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Inelastic neutron scattering provides a probe for studying the spin and momentum structure of the super-
conducting gap. Here, using a two-orbital model for the Fe-pnictide superconductors and a random-phase
approximation—-BCS approximation for the dynamic spin susceptibility, we explore the scattering response for

various gaps that have been proposed.
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I. INTRODUCTION

Recent neutron-scattering experiments have shown that
LaOFeAs undergoes a structural distortion below ~150 K,
which is then followed at ~137 K by the onset of long-
range spin-density wave (SDW) order with a wave vector
q=(0.5,0.5,0.5)77'/a.1’2 When it is doped with F, both the
structural distortion and the magnetic order are suppressed
and the system becomes superconducting.” When La is re-
placed by Sm, superconducting transition temperatures of 55
K have been reported.? Thus it is natural to believe that the
Fe-pnictide superconductors have an electronic pairing
mechanism, and a variety of unconventional gap structures
have already been proposed.*~!! Here we explore how inelas-
tic neutron scattering in the superconducting state can pro-
vide information on which the gap structures actually occurs.

Band-structure calculations for doped LaOFeAs give a
Fermi surface for the 2-Fe/cell Brillouin zone, which consists
of two hole cylinders around the I' point and two-electron
cylinders around the M point.*®!> Here we will work in a
larger Brillouin zone, which is associated with a square lat-
tice of Fe sites having 1-Fe/cell. In this case the SDW would
be associated with q=(7,0) or (0, ). Here we will use a
simple two-orbital per site tight-binding model, which has
been parametrized to give the Fermi surface shown in Fig.
1.13 While folding this down to the 1-Fe/cell Brillouin zone
gives four Fermi surfaces in qualitative agreement with the
band-structure calculations, the @, Fermi surface shown in
Fig. 1(a) should, in fact, appear around the I' point and re-
flects a limitation of the two-orbital model.*® Here the tran-
sitions that we will discuss come dominantly from the «; and
B, Fermi surfaces, which are in agreement with the band-
structure Fermi surfaces. We then assume that the spin sus-
ceptibility in the superconducting state can be modeled by a
random-phase approximation (RPA)-BCS form and proceed
to explore the structure of the inelastic scattering in the su-
perconducting state for two q values and various gaps. As
one knows from the cuprate problem, the occurrence of reso-
nances in the neutron scattering depend, through the BCS
coherence factors, on the relative signs of the gap on differ-
ent parts of the Fermi surface, which are separated by q. For
the present case, in which there are multiple Fermi surfaces,
there is a variety of ways in which resonances can occur and
provide information on the gap structure.
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In the following, we first give a brief review of the model
and then outline the RPA-BCS calculation of the spin sus-
ceptibility. This is similar to various approximations used for
both the cuprates'* and Sr,Ru0O,."> We calculate the normal
RPA spin susceptibility and then examine the RPA-BCS re-
sponse in the superconducting state for both singlet and trip-
let gap functions. A related study based on a four-band model
was reported in Ref. 16 for the case of a singlet gap. How-
ever, these authors neglected to take into account the matrix
elements, which relate the band operators to the orbital op-
erators. The singlet gap functions we will use correspond to
low-order lattice harmonic representations of the sign-
reversed s-wave gap proposed by Mazin et al.,*

A,.(k) = A cos k, cos ky, (1)

and an extended s-wave gap,

£
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FIG. 1. (Color online) (a) Fermi surface of the two-orbital
model in the large 1-Fe/cell Brillouin zone. The «;), Fermi-surface
sheets are hole pockets given by E_(kz)=0, and the 3/, sheets are
electron pockets given by E,(kp)=0. The nesting vectors
q=(m,0) and q*=(7/2,0) are indicated by the dotted and dashed
lines, respectively. (b) RPA spin susceptibility xgpa(q,®) versus
frequency in the normal state [A(k)=0] for q=(7,0) and
q*=(7/2,0).
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A
ALk) = ?O(cos ky+ cos k). (2)

We will also determine the spin-flip x;_(q,®) and non-spin-
flip x..(q,w) responses for various p-wave triplets. In this
case,

A (k) = [d(K) - Gioy] g, (3)

with d perpendicular to the Fe plane and d.(k)=A(k). Here
we will explore A(K)=sin k,, sin 2k,, and sin k,+i sin k,. We
conclude with a summary of what one can expect to learn
about the gap symmetry from inelastic neutron scattering in
the superconducting state.

