracy and convergence properties of such field
expansions have been widely tested for many different mod-
els. In the present case, wherein nonanalyticities in the field
dependences will be encountered, field expansions should be
used with great caution.

C. Minimal truncation

Given the general scheme presented above, the choice of
a minimal nonperturbative truncation is guided by a combi-
nation of factors: experience gained from studies on other
models, constraints associated with the symmetries of the
full theory, intuition or previous knowledge concerning the
physics of the problem at hand, requirement of being able to
recover as much as possible exact and perturbative results in
the appropriate limits, and of course a practical limitation
coming with the numerical capability to actually solve the set
of RG flow equations.

As we have already alluded to, a description of the long-
distance physics of random field models and related disor-
dered systems at least requires to keep the first two cumu-
lants of the disorder, i.e., the first two terms 
k,1 and 
k,2 of
the expansion of the effective average action in free replica
sums. Because of the anticipated non-negligible value of the
anomalous dimension of the field �, in the description one
must also include at least the first order of the derivative
expansion of the first cumulant 
k,1. The resulting truncated
functional form of the effective average action then reads


k���a�� = �
x
��

a=1

n �Uk�	a�x�� +
1

2
Zk�	a�x�����a�x��2

+
1

4
Yk�	a�x����	a�x��2�

−
1

2 �
a,b=1

n

Vk��a�x�,�b�x��� , �46�

where, as before, 	a�x�= 1
2 ��a�x��2. In the above expressions,

Uk��1�
Uk�	1� is the effective average potential, which is
equal to the one-replica component 
k,1 evaluated for a uni-
form field and will hereafter be simply denoted as the one-
replica potential; Vk��1 ,�2�
Vk�	1 ,	2 ,�1 ·�2� is the two-
replica potential and is equal to the two-replica component

k,2 evaluated for a uniform field configuration. Physically,
Uk��1� is a coarse-grained Gibbs free energy and Vk��1 ,�2�
is the second cumulant of the renormalized disorder evalu-
ated for uniform fields �see Eqs. �22� and �24��. The two
terms Zk�	1� and Yk�	1� correspond to field renormalization
functions for the Goldstone and massive modes, respectively.

We note in passing that the fact that only the first two
cumulants of the disorder have been kept in the truncation
does not imply that the probability distribution of the renor-
malized disorder is actually taken as Gaussian. Indeed, as
will be discussed in the companion paper,32 the probability is
not Gaussian in general. The truncation means that we have
neglected the contribution coming from the third cumulant in
the RG flow of the second cumulant and have therefore de-
coupled the hierarchy of flow equations for the cumulants.

Being interested in the description of the models in the
full �N ,d� diagram, we will have recourse to further approxi-
mations that make the numerical resolution of the flow equa-
tions easier. More specifically, we consider the lowest-order
term of the field expansion of the field renormalization func-
tions around a nontrivial configuration, 	m,k= 1

2 ��m,k�2, which
minimizes the one-replica potential Uk�	�: Yk
0 and Zk�	�

Zm,k, with Zm,k=Zk�	m,k� and Uk��	m,k�=0. Physically, �m,k
is the magnetization �order parameter� at the scale k. �If
�m,k→0=0, the system is in an O�N� symmetric phase,
whereas if �m,k→0�0, the system is in the phase with broken
symmetry.� Zm,k is chosen as the field renormalization in the

cutoff function R̂k�q2� �see Eq. �13��. Finally, we simplify the
resulting RG flow equations by setting the off-diagonal cut-

off function to zero, R̃k
0.
With the above approximations, which we shall refer to as

the minimal truncation, the self-consistent NP-FRG equa-
tions can be derived from Eqs. �41�–�43�. The flows of the
one- and two-replica potentials read

�kUk�	1� =
1

2
�

q
�kR̂k�q2�tr�P̂k

�0��q2;	1�

− P̂k
�0��q2;	1�Vk

�11���1,�1�P̂k
�0��q2;	1�� , �47�

�kVk��1,�2� = −
1

2
�

q
�kR̂k�q2�tr�P̂k

�0��q2;	1��Vk
�20���1,�2�

+ P̂k
�0��q2;	2�Vk

�11���1,�2�2

+ Vk
�20���1,�2�P̂k

�0��q2;	1�Vk
�11���1,�1�

+ Vk
�11���1,�1�P̂k

�0��q2;	1�Vk
�20���1,�2��

�P̂k
�0��q2;	2� + perm�12�� , �48�

where the trace is over the N-vector components and, due
to the O�N� symmetry, Vk��1 ,�2�
Vk�	1 ,	2 ,z� where z
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=�1 ·�2 /�4	1	2; the �modified� propagator P̂k
�0��q2 ;	� is

given by

P̂k
�0��q2;	��� = � �1 − ��1�

Zm,kq
2 + R̂k�q2� + Uk��	�

+
��1

Zm,kq
2 + R̂k�q2� + Uk��	� + 2	Uk��	�

����,

�49�

where �=1 is chosen to be the direction of the field � and
therefore corresponds to the massive mode while the
�N−1� remaining components represent the Goldstone
modes.

The flow of the field renormalization constant Zm,k is ob-
tained from the prescription Zk�	�= ��q2
k,1

�2��q2 ;	����q2=0,
where � is chosen as a Goldstone mode ���1��36� and from
the condition Uk��	m,k�=0. It can be explicitly written as

∂kZm,k = ∂q2 ∂̃k

[
4 � − 2 �

−
�

]∣∣∣∣∣
q=0

, �50�

where a line denotes the Goldstone propagator and the dots
represent vertices obtained from derivatives of either the
one-replica potential �single dots� or the two-replica potential
�dots linked by a dashed line�; for instance,

represents the three-point vertex 
k
�21�
Vk

�21�. We did not in-
clude the graphs containing four-point vertices because in the
truncation considered here, they do not contribute to the flow
of Zm,k. From the above flow equation �Eq. �50��, one ex-
tracts a running anomalous exponent,

�k = − k�kZm,k. �51�

The initial conditions for the RG flow equations are ob-
tained from the bare action �Eq. �10��. The RG flow equa-
tions form a closed set of coupled nonlinear integrodifferen-
tial equations for two functions, Uk�	1� and Vk�	1 ,	2 ,z�, and
a constant, Zm,k. The numerical task of solving these equa-
tions is still arduous and when needed for reducing the dif-
ficulty of the computations, we will also consider truncated
expansions of the one- and two-replica potentials in some or
all of their field arguments �see below�.

