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We present a unified theory of magnetic damping in itinerant electron ferromagnets at order q2 including
electron-electron interactions and disorder scattering. We show that the Gilbert damping coefficient can be
expressed in terms of the spin conductivity, leading to a Matthiessen-type formula in which disorder and
interaction contributions are additive. In a weak ferromagnet regime, electron-electron interactions lead to a
strong enhancement of the Gilbert damping.
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I. INTRODUCTION

In spite of much effort, a complete theoretical description
of the damping of ferromagnetic spin waves in itinerant elec-
tron ferromagnets is not yet available.1 Recent measurements
of the dispersion and damping of spin-wave excitations
driven by a direct spin-polarized current prove that the the-
oretical picture is incomplete, particularly when it comes to
calculating the linewidth of these excitations.2 One of the
most important parameters of the theory is the so-called Gil-
bert damping parameter �,3 which controls the damping rate
and thermal noise and is often assumed to be independent of
the wave vector of the excitations. This assumption is justi-
fied for excitations of very long wavelength �e.g., a homoge-
neous precession of the magnetization�, where � can origi-
nate in a relatively weak spin-orbit �SO� interaction.4

However, it becomes dubious as the wave vector q of the
excitations grows. Indeed, both electron-electron �e-e� and
electron-impurity interactions can cause an inhomogeneous
magnetization to decay into spin-flipped electron-hole pairs,
giving rise to a q2 contribution to the Gilbert damping. In
practice, the presence of this contribution means that the
Landau-Lifshitz-Gilbert equation contains a term propor-
tional to −m��2�tm �where m is the magnetization� and
requires neither spin-orbit nor magnetic disorder scattering.
In contrast, the homogeneous damping term is of the form
m��tm and vanishes in the absence of SO or magnetic dis-
order scattering.

The influence of disorder on the linewidth of spin waves
in itinerant electron ferromagnets was discussed in Refs.
5–7, and the role of e-e interactions in spin-wave damping
was studied in Refs. 8 and 9 for spin-polarized liquid He3

and in Refs. 10 and 11 for two- and three-dimensional �3D�
electron liquids, respectively. In this Rapid Communication,
we present a unified semiphenomenological approach, which
enables us to calculate on equal footing the contributions of
disorder and e-e interactions to the Gilbert damping param-
eter to order q2. The main idea is to apply to the transverse
spin fluctuations of a ferromagnet the method first introduced
by Mermin12 for treating the effect of disorder on the dynam-
ics of charge-density fluctuations in metals.13 Following this
approach, we will show that the q2 contribution to the damp-
ing in itinerant electron ferromagnets can be expressed in

terms of the transverse spin conductivity, which in turn sepa-
rates into a sum of disorder and e-e terms.

A major technical advantage of this approach is that the
ladder vertex corrections to the transverse spin conductivity
vanish in the absence of SO interactions, making the dia-
grammatic calculation of this quantity a straightforward task.
Thus we are able to provide explicit analytic expressions for
the disorder and interaction contribution to the q2 Gilbert
damping to the lowest order in the strength of the interac-
tions. This Rapid Communication connects and unifies dif-
ferent approaches and gives a rather complete and simple
theory of q2 damping. In particular, we find that for weak
metallic ferromagnets the q2 damping can be strongly en-
hanced by e-e interactions, resulting in a value comparable
to or larger than typical in the case of homogeneous damp-
ing. Therefore, we believe that the inclusion of a damping
term proportional to q2 in the phenomenological Landau-
Lifshitz equation of motion for the magnetization14 is a po-
tentially important modification of the theory in strongly
inhomogeneous situations, such as current-driven nano-
magnets2 and the ferromagnetic domain-wall motion.15,16

II. PHENOMENOLOGICAL APPROACH

In Ref. 12, Mermin constructed the density-density re-
sponse function of an electron gas in the presence of impu-
rities through the use of a local drift-diffusion equation,
whereby the gradient of the external potential is cancelled, in
equilibrium, by an opposite gradient of the local chemical
potential. In diagrammatic language, the effect of the local
chemical potential corresponds to the inclusion of the vertex
correction in the calculation of the density-density response
function. Here, we use a similar approach to obtain the trans-
verse spin susceptibility of an itinerant electron ferromagnet,
modeled as an electron gas whose equilibrium magnetization
is along the z axis.