II. MODEL

Band-structure calculations for doped LaOFeAs show that
the low-energy states near the Fermi energy have dominant
3d Fe character and various multiorbital tight-binding fits
have been proposed. Here we will use a minimal two-orbital
d-d,, per site tight-binding model with parameters chosen
to give the Fermi surfaces shown in Fig. 1(a). This model has
the virtue of simplicity while qualitatively capturing the
shapes of the relevant band-structure Fermi surfaces. This
latter feature is important since it is the variation of the gaps
on the Fermi surfaces that determine, through the BCS co-
herence factors, the inelastic neutron-scattering response.
While the magnitude of the response depends on the Fermi
velocities on the Fermi surfaces, which are not well repro-
duced by the two-orbital model, the occurrence or nonoccur-
rence of resonant features is determined by the k£ dependence
of the gap and the existence of multiple Fermi surfaces.

As described in Ref. 13, our minimal model consists of a
square two-dimensional lattice with degenerate d,, and d,,
orbitals on each site. One-electron hopping parameters ¢; are
introduced, which provide near-neighbor o(z;) and (t,)
couplings between similar orbitals, as well as a next-nearest-
neighbor coupling #;. In addition, there is a next-nearest-
neighbor coupling 7,4, which hybridizes d,, with d,. The re-
sulting tight-binding Hamiltonian can be written as

Ho= 2 4L R)[(e,(k) — wl + £_(K) 73 + £, (K) 7y 11,
ko
(4)

with

d (k) ) | )

(k) = ( 4, ()

Here 7; are the usual Pauli matrices, and

1
ex(k)= E[Sx(k) * e, (K],

&,(k) = =21, cos k, — 2t, cos k, — 4t5 cos k, cos ky,

&,(k) == 2t, cos k, — 2t cos k, — 4t5 cos k, cos ky,
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&,,(k) = =41, sin k, sin k. 6)
Introducing the band operator 7,,(k), such that for r=x or y
Uro(k) = 2 a/(K)7,0(K), (7)

with

1 Kk
a’i(k>=af<k>=sgn[sxy<k>l\/ zﬁ
Je” Sxy

) = — () = L )
a;(k)——a_(k)—\/z ZV"m’ (8)

the tight-binding Hamiltonian becomes

Hy= 2 EJK)Y,(K)7,,(k). 9)

Here the band energies are
JE—
E. (k)= e, (k) = Vel(k) + &2, (k) — . (10)

We choose the hopping parameters #;=—1, t,=1.3, and %
=1,=-0.85 and chemical potential u=1.45. The «; and a,
Fermi surfaces in Fig. 1(a) correspond to E_(ky)=0, while
the B, and B3, surfaces are given by E, (k) =0.

III. INELASTIC NEUTRON SCATTERING

The physical spin susceptibility

Xi(@.iw,) = 2 X" (q.iw,) (11)
r,t

is calculated from the orbital-dependent spin susceptibility
defined as

B
Xz?tu(q’iwm):f dTelme<T7S;X(q’ T)S;M(_ q’0)> (12)
0

Here, r,s=x,y label the orbital indices, and S:°(q)
=%Ek¢1'a(k+q)olaﬁwsﬁ(k) is the ith component of a general-
ized spin operator acting between orbitals r and s. In the
BCS framework, one obtains for the BCS orbital-dependent
spin susceptibility,

1. . ,
X;j,t(l)l(% w,,) =— EUJQBUJ),&E M;}s];u(k,‘I)
k,n
X{G ok + q) Gl (k) + Fii(~ k= q)Fps(k)}.