The present approach represents a nonperturbative but of
course approximate RG description. Already at the minimal
truncation discussed above, one includes all operators previ-
ously suggested to be important for capturing the long-
distance behavior of the present disordered models, namely
operators involving 1- and 2-replica terms. As will be shown
further below, it also reduces to the leading results of pertur-
bative RG analyses near the upper critical dimension, duc

=6, near the lower critical dimension for ferromagnetism
when N�1, d=4, and when the number of components N
becomes infinite. One of its main advantages is that it pro-
vides a unified framework to describe models in any spatial
dimension d and for any number N of field components. As
such, it guarantees a consistent interpolation of all known
results in the whole �N ,d� plane in addition to allowing the
study of genuine nonperturbative phenomena. If a greater
accuracy is needed, the truncation scheme proposed in Sec.
III B gives a systematic means to refine the description by
including, e.g., the third cumulant or a more detailed account
of the momentum dependence of the 1− PI vertices. In the
following, we more specifically focus on the random field
O�N� model.

IV. RANDOM FIELD MODEL

A. Scaling dimensions near a zero-temperature fixed point

For the RFIM, it has been proposed,65,66 and convincingly
supported by numerical and experimental results,6,40,67 that
the fixed point controlling the critical behavior associated
with the transition between a high-temperature—or a large-
disorder strength—disordered �paramagnetic� phase and a
low-temperature—or a small-disorder strength—ordered
�ferromagnetic� phase is at zero temperature �see Fig. 1�.

The existence of such a zero-temperature fixed point
around which the temperature is dangerously irrelevant leads
to a somewhat anomalous scaling at the critical point.65,66

The two independent critical exponents characterizing the
scaling behavior of the pure Ising model should a priori be
supplemented by an additional exponent � that describes the
vanishing of the �renormalized� temperature as the fixed
point is approached. This exponent � leads to a modification
of the so-called hyperscaling relation, which becomes 2−�
= �d−���, where the critical exponents � and � have their
usual meaning, and to a new scaling of the correlation func-
tions. In particular, the so-called “connected” and “discon-
nected” components of the pair correlation function �or two-
point Green’s function� behave at the critical point as

I

RF
PM

FM

0 T

∆

FIG. 1. Schematic phase diagram of the RFIM in the disorder
strength �-temperature T plane above the lower critical dimension
dlc=2 �temperature can be introduced at the bare level through the
Boltzmann weight�. At low disorder and low temperature, the sys-
tem is ferromagnetic, and it is paramagnetic otherwise. The arrows
describe how the renormalized parameters evolve under the RG
flow at long distance, and I and RF denote the critical fixed points
of the pure and random field Ising models, respectively.
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Gc�q� = ���− q���q�� − ���− q�����q�� � q−�2−��, �52�

Gd�q� = ���− q�����q�� � q−�4−�̄�, �53�

where � is the usual anomalous dimension of the field and �̄
is related to the temperature exponent � through

�̄ = 2 − � + � . �54�

Above the upper critical dimension duc=6, the exponents
take their classical �mean-field� values, i.e., �=0, �=0, �
=1 /2, and �=2, leading to �̄=0. The dimensional reduction
property leads to a constant shift of dimension, d→d−2, i.e.,
to �=2 and �̄=�, and all the exponents are given by those of
the pure model in dimension d−2. Whether the scaling be-
havior around the critical point is described by the three in-
dependent exponents, or only two, has been a long-time is-
sue, with suggestions that an additional relation applies, �
=2−�, or equivalently, �̄=2�.68 We shall address and an-
swer this question in the following paper.32

To search for a zero-temperature fixed point, it is conve-
nient to introduce a renormalized temperature. Actually, one
could add an explicit temperature T in the Landau–
Ginzburg–Wilson description of the model considered here:
multiplying the argument of the exponential in the partition
function �Eq. �4�� by a factor T−1 to make the correspondence
with the Boltzmann factor of statistical physics leads to a
bare replicated action in Eqs. �6� and �10�, in which the one-
replica part, which includes the kinetic term, is multiplied by
a factor T−1, the two-replica part by T−2, etc. Generally
speaking, one can use this temperature T as a bookkeeping
device to sort the orders in the expansions in number of free
replica sums. As a result, for instance, the modified propaga-

tor P̂k
�0���1� is proportional to T, whereas P̃k

�0���1 ,�2� is in-
dependent of T. One can use this bookkeeping trick to devise
ways to define a renormalized temperature at running scale k,
Tk, which reduces to the “bare” temperature T at the micro-
scopic scale k=�. To this end, we first define the renormal-
ized disorder strength at scale k, �m,k, as

�m,k = �k��1 = �m,k,�2 = �m,k� , �55�

where, as before, �m,k is a field configuration that minimizes
the �one-replica� potential Uk��� and �k��1 ,�2� is the sec-
ond cumulant of the renormalized effective random field de-
fined as in Eq. �29�, namely,

�k��1,�2� = Vk
�11���1,�2� . �56�

In the present truncation, the second cumulant is consid-
ered only for homogeneous field configurations and 
k,2

�11� re-
duces to Vk

�11� with the same notations for partial deriva-
tives as in Eqs. �26� and �27� �e.g., Vk

�11���1 ,�2�
=��1

��2
Vk��1 ,�2��. At the microscopic scale �, �m,k reduces

to �� /T2, where �� is the bare variance of the random field
and the factor T−2 comes for reasons just explained above.