Before proceeding we need to clarify a delicate point. The
homogeneous electron gas is not spontaneously ferromag-
netic at the densities that are relevant for ordinary magnetic
systems.13 In order to produce the desired equilibrium mag-
netization, we must therefore impose a static fictitious field
B0. Physically, B0 is the “exchange” field Bex plus any
external/applied magnetic field B0

app which may be addition-
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ally present. Therefore, in order to calculate the transverse
spin susceptibility we must take into account the fact that the
exchange field associated with a uniform magnetization is
parallel to the magnetization and changes direction when the
latter does. As a result, the actual susceptibility �ab�q ,��
differs from the susceptibility calculated at constant B0,
which we denote by �̃ab�q ,��, according to the well-known
relation11

�ab
−1�q,�� = �̃ab

−1�q,�� −
�ex

M0
�ab. �1�

Here, M0 is the equilibrium magnetization �assumed to point
along the z axis� and �ex=�Bex �where � is the gyromagnetic
ratio� is the precession frequency associated with the ex-
change field. �ab is the Kronecker delta. The indices a and b
denote directions �x or y� perpendicular to the equilibrium
magnetization and q and � are the wave vector and the fre-
quency of the external perturbation. Here we focus solely on
the calculation of the response function �̃ because term
�ex�ab /M0 does not contribute to Gilbert damping. We do
not include the effects of exchange and external fields on the
orbital motion of the electrons.

The generalized continuity equation for the Fourier com-
ponent of the transverse spin density Ma in the direction a �x
or y� at wave vector q and frequency � is

− i�Ma�q,�� = − i�q · ja�q,�� − �0�abMb�q,��

+ �M0�abBb
app�q,�� , �2�

where Ba
app�q ,�� is the transverse external magnetic field

driving the magnetization and �0 is the precessional fre-
quency associated with a static magnetic field B0 �including
exchange contribution� in the z direction. ja is the ath com-
ponent of the transverse spin-current-density tensor and we
set 	=1 throughout. The transverse Levi-Civita tensor �ab
has components �xx=�yy =0, �xy =−�yx=1, and the summation
over repeated indices is always implied.

The transverse spin current is proportional to the gradient
of the effective magnetic field, which plays the role analo-
gous to the electrochemical potential, and the equation that
expresses this proportionality is the analog of the drift-
diffusion equation of the ordinary charge transport theory,

ja�q,�� = iq
���Ba
app�q,�� −

Ma�q,��
�̃�

� , �3�

where 
� �=
xx or 
yy� is the transverse dc �i.e., �=0� spin
conductivity and �̃�=M0 /�0 is the static transverse spin sus-
ceptibility in the q→0 limit.17 Just as in the ordinary drift-
diffusion theory, the first term on the right-hand side of Eq.
�3� is a “drift current” and the second is a “diffusion current,”
with the two canceling out exactly in the static limit �for q
→0�, due to the relation Ma�0,0�=��̃�Ba

app�0,0�. Combin-
ing Eqs. �2� and �3� gives the following equation for the
transverse magnetization dynamics:

�− i��ab +
�
�q2

�̃�

�ab + �0�ab�Mb

= �M0�ab + �
�q2�ab��Bb
app, �4�

which is most easily solved by transforming to the circularly
polarized components M�=Mx� iMy, in which the Levi-
Civita tensor becomes diagonal, with eigenvalues �i. Solv-
ing in the “+” channel, we get

