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Using a dynamical cluster quantum Monte Carlo approximation, we investigate the d-wave superconducting
transition temperature Tc in the doped two-dimensional repulsive Hubbard model with a weak inhomogeneity.
The inhomogeneity is introduced in the hoppings t� and t in the form of a checkerboard pattern where t is the
hopping within a 2�2 plaquette, and t� is the hopping between the plaquettes. We find inhomogeneity
suppresses Tc. The characteristic spin excitation energy and the strength of d-wave pairing interaction decrease
with decreasing Tc, suggesting a strong correlation between these quantities.
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I. INTRODUCTION

The role of inhomogeneity in high temperature supercon-
ductors �HTS� is still an unsettled issue. Neutron scattering
experiments reveal the presence of one-dimensional �1D�
charge and spin microscopic inhomogeneities �stripes� in un-
derdoped HTS �Refs. 1–4� above the superconducting tran-
sition temperature Tc. Scanning tunneling microscopic imag-
ing provides evidence for the presence of two-dimensional
�2D� real-space or local-density-of-states modulations called
checkerboard patterns in Bi-2212 �Refs. 5–8� and Na-CCOC
�Refs. 9 and 10� superconducting samples. Inhomogeneities
observed in cuprates led to theoretical scenarios for an inho-
mogeneity based pairing mechanism in HTS.11,12 Other the-
oretical studies13–16 argue that inhomogeneities can enhance
pairing and Tc.

The checkerboard model16 we investigate is sketched in
the upper panel of Fig. 1. It is homogeneous when t�= t and
inhomogeneous when t�� t. Here t �t�� is the hopping am-
plitude within �between� the cluster�s�. The low-temperature
phase diagram of the checkerboard Hubbard model �CBHM�
in the strongly inhomogeneous limit �t�� t�, i.e., with weakly
coupled clusters, was studied in Refs. 16 and 17. For small
t�� t and for values of on-site interaction U�4.58t, the au-
thors find a d-wave superconducting state in addition to a
variety of other phases. Their results led them to expect a
maximum of Tc at an optimal t�� t. Other authors18,19 found
a d-wave superconducting state with a significant Tc for the
homogeneous case �t�= t� in the 2D Hubbard model. There-
fore, it is interesting to see if the inhomogeneous CBHM has
a higher Tc compared to the homogeneous model. This is
especially important in the weak inhomogeneity regime not
addressed before since experimentally observed inhomoge-
neities in the cuprates are weak.

In this paper we investigate d-wave superconductivity in
the CBHM near the homogeneous limit, i.e., for a weakly
inhomogeneous system. We use the dynamical cluster ap-
proximation �DCA� �Ref. 20� to calculate Tc as a function of
t�. DCA is a momentum �k� space formulation suitable to
study the problem since our interest is around the homoge-
neous limit. We find that a weak inhomogeneity suppresses
Tc. At fixed values of U /W and U / t with doping � appropri-
ate for HTS, Tc decreases for t�� t. Therefore, we find a
maximum Tc in the homogeneous system. Furthermore, cal-

culations with fixed U / t for t�� t show that Tc decreases
proportionally to the characteristic spin excitation energy and
the strength of the d-wave pairing interaction, suggesting a
strong correlation between them.

II. FORMALISM

The DCA maps the lattice problem onto a periodic cluster
embedded in a self-consistent host. Short-range correlations
up to the linear cluster size Lc are treated explicitly while
longer-range correlations are treated in a dynamical mean-
field manner. We use a quantum Monte Carlo �QMC� method
to solve the cluster problem. We use the maximum entropy
method to analytically continue imaginary time QMC data to
real frequencies.21

The Hamiltonian of our model is

H = − �
�ij��

tij�ci�
† cj� + cj�

† ci�� + U�
i

ni�ni−�, �1�

where ci�
† �ci�� creates �destroys� an electron at site i with

spin � and ni�=ci�
† ci�. Here �ij� denotes the nearest-neighbor

sites i and j. As shown in Fig. 1, tij = t�tij = t��, when i and j
belong to the same �neighboring� plaquette�s�. U is the local
Coulomb repulsion and it is site independent.

