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Motivated by recent neutron scattering experiments, we study the ordering of spins in the iron-based super-
conductors LaFeAs�O1−xFx�, assuming them in proximity to a Mott insulator in the phase diagram. The ground

state of the parent system with x=0 is a spin-density wave with ordering wave vector Q� = �0,�� or �� ,0�. Upon
raising the temperature, we find that the system restores SU�2� symmetry, while an Ising symmetry remains
broken, explaining the experimentally observed lattice distortion to a monoclinic crystal structure. Upon further
temperature increase, the spins finally disorder at a second transition. The phase transition driven by doping
with charge carriers similarly splits into an O�3� transition and an Ising transition with z=3 at larger doping.
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After more than two decades of prevailing in condensed-
matter physics, copper-based high-temperature supercon-
ductors have very recently given in to their iron-based
cousins.1–7 The newly discovered materials MFeAs�O1−xFx�,
with M being rare earths such as La and Sm, have similar
layered structure with stacked FeAs planes, sandwiched with
La and O. Transport measurements show that the ground
state of the undoped parent system is not an insulator, and
local-density approximation �LDA� calculations have identi-
fied both a small electron pocket and a hole pocket at the
Fermi level.8 However, it has been argued that the system is
actually close to a Mott insulator, and a lot of physics can be
studied in a similar manner as the copper-based high-Tc fam-
ily, especially in the undoped system.9 In our current work,
we will study the magnetism of these materials. Although the
true unit cell of the FeAs plane contains two Fe ions, because
of the staggered out-of-plane distribution of As ions �Fig. 1�,
we are only interested in the magnetic Fe ions and so we will
use a unit cell with one Fe ion, unless stated otherwise.

Recent neutron scattering experiments have shown that by
lowering temperature, the undoped material first undergoes a
structural phase transition at 150 K, with a distortion from
tetragonal structure to monoclinic structure, followed by a
spin-ordering phase transition at 134 K developing stripe or-
der at �� ,0�.10 The observed lattice distortion and spin-
density wave �SDW� pattern are depicted in Fig. 1. In the
superconducting material with x=0.08, the SDW order is not
observed and, surprisingly, the distortion is absent as well,
which suggests that the lattice distortion is driven by the
development of the spin order. Interestingly, however, the
SDW order at low doping only appears at a lower tempera-
ture �134 K� than the lattice distortion �150 K�. We argue
here that the SDW ordering is preceded, both in temperature
and doping, by the breaking of an Ising symmetry in the
effective spin model, and that this is responsible for the ob-
served lattice distortion.

Reference 9 argued that the undoped material is described
by either an S=1 or 2 spin model with nearest- and next-
nearest-neighbor couplings J1 ,J2 that depend on the compe-
tition between the on-site Hubbard interaction and the Hunds
rule,

H = �
�i,j�

J1S� i · S� j + �
��i,j��

J2S� i · S� j . �1�

Upon doping, this J1-J2 model has dx2−y2 + idxy and then dxy

superconductivity as J2 increases into the regime where the
insulator has �� ,0� SDW order.11 There is also a much
weaker interlayer coupling J�, which is necessary to stabi-
lize the spin order. It was suggested by first-principles calcu-
lations that both J1 and J2 are large and antiferromagnetic,12

and Ref. 13 showed that J2�2J1. It is well known that when
J1�2J2, the classical ground-state manifold of model �1� is
S2 � S2, because the two sublattices of the square lattice will
each form a Néel order �n�1 and n�2�,and the ground-state en-
ergy is independent of the relative angle between these two

x

T

c1

c2

T

T

xx

SDW

Ising order

disorder

c2 c1

(a) (b)

(c)
(d)

FIG. 1. �Color online� �a� The lattice structure at room tempera-
ture. The gray circles are Fe ions; the green �medium gray� and red
�dark gray� circles are As ions above and below the Fe plane, re-
spectively. The dashed square is the two-Fe unit cell. �b� The lattice
structure between 150 and 134 K after the Ising order is developed:
the thick lines represent the bonds between antiparallel aligned
spins, but no uniform spin order is formed. The one-Fe unit cell is
orthorhombic, but the two-Fe unit cell has a 3D monoclinic struc-
ture, as was seen in Ref. 10. �c� The �0,�� spin order below 134 K.
�d� The global phase diagram as a function of temperature and
doping x. The blue �light gray� curve represents the Ising transition,
the red �dark gray� curve represents the O�3� transition.
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Néel vectors. However, quantum or thermal fluctuations lift
the degeneracy, leading to parallel or antiparallel alignment
of the two sublattice Néel vectors.14–16 If we define O�3�
vectors �� i as n� i with softened unit-length constraint, the long
wavelength field theory reads