M+ = ��̃+−B+
app =

M0 − i�
�q2

�0 − � − i�
�q2�0/M0
�B+

app, �5�

from which we obtain to the leading order in � and q2

�̃+−�q,�� �
M0

�0
�1 +

�

�0
� + i�

�
�q2

�0
2 . �6�

The higher-order terms in this expansion cannot be legiti-
mately retained within the accuracy of the present approxi-
mation. We also disregard the q2 correction to the static sus-
ceptibility, since in making the Mermin ansatz �3� we are
omitting the equilibrium spin currents responsible for the
latter. Equation �6�, however, is perfectly adequate for our
purpose, since it allows us to identify the q2 contribution to
the Gilbert damping,

� =
�0

2

M0
lim
�→0

Im�̃+−�q,��
�

=
�
�q2

M0
. �7�

Therefore, the Gilbert damping can be calculated from the dc
transverse spin conductivity 
�, which in turn can be com-
puted from the zero-frequency limit of the transverse spin-
current–spin-current response function,


� = −
1

m�
2V

lim
�→0

Im��	i=1

N
Ŝiap̂ia;	i=1

N
Ŝiap̂ia



�

�
, �8�

where Ŝia is the x or y component of the spin operator for the
ith electron, p̂ia is the corresponding component of the mo-
mentum operator, m� is the effective electron mass, V is the

system volume, N is the total electron number, and ��Â ; B̂

�

represents the retarded linear-response function for the ex-

pectation value of an observable Â under the action of a field

that couples linearly to an observable B̂. Both disorder and
e-e interaction contributions can be systematically included
in the calculation of the spin-current–spin-current response
function. In the absence of spin-orbit and e-e interactions,
the ladder vertex corrections to the conductivity are absent
and calculation of 
� reduces to the calculation of a single
bubble with Green’s functions,

G↑,↓�p,�� =
1

� − �p + �F � �0/2 + i/2
↑,↓
, �9�

where the scattering time 
s in general depends on the spin
band index s= ↑ ,↓. In the Born approximation, the scattering
rate is proportional to the electron density of states, and we
can write 
↑,↓=
� /�↑,↓, where �s is the spin-s density of
states and �= ��↑+�↓� /2. 
 parametrizes the strength of the
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disorder scattering. A standard calculation then leads to the
following result:


�
dis =

�F↑
2 + �F↓

2

6��↓
−1 + �↑

−1�
1

�0
2


. �10�

This, inserted in Eq. �7�, gives a Gilbert damping param-
eter in full agreement with what we have also calculated
from a direct diagrammatic evaluation of the transverse spin
susceptibility, i.e., spin-density–spin-density correlation
function. From now on, we shall simplify the notation by
introducing a transverse spin-relaxation time,

1


�
dis =

4EF↑ + EF↓

3n��↓
−1 + �↑

−1�
1



, �11�

where EFs=m��Fs
2 /2 is the Fermi energy for spin-s electrons

and n is the total electron density. In this notation, the dc
transverse spin conductivity takes the form


�
dis =

n

4m��0
2

1


�
dis . �12�

III. ELECTRON-ELECTRON INTERACTIONS

One of the attractive features of the approach based on
Eq. �8� is the ease with which e-e interactions can be in-
cluded. In the weak-coupling limit, the contributions of dis-
order and e-e interactions to the transverse spin conductivity
are simply additive. We can see this by using twice the equa-
tion of motion for the spin-current–spin-current response
function. This leads to an expression for the transverse spin
conductivity �Eq. �8�� in terms of the low-frequency spin-
force–spin-force response function,