Here we present results obtained for a Nc=4 site cluster
�2�2 sites�. Nc=4 is the smallest cluster that contains one
d-wave plaquette and allows for a d-wave superconducting
state.18 It has been intensively studied in the last few years.22

It has the advantage that the QMC sign problem is mild, thus
allowing the investigation of physics at low temperatures.
However, since it contains only one d-wave plaquette, it does
not capture d-wave phase fluctuations and hence overesti-

FIG. 1. �Color online� 2�2 plaquette model. Here t is intrac-
luster hopping and t� is intercluster hopping.
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mates Tc.
18 Calculations for larger clusters that capture these

fluctuations will be an interesting future work. Details of the
full DCA formalism applied to the CBHM will be published
elsewhere.23

Tc and the Néel temperature �TN� are the temperatures
where the superconducting and antiferromagnetic suscepti-
bilities diverge. For small clusters it may be approximately
described as the temperature at which the superconducting
correlation length exceeds the linear cluster size. In a mean-
field calculation such as DCA, the transition temperature is
overestimated and decreases with increasing cluster size.22

As we are treating the model in an elaborate mean-field
scheme, the phase transition signaled by the divergence will
quite likely not be present in the real 2D system but may
survive as a Kosterlitz-Thouless transition, at least for
d-wave superconductivity.18

Tc can be obtained from the temperature dependence of
the pairing matrix M�K ,K��=�pp�K ,K���0�K� ,K�. Here, K
= �K , i	n�, �pp�K ,K�� �pairing interaction� is the irreducible
particle-particle vertex and the bare bubble, �0�K� ,K�, is the
coarse-grained product of two fully dressed single-particle
Green’s functions, G�k ,k�� and G�−k ,−k��. 	n= �2n+1�
T
is the Matsubara frequency at temperature T. We determine
Tc from the temperature dependence of the leading eigen-
value ��T� of M.24,25 We find Tc from ��Tc�=1 and the sym-
metry of the superconducting state is determined by the sym-
metry of the corresponding eigenvector, ��K�, of M. For the
investigated range of t�, we find that the leading eigenvector
�d�K� has d-wave symmetry.

We define the strength of the pairing interaction, Vd, by
projecting out the pairing vertex, �pp, to the d-wave sub-
space, as

Vd�T� =
1

Nc
�
KK�

g�K��pp�K,
T;K�,
T�g�K�� . �2�

Here g�K�=cos�Kx�−cos�Ky� is the d-wave form factor.
Correspondingly, we define the d-wave projected bare
bubble as

Pd0�T� =
1

Nc
�
KK�

g�K��pp
0 �K,K�,
T�g�K�� . �3�

Vd and Pd0 were initially introduced in Ref. 28. They satisfy
the approximation Vd�T�Pd0�T���d�T�.

III. RESULTS

Since the bandwidth W=4�t+ t�� of the inhomogeneous
system changes with t�, we could use either W or the maxi-
mum of t and t� as a unit of energy. Since both the Hamil-
tonian and W are symmetric under the interchange of t and
t�, in both cases the results should reflect this symmetry. The
first choice compensates for changes in Tc due to changes of
the kinetic energy. The second choice reflects the hopping
suppression due to inhomogeneity and will produce perfectly
symmetric plots with abscissa t� / t around one.

We find that both of these choices lead to the same main
conclusion that the inhomogeneity suppresses Tc. In Fig. 2�a�
we show results when W is taken as the energy unit for
U /W=1 and at 10% doping. Tc is maximum in the homoge-
neous limit t� / t=1. In the subsequent figures throughout the
paper, we will present results for the case where the energy
unit is given by t. As can be seen from Fig. 2�b�, where the
U=6t at 8% doping case is shown, Tc monotonically de-
creases with decreasing t�. The suppression of Tc due to in-
homogeneity occurs on the doping range appropriate for
HTS. This can be seen in Fig. 2�c�, where we show Tc vs �
�Ref. 27� for U=8t. Note that the inhomogeneous system
with t�=0.88t has a lower Tc than the homogeneous system
on the doping range 2–20%.

We find that t� t enhances the density of states N�	� at
low excitation energy �−0.5t�	�0.5t�. This can be seen in
Fig. 2�d� where N�	� for t�=0.88t and t�= t are compared at
8% doping for U=8t. The enhancement of N�	� is a band-
structure effect since it can also be noticed for the noninter-
acting problem, i.e., when U=0. The low-energy part of
N�	� has an important role in determining the value of Tc.

We find two competing effects of t� on the pairing matrix
as captured by Vd and Pd0. Figure 3�a� shows the t� depen-
dence of Vd, Pd0, and Tc for U=6t at 8% doping. Vd�t�� and
Pd0�t�� are shown at a temperature equal to the homogeneous
Tc, i.e., Tc-hom, and are normalized to their values at t�= t for
easy comparison. Vd decreases with decreasing t�, indicating
a decreasing d-wave contribution to �pp as t� decreases. The
effect of t� on �0 is captured by Pd0. Pd0�t�� increases with
decreasing t�. Since Pd0 is related to N�	� through G, this
behavior is related to the enhanced low-energy part of N�	�
discussed previously. The effects of t� on Vd and Pd0 provide
a qualitative description of the behavior of Tc since
Vd�T�Pd0�T���d�T�. Note that the relative decrease in Vd is
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FIG. 2. �Color online� �a� Tc�t�� /W for U /W=1 and at 10% doping. Tc is suppressed for t�� t. �b� Tc�t�� / t for U=6t and at 8% doping.
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always larger than the relative increase in Pd0. Therefore, the
net effect of t� is to reduce Tc. The behavior of Vd�t�� and
Pd0�t�� at other values of U and � �not shown� is similar,
leading to a suppression of superconductivity.