A running temperature can now be defined by

Tk =
Zm,k�k/��2

��m,k/���
. �57�

One checks that since Zm,�=T−1 �see Eq. �10� and the dis-
cussion above�, Tk indeed reduces to T when k=�. An asso-
ciated running exponent is obtained from

�k = k�k ln Tk. �58�

By using the definition of �k, one may alternatively intro-
duce a running exponent �̄k=2−�k+�k, which converges to
the critical exponent �̄ defined in Eqs. �53� and �54� if the
relevant fixed point is reached, and compute it from

�̄k − 2�k = k�k�m,k. �59�

On top of the usual scaling dimensions, Uk ,Vk�kd and �
��Zm,k

−1 kd−2�1/2, one can use the running temperature to define
dimensionless quantities �denoted by lowercase letters� suit-
able for looking for a zero-temperature fixed point,

� = 	 kd−2

Zm,kTk

1/2

� , �60a�

Uk��1� =
kd

Tk
uk��1� , �60b�

Vk��1,�2� =
kd

Tk
2vk��1,�2� , �60c�

�k��1,�2� =
Zm,kk

2

Tk
�k��1,�2� , �60d�

with �k��1 ,�2�=vk
�11���1 ,�2�. Note that with the definitions

of �m,k and Tk, �m,k
�k��m,k ,�m,k� is constant along the RG
flow and equal to its initial value �� /�2 �in practice and
since we are not interested here in making a precise connec-
tion to the microscopic scale, we will set �m,k=1�.

B. Scaled form of the exact renormalization group
equations for the random field Ising model

With the use of the above defined dimensionless renor-
malized quantities, the flow equations can be expressed in a
scaled form. Specifically, one can recast Eqs. �47� and �48�
for N=1 in the form

�tuk��� = − �d − 2 + �̄k − �k�uk��� +
1

2
�d − 4 + �̄k��uk����

+ 2vd�l1
�d��uk������k��,�� + Tkl0

�d��uk������ , �61�
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�tvk��1,�2� = − �d − 4 + 2�̄k − 2�k�vk��1,�2� +
1

2
�d − 4 + �̄k���1��1

+ �2��2
�vk��1,�2�

− 2vd�l1,1
�d��uk���1�,uk���2���k��1,�2�2 + l2

�d��uk���1���k��1,�1�vk
�20���1,�2� + l2

�d��uk���2���k��2,�2�vk
�02���1,�2�

+ Tk�l1
�d��uk���1��vk

�20���1,�2� + l1
�d��uk���2��vk

�02���1,�2��� , �62�

where �t is a derivative with respect to t=ln�k /��, a prime
denotes a derivative with respect to the field �when only one
argument is present�, vd

−1=2d+1�d/2
�d /2�, and we recall that
�k��1 ,�2�=vk

�11���1 ,�2�; ln
�d��w� and ln1,n2

�d� �w1 ,w2� are the “di-
mensionless threshold functions” defined from the infrared
cutoff function �Eq. �13�� as36,52

ln
�d��w� = −

1

2
�n + �n,0��

0

�

dyyd/2�kr�y� + 2yr��y�
�p�y� + w�n+1 , �63�

ln1,n2

�d� �w1,w2� = −
1

2
�

0

�

dyyd/2��kr�y�

+ 2yr��y��
1

�p�y� + w1�n1�p�y� + w2�n2

�� n1

p�y� + w1
+

n2

p�y� + w2
� , �64�

where p�y�=y�1+r�y�� and y=q2 /k2. The properties of these
threshold functions, whose detailed behavior depends on the
choice of the infrared cutoff function r�y�, have been exten-
sively discussed.36,52 They rapidly decay when w�1, which,
since uk����=Uk���� / �Zkk

2� is the square of a renormalized
mass, ensures that only modes with mass smaller than k con-
tribute to the flow in Eqs. �61� and �62�. As an illustration,
the use of the so-called “optimized” cutoff function, r�y�
=y−1�1−y���1−y�,53 leads to explicit expressions, namely,

ln1,n2

�d� �w1,w2� =
2

d
	1 −

�k

d + 2

 1

�1 + w1�n1�1 + w2�n2

�	 n1

1 + w1
+

n2

1 + w2

 . �65�

The threshold functions essentially encode the nonperturba-
tive effects beyond the standard one-loop approximation.
Note that, although not shown in the notation, the threshold
functions depend on the scale k via the running exponent �k.

The above flow equations for uk��1� and vk��1 ,�2� are
supplemented by equations for �k and �̄k, i.e., for Zm,k and Tk
or �m,k. �Note that the equation for �̄k is actually redundant
as it is a consequence of the other equations; it is nonetheless
convenient to introduce and use it.� The flow equation for
Zm,k follows from Eq. �50� and one finds

�k =
4vd

d
�4m3,2

�d��um,k� ,um,k� �um,k�2 − 2m2,2
�d��um,k� ,um,k� �um,k� �m,k�

+ Tkm2,2
�d��um,k� ,um,k� �um,k�2 � , �66�

where we have used the short-hand notation �k����

���k�� ,��=�k

�10��� ,��+�k
�01��� ,�� and the subscript m ,k

indicates that the functions are evaluated for fields equal to
�m,k; we have also introduced the additional �dimensionless�
threshold function,

mn1,n2

�d� �w1,w2� = −
1

2
�

0

�

dyyd/2�1 + r�y� + yr��y��

�
1

�p�y� + w1�n1�p�y� + w2�n2

���1 + r�y� + yr��y����kr�y� + 2yr��y��

�	 n1

p�y� + w1
+

n2

p�y� + w2



− 2�k�r�y� + yr��y��

− 4y�2r��y� + yr��y��� , �67�

whose properties are discussed in Refs. 36 and 52. For in-
stance, with the “optimized” regulator introduced above,53

one finds that

mn1,n2

�d� �w1,w2� =
1

�1 + w1�n1�1 + w2�n2
. �68�

Finally, the flow equation for �m,k �or equivalently the
flow of the constraint �m,k=1 discussed below Eqs.
�60a�–�60d�� leads to the following equation:

2�k − �̄k = 2vd�l4
�d��um,k� �um,k�2 − 4l3

�d��um,k� �um,k� �m,k� + l2
�d��um,k� �

�	�m,k� +
3

2
�m,k�2 −

um,k�

um,k�
−

1

4
�m,k
 + l1

�d��um,k� �
�m,k�2

um,k�

− Tk�l2
�d��um,k� �um,k� �m,k� − l1

�d��um,k� �

�	1

2
�m,k� −

um,k�

um,k�
�m,k� +

1

2
�̃m,k
�� , �69�

where, as before, �k����
���k�� ,�� and similarly for �k����,
and we have introduced
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�k��1� = lim
�2→�1

���1
− ��2

�2��k��1,�2� − �k��1,�1��2,

�70�

and

�̃k��1� = lim
�2→�1

���1
− ��2

�2�k��1,�2� . �71�

All other notations are as before.
Before extending the results to the RFO�N�M, we point

out important features of the above equations. First, we have
kept terms proportional to Tk but, provided one reaches a
fixed point with an exponent �=�k→0�0 where temperature
is thus irrelevant, those terms are subdominant in the scaling
region k→0. In particular, the fixed point is attained by fol-
lowing the flow with an initial temperature T equal to zero.

Second, “anomalous” terms, �m,k and Tk�̃m,k, appear in
the expression of 2�k− �̄k. As can be inferred from Eqs. �70�
and �71�, �m,k can only differ from zero, and �̃m,k become
infinite, when a nonanalyticity �a “cusp”� in ��1−�2� appears
in the �dimensionless� renormalized disorder function
�k��1 ,�2� when �2→�1 �and both go to �m,k�. If �k��1 ,�2�
is analytic, no signature of such an anomalous behavior is
found. �We have implicitly assumed that no stronger nonana-
lyticity appears, which means that a fixed point can be
reached and that the theory is renormalizable; this has to be
checked in actual computations.� We shall come back in
more detail to these two important aspects of the NP-FRG
approach in the following paper.32 Finally, one may notice
that because of the Z2
O�1� symmetry, the potential uk is an
even function of � and because of the additional permutation
symmetry, vk��1 ,�2�=vk��2 ,�1�=vk�−�1 ,−�2�=vk�−�2 ,
−�1�.

C. Generalization to the RFO(N)M

The preceding treatment can be extended to the
RFO�N�M. The variable 	= 1

2 ���2 is written in terms of a
dimensionless variable, 	=kd−2Tk

−1Zm,k
−1 	̃, where the tilde will

be dropped in the following when no confusion is possible
between dimensionless and dimensionfull quantities. The

variable z=�1 ·�2 / �2�	1	2� is already dimensionless.
For the one-replica second-order tensors �in N-vector

components� evaluated for a uniform field configuration,

e.g., for P̂k
�0��q2 ;�1� or for �k��1 ,�1�
Vk

�11���1 ,�1�, the
O�N� symmetry reduces the number of terms to a “longitu-
dinal” component �corresponding to the massive mode; see
Eq. �49�� and N−1 identical “transverse” components �cor-
responding to the Goldstone modes; see Eq. �49��. We there-
fore introduce

�k
���	,	,z = 1� = ������1�k,L�	� + �1 − ��1��k,T�	�� ,

�72�

where

�k,L�	� = �2	�	1
�	2

v�	1,	2,z = 1��	1=	2=	, �73�

�k,T�	� =
1

2	
��zv�	,	,z��z=1, �74�

and we define the longitudinal, wk,L�	�, and transverse,
wk,T�	�, masses as

wk,L�	� = uk��	� + 2	uk��	� , �75�

wk,T�	� = uk��	� , �76�

where the primes now denote derivatives with respect to 	.
The renormalized disorder strength at the running scale k

can be characterized, e.g., through the transverse component,
�k,T�	 ,	 ,z=1�, evaluated for 	=	m,k= 1

2 ��m,k�2, and Tk is ac-
cordingly introduced. Expressing the O�N� symmetry in the
two-replica second-order tensors is a little more tedious but
nonetheless straightforward.

The resulting flow equations in scaled form read �where
for the ease of notation, we drop the subscript k on the right-
hand sides, i.e., up to a sign, the beta functions, for all quan-
tities except Tk, and also drop the argument of v�	1 ,	2 ,z��

�tuk�	� = − �d − 2 + �̄ − ��u�	� + �d − 4 + �̄�	u��	�

+ 2vd��N − 1�l1
�d��wT�	���T�	� + l1

�d��wL�	���L�	��

+ 2Tkvd��N − 1�l0
�d��wT�	�� + l0

�d��wL�	��� , �77�

�tvk�	1,	2,z� = − �d − 4 + 2�̄ − 2��v + �d − 4 + �̄��	1�	1
+ 	2�	2

�v −
vd

4	1	2
��N − 1��4	2l2

d�wT�	1���T�	1��2	1�	1
v − z�zv�

+ l1,1
�d��wT�	1�,wT�	2����zv�2� + �1 − z2��4	2l2

�d��wT�	1���T�	1��z
2v + 8	2

2l1,1
�d��wT�	1�,wL�	2����	2

�zv�2

− l1,1
�d��wT�	1�,wT�	2�����zv�2 + 2z�zv�z

2v − �1 − z2���z
2v�2�� + 8	1	2�l2

�d��wL�	1���L�	1���	1
v + 2	1�	1

2 v�

+ 2	1	2l1,1
�d��wL�	1�,wL�	2����	1

�	2
v�2� + perm�12�� − Tk

vd

	1	2
��N − 1�	2l1

d�wT�	1���2	1�	1
v − z�zv�

+ �1 − z2�	2l1
d�wT�	1���z

2v + 2	1	2l1
d�wL�	1����	1

v + 2	1�	1

2 v� + perm�12�� , �78�
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�k =
vd