L = �
a=1

2

�
�=x,y

���� a · ���� a − r�� a
2 + u��� a

2�2 + L�,

L� = ��� 1�x�y · �� 2 − ���� 1 · �� 2�2. �2�

In the above equation, we have absorbed the overall energy
scale into �� a. The parameter r is tuned by temperature, �
�J1 /J2, � has contributions from both quantum and thermal
fluctuations: ��J1

2 /J2
2� �S�Q+�TT /J2�, and coefficients �Q

and �T are given in Ref. 15. L� contains all sublattice cou-
plings preserving the square lattice symmetry. The latter
rules out the term �� 1 ·�� 2, but allows for the coupling
��� 1 ·�� 2�2.

The ground-state manifold of the field theory �2� is S2

� Z2, and the Z2 order can be described by the Hubbard-
Stratonovich field �, which couples to �� 1 ·�� 2:
L�=−���� 1 ·�� 2�+�2 / �4��. The ordered state with
�=1 ��=−1� corresponds to the �� ,0� ��0,��� SDW order.
States with Ising � order, but only short-range SDW order,
first appeared 16,17 in the quantum theory of H for S=1,2. If
the coupling � is relevant, an Ising variable 	 can be intro-
duced directly as �� 2=	�� 1. Reference 15 showed that ther-
mal fluctuations renormalize the anisotropy mixing � to zero
at long wavelength, so that at large scales the Lagrangian �2�
can also be viewed as the low-energy field theory of the
following Ising-O�3� model on the square lattice:
H=��i,j�J�1+	i	 j�n� i ·n� j. The O�3� vector n� denotes either of
n�1 or n�2, and the coarse-grained mode of 	 is precisely the
Ising field � introduced before. The easy-plane version of
the Ising-O�3� model, dubbed the Ising-XY model, has been
used widely as an effective model for the fully frustrated XY
model on the square lattice and the triangular lattice.18–24

Note that the Ising order ��0 does not imply O�3� or-
der; however, because the system is invariant under exchang-
ing �� 1 and �� 2, an O�3� order in �� 1,2 implies Ising order.
Therefore, the transition temperature of the Ising order is
necessarily no lower than that of the O�3� symmetry break-
ing. If we consider a purely two-dimensional system, at finite
temperature there is only a two-dimensional �2D� Ising tran-
sition separating an Ising ordered phase and a disordered
phase since a uniform O�3� order cannot exist at finite tem-
perature in dimensions smaller than 3. The transition tem-
perature can be estimated roughly as Tc1 / �J2���
2 /a2,
where 
 is the correlation length of the 2D O�3� order at the
transition and 
2 /a2 is a factor gained from integrating out
the O�3� order parameters. A more precise estimate of the
Ising transition temperature for the J1−J2 model can be

found in Ref. 15, with Tc1 given by T=0.13
J1

2S

J2


�T�2

a2 , in the
large-S limit. The Ising order breaks the � /2 rotation sym-
metry of the square lattice; indeed, an order parameter
�=1 implies that the spins tend to be aligned parallel along

x but antiparallel along y. This Ising order favors a lattice
contraction in the y direction, i.e., toward the orthorhombic
structure in Fig. 1. The lattice distortion thus exists even in
the absence of a uniform O�3� order, but it necessarily re-
quires the Ising order. A similar mechanism was proposed for
the lattice distortion in the cuprates.25

The interlayer coupling J� will drive the 2D Ising transi-
tion to a 3D Ising transition, but since it is much weaker than
the intralayer couplings, it will not move the transition tem-
perature significantly. However, the interlayer coupling sta-
bilizes an O�3� ordered phase at finite temperature. Assum-
ing the interlayer coupling is small, the transition
temperature can be estimated as follows: The correlation
length of the 2D O�3� nonlinear sigma model scales as

 /a�exp�2� /g�, with g� T

J2m2 , where m is the magnetic mo-
ment of the SDW order observed at zero temperature in units
of the Bohr magneton, which is empirically found to be only
m�0.36; the interlayer coupling J� grows under renormal-
ization, and becomes unperturbative when J� / �J2m2�
2 /a2

�1, which will lead to the transition temperature Tc2
�4�J2m2 / ln�m2J2 /J��.26 J2 is evaluated to be �1000 Kin
Ref. 13. Using the transition temperature from Ref. 10, the
interlayer coupling J� is estimated to be of order 10−4 J2 m2,
which can be neglected as compared with other interactions,
unless we are very close to a critical point. The small value
of the moment m is probably due to quantum fluctuations at
zero temperature, since the system can be close to quantum
phase transitions. Close to but above Tc, the correlation
length of the system scales like in the 3D O�3� universality
class, but once 
z /a���T−Tc2� /J��−� shrinks to 1, the sys-
tem crosses over to two-dimensional critical behavior. The
fact that the lattice distortion observed in experiments10 oc-
curs at a temperature that is relatively small compared to the
exchange interaction J2 �Ref. 13� is probably due to the prox-
imity to quantum phase transitions, which is consistent with
the small magnetic moment observed at low temperature.10