Using the DCA for the homogeneous 2D Hubbard model,
it was previously shown that the dominant part of the pairing
interaction comes from the S=1 particle-hole magnetic
channel.25 The energy scale of spin excitations is character-
ized by the superexchange interaction, J=4t2 /U, and chang-
ing the hopping matrix elements of the homogeneous prob-
lem will also influence J. However, the relationship between
Tc and the characteristic energy scale of spin excitations in
the weakly inhomogeneous system is not known. Therefore
it is worth studying the effect of t� on the Néel temperature
and on the spin excitations as characterized by the magnetic
structure factor S�Q ,	�.

We find that at small doping, TN decreases with decreas-
ing t�, as shown for U=8t at 2% hole doping in Fig. 3�b�. As
discussed before for a finite-size cluster, TN occurs when the
antiferromagnetic correlation length �AF exceeds the linear
cluster size. Therefore, decreasing �AF indicates the suppres-
sion of antiferromagnetism in the weakly inhomogeneous
system for small � compared to a homogeneous system.

The magnetic structure factor S�Q= �0,
� ,	� for various
t� values is shown in Fig. 4�a� for U=6t at 8% doping. The
location of the peak of S�Q= �0,
� ,	� can be considered a
measure of the characteristic spin excitation energy and we
define its position to be 2Jeff. This is done in analogy with
linear spin-wave theory29–31 where the peak of the structure
factor at Q= �0,
� is at energy 2J, J being the superex-
change nearest-neighbor spin interaction. Note that Jeff�t��
decreases with decreasing t�, showing that a weak inhomo-
geneity softens the high energy spin excitations. This can be
seen from the plot of S�Q= �0,
� ,	� in Fig. 4�a� and plots of
Jeff�t�� in Figs. 4�b�–4�d�.

We find that Tc�Jeff, as suggested from Figs. 4�b�–4�d�.
By comparing 8% doping �Figs. 4�b� and 4�c�� with 15%
doping �Fig. 4�d��, one can see that this proportionality holds
better for small doping. The proportionality between Tc and
the superexchange interaction J are in accordance with the
experimental observations reported in Ref. 32, and the com-
putational investigation on the homogeneous system in Ref.
19.

IV. DISCUSSION

The maximum Tc occurs in the homogeneous system and
it is suppressed by weak inhomogeneity. The suppression of
Tc prevails over the investigated range of doping � and U,
which are appropriate for a description of HTS. A recent
experiment on Na doped Ca2CuO2Cl2 �Na-CCOC� also indi-
cates suppression of Tc due to inhomogeneity over a wide
range of doping.10

According to our analysis, the suppression of Tc due to
weak inhomogeneity is accompanied by a suppression of Vd
and Jeff. This is an important observation since it suggests a
strong correlation between the characteristic spin excitation
energy Jeff and the pairing interaction. It is consistent with
the previous finding that the pairing interaction in the 2D
Hubbard model is dominated by the S=1 magnetic channel25

and other results reported by Maier et al.28,33 Therefore in-
homogeneities that reduce magnetic contributions to the pair-
ing interaction are likely to reduce d-wave superconductivity.

Since we find Tc�Jeff, it may be possible to increase Tc by
enhancing Jeff. In our model we find that a weak inhomoge-
neity decreases Jeff but other kinds of inhomogeneity might
increase Jeff and, thus, if our assumption is correct, enhance
Tc. For example, weak on-site disorder seems to increase J in
the vicinity of defects.34

Regarding the speculation for the existence of an optimal
inhomogeneity raised in Ref. 16, our results based on the
Nc=4 cluster indicate that Tc is an increasing function of t�
in the weakly inhomogeneous system and the optimal t� oc-
curs at t�= t. Therefore our results for the weakly inhomoge-
neous system are not in agreement with this speculation but
they do not exclude the possibility for an optimal t� at
smaller values of t�. In addition, it will also be interesting to
see how Tc scales with cluster size Nc when the weak inho-
mogeneity is present.

V. CONCLUSION

Using the dynamical cluster approximation for a Nc=4
cluster, we find that a weak inhomogeneity in the checker-
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board Hubbard model suppresses d-wave superconductivity.
The characteristic spin excitation energy and the strength of
the pairing interaction decrease along with decreasing Tc,
suggesting a strong correlation between these quantities.

Note added in proof. After the manuscript was accepted
for publication we learned about exact diagonalization re-
sults for the checkerboard model on small Hubbard
clusters.35
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