d
�8�m2,3

�d��wL�	m�,0� + m3,2
�d��wL�	m�,0���T�	m�

wL�	m�2

	m

+ 8m3,1
�d��wL�	m�,0�wL�	m���T�	m� − �L�	m��� , �79�

2�k − �̄k =
2vd

	mu��	m�
��N − 1�	ml1

d�0��T��	m�2 + l2
d�0�u��	m�

+ l2
�d��wL�	m���L�	m���1 + 2	m�T��	m�

+ 2	m
2 �T��	m��u��	m� − 2	m

2 u��	m��T��	m��

− 2l1,1
�d��0,wL�	m��u��	m��1 + 	m�T��	m��2

+ 	ml1
�d��wL�	m���T��	m��L��	m�� + ¯ , �80�

where all symbols have the same meaning as in the previous
equations and, by construction, wL�	m�=2	mu��	m�, wT�	m�
=0, and �T�	m�=1. Note that in the last two equations, for
simplicity we have omitted the �subdominant� terms involv-
ing Tk in the beta functions and that in Eq. �80�, the dots
denote “anomalous” terms, which generalize those found for
the RFIM �see Eq. �69�� and vanish when the function
vk�	1 ,	2 ,z� is analytic in all its arguments; their expression
is lengthy and will be discussed in the companion paper.32

When N=1 and z= �1, Eqs. �77� and �78� reduce to the
previous equations for the RFIM �Eqs. �61� and �62��, when
expressed with 	 as a variable instead of �: vk�	1 ,	2 ,
z= +1� is equal to vk��1 ,�2� for �1�2�0 and vk�	1 ,	2 ,
z=−1� is equal to vk��1 ,�2� for �1�2�0; �k,L�	�
�k��� and
wk,L�	�
u����.69 Finally, the comments made about the im-
portant features of the flow equations for the RFIM carry
over to the equations for the RFO�N�M.

D. Application to related disordered models

Even though we have chosen to more specifically focus
on the random field model, it is worth sketching at this point
the relevance of the NP-FRG equations derived in this sec-
tion to other disordered systems. �As already stressed several
times, we exclude spin-glass ordering from our consider-
ations.�

The flow equations obtained for the RFO�N�M �Eqs.
�77�–�79�� directly apply to the RAO�N�M for describing the
long-distance physics associated with ferromagnetic order-
ing. The putative fixed points are also expected to be at zero
temperature so that similar scaling dimensions need be intro-
duced. The specificity of the random anisotropy model
comes in the initial conditions �see Sec. II A� and in the
additional symmetry of the two-replica potential, namely,
vk�	1 ,	2 ,z�=vk�	1 ,	2 ,−z�.

Similarly, the flow equations for the RFIM �Eqs. �61�,
�62�, and �66�� can be applied to the random elastic model. In
this case, one can check that, owing to the statistical tilt
symmetry, uk����
0 and �k
0, while vk��1 ,�2�
vk��1
−�2�. After introducing the variable y=�1−�2 and dropping
the temperature, Eq. �62� can be rewritten as

− �tvk�y� = �d − 4 + 2�̄k�vk�y� −
1

2
�d − 4 + �̄k�yvk��y�

+ 2vdl2
�d��0��vk��y� − 2vk��0��vk��y� , �81�

where a prime denotes a derivative with respect to y. The
roughness exponent is defined through �=−�d−4+ �̄� /2, and
one can then see that the above equation reduces to the one-
loop FRG equation for a disordered elastic medium.28,44 Go-
ing beyond this level of description requires the consider-
ation of the next orders of the truncation scheme, in
particular, the inclusion of the three-replica potential and ap-
plication of the next order of the derivative expansion for the
two-replica effective average action.

Finally, Eqs. �61�, �62�, and �66� can be used in the case
of the random temperature model with an appropriate ac-
count of the symmetry: uk
uk�	� and vk
vk�	1 ,	2�, with
	=�2 /2. However, the scaling dimensions introduced to
search for a zero-temperature fixed point are not appropriate
in the present case wherein one anticipates a fixed point at a
nonzero temperature �for a preliminary nonperturbative treat-
ment, see Ref. 70�.

V. RECOVERING THE PERTURBATIVE RESULTS

A. Analysis of the nonperturbative functional renormalization
group equations near d=6 and for N\�

For ease of notation, we consider only the RFIM, but a
similar analysis holds for the RFO�N�M. It is easy to check
that the flow equations �Eqs. �61�, �62�, �66�, and �69�� admit
for fixed-point solution the Gaussian fixed point character-
ized by ��

�G�= �̄�
�G�=0, u�

�G����=2vdl1
�d��0� / �d−2�, and

��
�G���1 ,�2�=1. The Gaussian fixed point is once unstable for

dimensions larger than 6, but the coupling constant associ-
ated with the �4 term in u��� also becomes relevant for
dimensions less than 6 so that the Gaussian fixed point be-
comes unstable for d�6, as already well known.

The first order in �=6−d can be derived by a direct ex-
pansion of the fixed-point solution, with u����=u�

�G�

+�u1��� and ����1 ,�2�=1+��1��1 ,�2�. One easily finds that
at this order, one still has ��= �̄�=0. After inserting these
results in Eqs. �61� and �62�, deriving the equation for vk
with respect to �1 and �2, and setting the left-hand sides to
zero, one obtains the following equations for u1��� and
�1��1 ,�2�:

0 = 4u1��� − �u1���� −
v6

2
�l1

�6��0� − 4l2
�6��0�u1����

+ 4l1
�6��0��1��,��� , �82�

0 = ��1��1
+ �2��2

��1��1,�2�

− 2v6l2
�6��0����1

+ ��2
�2�1��1,�2� . �83�

By introducing the variables x= ��1+�2� /2 and y= ��1
−�2� /2, the latter equation can be rewritten as