Y
(13)

Here we used k=(k,w,) and ¢=(q,w,,) and v,v'=+,— are
the eigenvalues of the bands. The normal and anomalous
Green’s functions for band v are given by

iw, +E,(K) Aqpk)
G AK)==08,,———, F'k)= s
ap(K) P2+ E(K) ap(K) o+ EX(K)
(14)

with £,(k)=E%(k)+|A(k)|?>. The hybridization between the
bands is reflected in the matrix elements
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M2 (kq) =)k + q)a, (K)d,, (K)ai(k+q). (15

Although these matrix elements change when more orbitals
are included, we find qualitatively similar results for the
resonance in preliminary studies of a four-orbital model.

One can then obtain the BCS spin susceptibility
Xijo(q, w):E,’,)(fJ%(q,w) on the real frequency axis from an
analytical continuation of Eq. (13). We then use the RPA to
take into account the effect of the on-site intraorbital and
interorbital Coulomb interactions U and U’, respectively.'!
The RPA susceptibility is determined from the matrix equa-
tion

Xijrealq) = > {xij 0@ - FXij,O(Q)]_l}rr,m (16)

where g=(q,®) with the interaction vertex I'=Ul,,. Here
we have set U’ =U, and for a given ¢, xg(q) is a 4 X 4 matrix
in the basis (rs)=(xx,xy,yx,yy).

Figure 1(b) shows the results for the imaginary part of the
RPA spin susceptibility xgps(q,®) in the normal state
(Ayp=0) for q=(m,0) and q*=(7/2,0). Here we used
U=3|t;|, =145, and the temperature T7=0.001|r,|. For
pu=1.45, the static RPA spin susceptibility shows peaks at
q=(,0) and q*=(7/2,0)."3 As indicated by the dotted and
dashed arrows in Fig. 1(a), q=(ar,0) is a nesting vector be-
tween regions on the «; and ; Fermi-surface sheets. The
scattering for q*=(7/2,0) is dominated by the intraband
excitations on the 3; Fermi surface sheet [see Fig. 1(a)] since
for other interband processes with q=(,0), &,,(k) and
&(k+q*) are close to zero, and therefore the matrix ele-

ments M fr’;;(k,q) are very small. At low frequency
Xrpa(q, o) is larger for q=(,0) than for q=(7/2,0) since
larger regions of the Fermi surface are nested. At low fre-
quency the RPA susceptibility is strongly enhanced over the
unrenormalized susceptibility (not shown).

In the superconducting state, the gap A(K) is finite and the
susceptibility, Eq. (13), depends on the symmetry of
the gap. For singlet pairing one has F; (k)=—F (k) and
Fy(-k)=F; (k) and hence the in-plane susceptibility
X+-=3(Xuxt Xyy) is equal to the out-of-plane susceptibility
X as in the normal state. For the triplet case, however, one
has F;|(k)=F (k) and F; (-k)=~F; (k). Therefore y,_ and
X.. differ with respect to their superconducting coherence
factors.

IV. RESULTS

As is well known, the BCS coherence factors that
enter the spin susceptibility depend upon the sign of
A(k+q)A(Kk). For a singlet gap, when this is negative, there
can be a resonance response at w=|A(k+q)|+|A(k)|. For a
triplet gap, the coherence factors are different for y,, and
X+ In this case, when Re[A*(k+q)A(K)] is negative, there
can be a resonance in ., but not in x/_. Likewise, when
Re[A*(k+q)A(k)] is positive, x”,_ can exhibit a resonance
while x7. varies smoothly through w=|A(k+q)|+|A(Kk)|.
Thus, the neutron-scattering response in the superconducting
state can provide information on the momentum and spin
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FIG. 2. (Color online) RPA dynamic spin susceptibility
Xzpa(Q. o) versus frequency in the spin singlet superconducting
state for the sign-reversed s-wave gap (solid line) and the extended
s-wave gap (dashed line) for (a) q=(,0) and (b) q*=(m/2,0).

structure of the superconducting gap. Here we examine the
response for various gaps that have been proposed for
LaOFeAs.