The phase diagram is depicted in Fig. 1.
Quantum phase transitions. In LaFeAsO1−xFx, the SDW

order vanishes as a small amount of extra carriers are intro-
duced by doping, meanwhile the superconductor state
emerges, implying the presence of one or more quantum
phase transitions as a function of doping. A tentative quan-
tum critical point in these systems has already been studied
experimentally in a series of samples SmFeAsO1−xFx.

27

Since the nature of the superconductor is not yet clear, how-
ever, in the present work we focus on the quantum phase
transitions of the spin system discarding the presence of su-
perconductivity. In terms of the itinerant fermions, the SDW
at �� ,0� can be understood from the large susceptibility aris-
ing from the location of electron and hole pockets in the
Brillouin zone: there are low-energy electron-hole pair exci-
tations at the �� ,0� wave vector �Fig. 2�. As extra electrons
are doped into this system, these low-energy excitations dis-
appear rapidly because of the unequal sizes of the electron
and hole pockets. The SDW order parameter cannot decay
into a particle-hole pair excitations preserving both momen-
tum and energy, because the SDW wave vector �� ,0� does
not connect two pairs of points on the Fermi surface for finite
x �Fig. 2�. After integrating out electrons, we would obtain
the following z=1 Lagrangian:
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L = �
i=1

2

�
�=�,x,y

���� i · ���� i − r�� i
2 + u	�� i	4 + L�,

L� = ��� 1�x�y · �� 2 + �1	�� 1	2	�� 2	2 − ���� 1 · �� 2�2, �3�

which contains no dissipative term. The first three terms of
the Lagrangian describe the two copies of 3D O�3� systems
on the two sublattices. The first term in L� mixes �� 1 and �� 2,
and its scaling dimension is

��� = D − �2 + D − 2 + �� = − � . �4�

�=0.0375 �Ref. 28� is the anomalous dimension of �� at the
3D O�3� universality class, therefore the � term is irrelevant.
The second term in L� is allowed by symmetry and hence
will be generated under renormalization. Its scaling dimen-
sion can be evaluated as

��1� = D − 2�	�� 	2� = D − 2
D −
1

�
� =

2

�
− D , �5�

with the correlation length exponent �=0.71 for the 3D O�3�
transition. The �1 term is thus also irrelevant. However, the �
term is relevant at the 3D O�3� transition, since it has posi-
tive scaling dimension ���=0.581.28 We expect this term to
split the two coinciding O�3� transitions into two transitions,
an O�3� transition and an Ising transition, as was found in the
Schwinger boson theory.16,29 Again, because the O�3� order
of �� 1,2 implies Ising order, the latter should occur after the
O�3� transition, i.e., at larger x. The distance in doping be-
tween the two transitions can be estimated by scaling, ignor-
ing possible higher-order singular perturbations mediated by
electrons,

x �
rc

rc
� �1/���� = 
 J1

J2
�2/����

. �6�

Note that the monopoles of �� 1 and �� 2 are confined by the �
term. The Berry phase for monopoles of a spin-S system on
the square lattice is proportional to i�S; the monopole-
composite of �1 and �2 carries a trivial Berry phase for the
S=1 and 2 cases,16,29 and hence is ignored hereafter.

Note that while the O�3� SDW order parameters �� 1 and
�� 2 cannot decay into particle-hole excitations since the wave
vector �� ,0� does not connect pairs of points at the Fermi
level, the same is not true for the Ising order parameter
���� 1 ·�� 2 which orders at �0,0�. Also since � changes sign
under a � /2 rotation and reflection along the axis x=y, but
does not break any other symmetry, � couples to the two-
body d-wave density �q��ksign�kx

2−ky
2�ck+q/2

† ck−q/2, and
hence can decay into particle-hole excitations. The decay
rate can be calculated using Fermi’s golden rule,