�x�x + y�y��1�x,y� = 2v6l2
�6��0��x

2�1�x,y� . �84�

The symmetry of v��1 ,�2� with respect to the exchange of
�1 and �2 and to changes in the sign of �1 and �2 �see Sec.
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IV B� translates into the fact that �1 is an even function of x
and y. Provided one requires that �1�x ,y→0� is finite �which
is needed for a well defined renormalizable theory�, the only
acceptable solution satisfying this property is a constant; due
to the constraint �m,k
�k��m,k�=1, it is equal to zero, i.e.,
�1�x ,y�=0. In addition to the now unstable Gaussian fixed
point, Eq. �82� has then for solution u1���= ��1� /8���2

−�m�
2 �2+const, where �m�

2 =6v6l2
�6��0�. One also finds �1�

= �36v6l3
�6��0��−1 so that, up to irrelevant constant factors, the

solution corresponds to the fixed point of the pure Ising
model �no random field� at first order in �=4−d. The fixed
point is found once unstable and the associated exponents,
e.g., �= 1 / 2 + � / 12 , satisfy the d→d−2 dimensional reduc-
tion.

Equivalently, one can make a more direct connection to
standard perturbation analysis by reframing the above results
in a double expansion in � and in the �4 coupling constant
defined through �k=uk����m,k�. Introducing, as before, 	m,k
= �1 /2��m,k

2 , one obtains from Eqs. �77�–�80� that � , �̄
=O��2�, �=1+O��2�, and

�t�k = − ��k + 36vdl3
�d��0��k

2 + O��k
3,Tk�k

2� , �85�

�t	m,k = − �2 − ��	m,k + 6vd�l2
�d��0� − 4l3

�d��0��k	m,k�

+ O��k
3,Tk�k

2� , �86�

where we have used the Taylor expansion of the threshold
functions for small arguments. �The fixed-point solution of
Eqs. �85� and �86� is, of course, equal to that obtained above
with ��=��1� and 	m�=�m�

2 /2.� Again, up to irrelevant fac-
tors, this gives back the one-loop perturbative result for the
pure Ising model obtained in a weak-coupling expansion in
d=4−�.

The above result is derived through an expansion in a
single coupling constant �k associated with the one-replica
part of the effective action. It was argued by Brezin and De
Dominicis71,72 that one should consider an expansion involv-
ing all �4 coupling constants associated with multiple repli-
cas instead. In the present formalism, we can perform a more
careful analysis by using the �4 coupling constants associ-
ated with the two-replica part of the effective action, cou-
pling constants that are considered as potentially relevant in
Refs. 71 and 72. We find that this does not change the con-
clusion and, as previously obtained in Ref. 73, that the fixed
point corresponding to dimensional reduction is still once
unstable at first order in �. This is discussed in more detail in
the Appendix.

The above analysis is extended to the O�N� version in a
straightforward way. The property that the perturbative result
at first order in �=6−d is recovered within our nonperturba-
tive approximation scheme is actually a consequence of the
one-loop-like structure of the exact flow equation for the
effective average action �Eq. �16��. For the very same reason,
the large N limit can also be easily recovered.

Rescaling the variables as 	→N	 and z→z and the po-
tentials as u→Nu and v→Nv and retaining only the domi-
nant terms when N→�, one finds that �=O�1 /N� and �̄

=O�1 /N� and that the “longitudinal” contributions drop out
from the RG flow equations. As a consequence, Eqs. �77�
and �78� can be recast as

�tuk�	� = − �d − 2�uk�	� + �d − 4�	uk��	�

+ 2vdl1
�d��uk��	���k,T�	� , �87�

�t�k,T�	1,	2,z�

= �d − 4��	1�	1
+ 	2�	2

��k,T�	1,	2,z�

− 2vd� l11
�d��uk��	1�,uk��	2��

�	1	2

�k,T�	1,	2,z��z�k,T�	1,	2,z�

+
l2
�d��uk��	1��

2	1
�k,T�	1��2	1�	1

− z�z��k,T�	1,	2,z�

+
l2
�d��uk��	2��

2	2
�k,T�	2��2	2�	2

− z�z��k,T�	1,	2,z�� ,

�88�

where we have defined a generalized “transverse” disorder
cumulant �k,T�	1 ,	2 ,z� via an extension of Eq. �74�, namely,

�k,T�	1,	2,z� =
1

2�	1	2

�zvk�	1,	2,z� , �89�

which reduces to �k,T�	� when 	1=	2=	 and z=1. Equation
�88� is obtained by deriving the flow equation for
vk�	1 ,	2 ,z�.

If one starts the flow equations with an initial condition
v��	1 ,	2 ,z�=2�	1	2z �corresponding to ��,T=1�, the beta
function is identically zero and one therefore finds that the
solution of Eq. �88� at all scales remains �k,T�	1 ,	2 ,z�=1.74

The resulting equation for the one-replica potential is then
very similar to its counterpart for the pure O�N� model with
N→� in dimension d−2 �the flow equation is then simply
given by the LPA36�.

To more explicitly see the connection, one can follow the
flow of the �4 coupling constant �k=uk��	m,k� as well as that
of 	m,k, which, we recall, satisfies uk��	m,k�=0 and is akin to a
�dimensionless� order parameter at the running scale k. One
finds

�t�k = − �6 − d��k + 4vdl3
�d��0��k

2

+ ��d − 4�	m,k − 2vdl2
�d��0��uk��	m,k� , �90�

�t	m,k = − �d − 4�	m,k + 2vdl2
�d��0� , �91�

which results in the nontrivial fixed point 	m�

=2vdl2
�d��0� / �d−4�, ��= �6−d� / �4vdl3

�d��0��. This fixed point
is once unstable �and it remains so when considering the
additional directions associated with the two-replica poten-
tial, see above� and is characterized by critical exponents that
satisfy the dimension reduction property, e.g., �=1 / �d−4� to
be compared to �=1 / �d−2� for the pure model. Note that the
above perturbative expressions are recovered from the trun-
cated NP-FRG equations even with an additional approxima-
tion using a field expansion around the minimum of the one-
replica potential.
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B. Recovering the perturbative functional
renormalization group near D=4

A strong property of the minimal nonperturbative trunca-
tion described above is that it also reduces, in the appropriate
limit and for the RFO�N�1�M, to the perturbative FRG
equations at first order in �=d−4, which were derived by
Fisher.23 The latter are obtained from a low-disorder loop
expansion of the nonlinear sigma model associated with the
RFO�N�M. It is therefore quite remarkable that our formal-
ism, in which no hard constraint is enforced, leads to the
proper result within the minimal approximation scheme.