To begin, Fig. 2(a) shows the imaginary part of the RPA-
BCS spin susceptibility for two different singlet gaps at a
momentum transfer q=(7,0). Here we have set A;=0.05.
We have modeled a sign-reversed s-wave gap A,.(k); i.e.,
the type proposed by Mazin et al.* by Eq. (1) and the solid
line in Fig. 2(a) shows the expected resonance response as-
sociated with having A(k+q)A(k) <0. This behavior can be
contrasted with the response found for an extended s-wave
gap. Here A(k+q)A(k)>0 for the q=(77,0) nesting vector.

Figure 2(b) shows the results for q*=(7/2,0). For this
momentum transfer the scattering is dominated by the intra-
band process connecting regions on the B; Fermi-surface
sheet. For these regions one has k+q*=-k, and therefore
A(k+q*)A(k) >0 for the singlet gaps. Thus, no resonance is
found for q* =(7/2,0) in this case.

Similar results for various triplet gaps are shown in Fig. 3
for q=(,0). For the p,-wave sin k, gap, A(k+q)A(k) <0,
and a resonance is seen in x..(q, ®) but not in x;_(q, w). One
could also consider a sign-reversed p wave modeled by
A=A, sin 2k,. Here the coherence factor for q=(7,0) is
positive so that the resonance appears in x| (q,w).
For the sink.+isink, gap, sink, sin(k,+¢,)<O and
sin k,, sin(k,+q,) >0 with similar size for the dominant pro-
cess. Hence, Re[A*(k+q)A(K)] is close to zero, and one ob-
tains qualitatively similar results for x;_ and x...

Figure 4 shows the results for the triplet gaps for
q*=(m/2,0). For the p,-wave sin k, gap, the results are
similar as in Fig. 3 for q=(,0). The gap changes sign under
the transformation k — —k so that the gap has opposite signs
on the sheets of the B, Fermi pocket connected by q* [see
Fig. 1(a)]. Hence, x..(q,w) displays a resonance while
X,_(q,w) does not. For the sin 2k, gap, the situation is simi-
lar, and a resonance is found in x!. but not in x;_. This is
opposite to the results in Fig. 3 for q=(,0). The results for
the sin k,+i sin k, case are almost identical to the results
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FIG. 3. (Color online) RPA spin susceptibility (a) x;_(q, ) and
(b) X..(q,w) versus frequency for q=(,0) in the spin triplet su-
perconducting state for a p,-wave gap (solid line), a sign-reversed
p-wave gap (dashed line), and a p,+ip,-wave gap (dotted line).

found for the p,-wave gap. This is explained by the fact that
for the dominant intraband scattering on the B; Fermi-
surface sheet, k), and ky+ q, are close to zero, and therefore
the sin k, contribution to the p,+ip, gap is an order of mag-
nitude smaller than the sin k, contribution.

V. CONCLUSION

Using a two-orbital model for the Fe-pnictide supercon-
ductors and an RPA-BCS approximation for the dynamic
spin susceptibility we have explored the inelastic-scattering
response for various singlet and triplet gaps that have been
proposed. As one would expect, we have found that the oc-
currence of resonances in the dynamic spin susceptibility
X"(q, ) depends on the relative signs of the gap on the parts
of the Fermi surface separated by q, and in the case of triplet
gaps also on whether the in-plane, x;_, or out-of-plane, x/

2’
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FIG. 4. (Color online) RPA spin susceptibility (a) x;_(q, ) and
(b) X..(q,w) versus frequency for q#=(7/2,0) in the spin triplet
superconducting state for a p,-wave gap (solid line), a sign-reversed
p-wave gap (dashed line), and a p,+ip,-wave gap (dotted line).

components are studied. Specifically, for the singlet gaps, we
have found that ¥”(q,w) displays a resonance for a sign-
reversed s-wave gap modeled by A cos k, cos k, for q
=(,0), which corresponds to the antiferromagnetic wave
vector but no resonance for the extended s-wave gap or for
q*=(m/2,0). For the triplet case, resonances were found for
a p,-wave gap in x..(q,w) and for a sign-reversed p-wave
gap in x|_(q,w) for q=(,0). For q*=(7/2,0), resonances
appeared in y”.(q,w) for the p wave, sign-reversed p wave,
and p,+ip,-wave gaps.
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