Im����,q�� � � d2k

�2��2 �f��k+q� − f��k����� − �k+q + �k�

� �k	�q	k + q�2 � c0
�

q
. �7�

The standard Hertz-Millis31 formalism leads to a z=3 theory
with Lagrangian

L = �−q
 	�	
c0q

+ c1q2 + r��q + ¯ . �8�

The ellipses stand for all the quartic and higher-order terms
of �, which are irrelevant at this Gaussian fixed point de-
scribed by Eq. �8�. Quadratic terms with singular factor
�2 /q2 or higher may occur in the expansion, but since the
theory has z=3, these terms are irrelevant. The z=3 critical
field theory was also obtained for the electronic nematic
phase with an order parameter similar to �.32 The critical
exponents can be extracted directly from the field theory �8�.
For instance, in the quantum critical region, the specific heat
and the critical temperature of the finite temperature Ising
transition scale as

Cv � Td/z = T2/3,

Tc1 � �xc1 − x�z/�d−2+z� = xc1 − x , �9�

with d=2. The weak interlayer coupling w�n�n+1 will fi-
nally drive the scaling back to three-dimensional behavior
with w�J� /J2, but its role is not considerable unless the 2D
correlation length is long enough, i.e., if we are close enough
to the quantum critical point. The spatial scaling dimension
of w is �w�=2 at the 2D critical point described by Eq. �8�,
therefore w becomes nonperturbative when �
 /a��w��1 /w,
i.e.,

xc1 − x � w1/���w�� = w . �10�

Within this small window, the critical scaling becomes

Cv � Td/z = T ,

x

a b

c

x

FIG. 2. �Color online� �a� The Brillouin zone for a one-Fe unit
cell at zero doping. The thick blue �dark gray� circle denotes two
almost overlaping hole pockets �Ref. 30�, the red �light gray�
dashed circle represents the electron pocket. The line that connects
the electron and hole pockets is the �� ,0� wave vector. �b� At finite
doping, the electron pockets expand and the hole pockets shrink, so
that the �� ,0� vector can no longer connect points at the Fermi
level. �c� Translation of the electron pocket by vector �� ,0�: If at
zero doping there is a perfect overlap of the pockets, at infinitesimal
doping there is no crossing between electron and hole Fermi level at
all, i.e., an order with �� ,0� wave vector cannot decay into a
particle-hole pair.
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Tc � �xc1 − x�z/�d−2+z� = �xc1 − x�3/4. �11�

The O�3� order parameter �� , which can be taken as �� 1,
cannot decay into particle-hole pairs, assuming the �� ,0�
wave vector does not connect two points at the Fermi level.
The Gaussian part of the Lagrangian describing the O�3�
transition at xc2 has dynamical exponent z=1,

L = �� −q��2 + q2��� q + L�. �12�

L� consists of quartic and higher-order terms. If the quartic
terms have no singularity in momentum and frequency
space, the Lagrangian �12� describes a 3D O�3� transition.
Berry phases of monopoles in this case are trivial for spin-
1,2 �Refs. 16 and 29� and so are not noted. However, the
quartic terms of the effective action may include singular
terms like

L� = �2	�� 	−q
2 	�	

q
	�� 	q

2. �13�

This term can be viewed as describing the decay of 	�� 	2,
which couples to the zero momentum charge density. From
naive power counting, �2 has the same scaling dimension as
all the other quartic terms without singularities. However,
since it mixes the 	�� 	2 field at distinct spatial points, the
anomalous dimensions will be contributed by the two differ-
ent points separately. Therefore, its scaling dimension can be
evaluated as ��2�=D−2�D− 1

� �= 2
� −D, which is again irrel-

evant at the 3D O�3� transition. If no other more relevant

quartic terms are present, the quantum phase transition of ��

at xc2 belongs to the 3D O�3� universality class, cf. Fig. 1.
But a thorough analysis of the quartic terms is required to
draw a firm conclusion.

Quantum critical points play an important role in transport
because the electrons can scatter off the critical modes. We
expect the Ising critical modes to contribute the dominant
part to the low-temperature resistivity, because of its z=3
soft modes and the ensuing larger density of states at low
energy. At low temperature where the scattering is dominated
by small-angle forward scattering, the resistivity is expected
to scale as ��T4/3. The more general formula for the resis-
tivity for a z=3 theory with Lagrangian �8� reads �
�T�d+2�/z, which is consistent with the well-known T5/3 law
of the resistivity at the quantum critical point of three-
dimensional itinerant ferromagnetic order.33

In summary, we have studied the SDW at �� ,0� observed
experimentally in LaFeAsO1−xFx, and its phase transitions.
While raising the thermal and quantum fluctuations, the
SDW is predicted to cede to a state with restored SU�2�
invariance, but retaining a broken Ising symmetry which
drives a lattice distortion. This is followed by an Ising tran-
sition at higher temperature or larger doping. The nature and
universality classes of these transitions and various critical
exponents are discussed.

Note added. Fang et al.34 have also applied thermal fluc-
tuations of the J1-J2 model to the iron-based superconduct-
ors.
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