For the RFO�N�M with N�1, d=4 is the lower critical
dimension for ferromagnetism. �Here, we mean long-range
ferromagnetic order with a nonzero order parameter; the case
of quasi-long range order will be discussed later on.� As a
result, the critical point and the associated fixed point occur
near d=4 for a value of 	m that diverges as 1 /� with �=d
−4. As in the case of the pure O�N� model near d=2,37 one
can therefore organize a systematic expansion in powers of
1 /	m.

At the minimum of the one-replica potential �	=	m�, the
transverse mass, which is associated with the Goldstone
modes, is zero, whereas the longitudinal mass is very large
and scales as 	m �anticipating that u��	m� does not vanish�.
One can then use the asymptotic properties of the threshold
functions for large arguments,

ln
�d��w → �� � w−�n+1�, ln1,n2

�d� �w → �,0� � w−�n1+1�,

�92�

mn1,n2

�d� �w → �,0� � w−n1, �93�

which encodes the decoupling of the massive mode.
In addition, we assume that as 	m→�, �L,T�	m� stay finite

�recall that actually, �T�	m�=1� and that their derivatives,
�L,T� �	m�, etc., go to zero at least as fast as 1 /	m; on the other
hand, 	m is a singular point for u�	� �the location of its mini-
mum� so that even when 	m→� we expect that u��	m�,
u��	m�, etc., stay of O�1�. The consistency of these assump-
tions is easily checked a posteriori. Inserting the above re-
sults and assumptions in Eqs. �79� gives

�k �
8vd

d	m,k
, �94�

which shows that � is of order 1 /	m.
Deriving once the flow equation for the one-replica poten-

tial uk�	� leads to

�tuk��	� = − �2 − �k�uk��	� + �� + �̄k�	uk��	�

− 2vd�N − 1�l2
�d��uk��	���k,T�	� , �95�

from which one obtains the flow equation for the running
order parameter 	m,k,

�t	m,k = − �� + �̄k�	m,k + 2vd�N − 1�l2
�d��0� , �96�

where �=d−4. �Note that we have again omitted the sub-
script k on the right-hand sides and dropped the subdominant
terms involving the renormalized temperature Tk.� The last
equation shows that the fixed point value of 	m,k satisfies, as

anticipated, 	m�=O�1 /��, which results in � , �̄=O���.
One can now apply a similar treatment to the flow equa-

tion for the two-replica potential evaluated for 	1=	2=	m,k.
For convenience, we introduce the function

Rk�z� =
vk�	m,k,	m,k,z�

�2	m,k�2 , �97�

which, due to Eq. �74� and the constraint �k,T�	m,k�=1, satis-
fies Rk��z=1�=1 / �2	m,k�.75 The flow equation for Rk�z� can
be expressed as

�tRk�z� =
1

�2	m,k�2��tvk�	,	,z��	=	m,k

+ ��t	m,k �	�vk�	,	,z�
�2	�2 ��

	=	m,k

, �98�

which with the help of Eq. �96� finally leads to

�tRk�z� � �� + 2�k�R�z� − 2vdl2
�d��0���N − 1��4Rk�z�Rk��1�

+ Rk��z��Rk��z� − 2zRk��1��� + �1 − z2��− Rk��z�2

+ 2�Rk��1� − zRk��z��Rk��z� + �1 − z2�Rk��z�2�� . �99�

To dominant order in �, one can set d=4 in vd and l2
�d��0� in

all equations and in vd /d in Eq. �94�. By using the property
of the threshold function l2

�d=4��0�=1+O��� and by discard-
ing the subdominant terms, one finally arrives at

�k = 4v4Rk��1�,�̄k = − � + 4�N − 1�v4Rk��1� , �100�

�tRk�z� = �Rk�z� − 2v4�4�N − 2�Rk��1�Rk�z� + �N − 1�

��Rk��z� − 2zRk��1��Rk��z� + �1 − z2��− Rk��z�2

+ 2�Rk��1� − zRk��z��Rk��z� + �1 − z2�Rk��z�2�� ,

�101�

where v4
−1=32�2 and Rk�z� is of order � near its fixed point.

The above equations coincide with the one-loop perturbative
FRG equations.23 Note that this result is independent of the

choice of the infrared cutoff function R̂k�q2�: indeed, one
easily checks that not only l2

�4��0�=1+O��� but also
limw→��m2,3

�4��w ,0�w2�=1+O���, irrespective of the regula-
tor.

Finally, we note that setting N=2 and introducing the
variable �=cos−1�z� in Eq. �101� leads to

�tRk��� = �Rk��� − 2v4�Rk���� − 2Rk��0��Rk���� , �102�

which, after the use of Eq. �100� for �k and �̄k, coincides
with the one-loop perturbative FRG equation for a disor-
dered periodic elastic system with a one-component dis-
placement field: compare, for instance, to Eq. �81�, in which
one should set �=0 due to the periodicity.76 �Be careful,
however, that �k and �̄k denote different sets of exponents in
the formalism leading to Eq. �81� and in the present one.77�

VI. CONCLUDING REMARKS

In this work, which is described in the present paper and
in the following one,32 we have developed a theoretical ap-

GILLES TARJUS AND MATTHIEU TISSIER PHYSICAL REVIEW B 78, 024203 �2008�

024203-16



proach that is able to describe the long-distance physics,
criticality, phase ordering, or “quasi-ordering” of systems in
the presence of quenched disorder, in particular, random field
models for which standard perturbation theory is known to
fail. The approach is based on an exact renormalization
group equation for the effective average action �the generat-
ing functional of 1− PI vertices� and on a nonperturbative
truncation scheme. This nonperturbative RG formalism has
recently been applied with success to a variety of systems.
The key point in the present problem is to provide a proper
account of the renormalized distribution of the quenched dis-
order, and we have shown that this can be conveniently done
through a cumulant expansion and the use of a replica
method in which the permutational symmetry among replicas
is explicitly broken.

We have stressed that any relevant treatment of random
field models and related disordered systems must include the
second cumulant of the renormalized disorder, i.e., at least a
function of two �replica� field arguments. Accordingly, we
have proposed a nonperturbative approximation scheme.
Within this scheme, the minimal truncation for the
RFO�N�M already reproduces the leading results of pertur-
bative RG analyses near the upper critical dimension, duc
=6, and when the number of components N becomes infinite.
More importantly, it gives back the perturbative FRG equa-
tions near the lower critical dimension for ferromagnetism
when N�1, d=4.

One of the main advantages of the present approach,
which will be illustrated in the following paper, is that it
provides a unified framework in which to describe models in
any spatial dimension d and for any number N of field com-
ponents. As such, it guarantees a consistent interpolation of
all known results in the whole �N ,d� plane in addition to
allowing the study of genuine nonperturbative phenomena.
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APPENDIX: EXPANSION IN SEVERAL COUPLING
CONSTANTS NEAR d=6

Near the upper critical dimension duc=6, the flow equa-
tions for the RFIM derived within the minimal nonperturba-
tive truncation �Eqs. �61�, �62�, �66�, and �69�� can be ex-
panded in several �4 coupling constants in order to make the
connection with recent one-loop studies of the RFIM.71–73

On top of the one-replica �4 coupling constant already used
in Sec. V A, �k=uk����m,k�, we introduce two additional cou-
pling constants obtained from the two-replica potential,

uk,2 = −
1

2
����1

2 + ��2

2 ���1
��2

vk��1,�2���1=�2=�m,k
, �A1�

uk,3 = �− ��1

2 ��2

2 vk��1,�2���1=�2=�m,k
, �A2�

which amounts to consider a two-replica potential of the
form

vk��1,�2� = �1�2��m,k −
uk,2

6
��1

2 + �2
2 − 6�m,k

2 �

−
uk,3

4
��1�2 − 4�m,k

2 � + ¯� , �A3�

where the dots denote higher-order terms in the field expan-
sion around the minimum of the one-replica potential and, as
before, �m,k= ���1

��2
vk��1 ,�2���m,k


1. The present descrip-
tion is thus very similar to that used in Refs. 71 and 72
except that we do not include three- and four-replica terms.
However, the issues raised by Brezin and De Dominicis71,72

can already be addressed by considering the two-replica
term.

By expanding the flow equations for the one- and two-
replica potentials in powers of the coupling constants, which
we generically denote uk,� with uk,1=�k, one finds that �
=O�u2� and that up to a O�u3�,

�tuk,1 = �d − 6�uk,1 + 2vd�6l3
�d��0�uk,1

2 + 12l2
�d��0�uk,1

��uk,2 + uk,3� + 3Tkl2
�d��0�uk,1

2 � , �A4�

�tuk,2 = �d − 4�uk,2 + 2vd�6l3
�d��0�uk,1�uk,2 + uk,3�

+ 6l2
�d��0�uk,2�uk,2 + uk,3� + 3Tkl2

�d��0�uk,1uk,2� ,

�A5�

�tuk,3 = �d − 4�uk,3 + 2vd�l4
�d��0�uk,1

2 + 4l3
�d��0�uk,1�uk,2 + uk,3�

+ 2l2
�d��0���uk,2 + uk,3�2 + 3uk,3

2 � + 2Tkl2
�d��0�uk,1uk,3� ,

�A6�

�t	�k	m,k

3

 = − 2	�k	m,k

3

 + 2vd�l2

�d��0�uk,1

+ 2l1
�d��0��uk,2 + uk,3� + Tkl1

�d��0�uk,1

+ 	�k	m,k

3

�2l3

�d��0�uk,1 + 8l2
�d��0��uk,2 + uk,3�

+ Tkl2
�d��0�uk,1�� , �A7�

where, we recall, 	m,k=�m,k
2 /2. In addition, by using �tTk

= �2+�k− �̄k�Tk and the equation for 2�k− �̄k �Eq. �69�� one
obtains to a O�u2�,

�tTk = 2Tk + 4vdTk�2l2
�d��0��uk,2 + uk,3�

+ 6l1
�d��0�

�uk,2 + uk,3�2

uk,1
+ Tkl1

�d��0��2uk,2 + 3uk,3�� .

�A8�

It can now be checked that the above equations coincide
with those derived by Mukaida and Sakamoto73 with the in-
troduction of new running coupling constants: g0
=Tk�k�0�−1 , g1=uk,1�k�0� , g2=uk,2 , g3=uk,3, where �k�0�

�k��1=0 ,�2=0�=1+2�uk,2+uk,3�	m,k �and, of course, the
three- and four-replica contributions missing�. As in Ref. 73,
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we therefore obtain that the dimensional reduction fixed
point is once unstable at first order in �=6−d. On the other
hand, the analysis performed by Brezin and De
Dominicis71,72 requires the introduction of different scaling
dimensions, corresponding to new coupling constants, ĝ0

=g0 , ĝ1=g1 , ĝ2,3=g2,3g0
−1. The beta functions we now ob-

tain for ĝ0, ĝ1, and ĝ2 coincide with those of Refs. 71 and 72,
but that for ĝ3 is ill defined as it contains a term that blows
up as k→0. The scaling dimensions suggested by Brezin and
De Dominicis71,72 are thus not compatible with our approach.
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