� = −
1

m�
2�0

2V
lim
�→0

Im��	i
ŜiaF̂ia;	i

ŜiaF̂ia


�

�
. �13�

Here, F̂ia= ṗ̂ia is the time derivative of the momentum opera-
tor, i.e., the operator of the force on the ith electron. The total
force is the sum of electron-impurity and e-e interaction
forces. Each of them, separately, gives a contribution of or-
der 
vei
2 and 
vee
2, where vei and vee are matrix elements of
the electron-impurity and e-e interactions, respectively, while
cross terms are of higher order, e.g., vee
vei
2. Thus, the two
interactions give additive contributions to the conductivity.
In Ref. 18, a phenomenological equation of motion was used
to find the spin current in a system with disorder and longi-
tudinal spin-Coulomb drag coefficient. We can use a similar
approach to obtain transverse spin currents with transverse
spin-Coulomb drag coefficient 1 /
�

ee. In the circularly polar-
ized basis,

i�� � �0�j� = −
nE�

4m�

+
j�


�
dis +

j�


�
ee , �14�

and correspondingly the spin conductivities are


� =
n

4m�

1

− �� � �0�i + 1/
�
dis + 1/
�

ee . �15�

In the dc limit, this gives


��0� =

+ + 
−

2
=

n

4m�

1/
�
dis + 1/
�

ee

�0
2 + �1/
�

dis + 1/
�
ee�2 . �16�

Using Eq. �16�, an identification of the e-e contribution is
possible in a perturbative regime where 1 /
�

ee and 1 /
�
dis

��0, leading to the following formula:


� =
n

4m��0
2� 1


�
dis +

1


�
ee� . �17�

Comparison with Eq. �13� enables us to immediately
identify the microscopic expressions for the two scattering
rates. For the disorder contribution, we recover what we al-
ready knew, i.e., Eq. �11�. For the e-e interaction contribu-
tion, we obtain

1


�
ee = −

4

nm�V
lim
�→0

Im��	i
ŜiaF̂ia

C ;	i
ŜiaF̂ia

C


�

�
, �18�

where FC is just the Coulomb force, and the force-force cor-
relation function is evaluated in the absence of disorder. The
correlation function in Eq. �18� is proportional to the func-
tion F+−��� which appeared in Ref. 11 �Eqs. �18� and �19�� in
a direct calculation of the transverse spin susceptibility. Mak-
ing use of the analytic result for ImF+−��� presented in
Eqs. �21� and �24� of that paper we obtain

1


�
ee = ��p�

8�0

27

T2rs
4m�a�

2kB
2

�1 + p�1/3 , �19�

where T is the temperature, p= �n↑−n↓� /n is the degree of
spin polarization, a� is the effective Bohr radius, rs is the
dimensionless Wigner-Seitz radius, �0= �4 /9��1/3, and
��p�—a dimensionless function of the polarization p—is de-
fined by Eq. �23� of Ref. 11. This result is valid to second
order in the Coulomb interaction. Collecting our results, we
finally obtain a full expression for the q2 Gilbert damping
parameter,

� =
�nq2

4m�M0

1/
�
dis + 1/
�

ee

�0
2 + �1/
�

dis + 1/
�
ee�2 . �20�

One of the salient features of Eq. �20� is that it scales as the
total scattering rate in the weak disorder and e-e interaction
limit, while it scales as the scattering time in the opposite
limit. The approximate formula for the Gilbert damping in
the more interesting weak-scattering/strong-ferromagnet re-
gime is

� =
�nq2

4m��0
2M0

� 1


�
dis +

1


�
ee� , �21�

while in the opposite limit, i.e., for �0�1 /
�
dis, 1 /
�

ee,

� =
�nq2

4m�M0
� 1


�
dis +

1


�
ee�−1

. �22�

Equation �20� agrees with the result of Singh and Tesanovic6

on the spin-wave linewidth as a function of the disorder
strength and �0. However, Eq. �20� also describes the influ-
ence of e-e correlations on the Gilbert damping. A compari-
son of the scattering rates originating from disorder and e-e
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interactions shows that the latter is important and can be
comparable or even greater than the disorder contribution for
high-mobility and/or low-density 3D metallic samples. Fig-
ure 1 shows the behavior of the Gilbert damping as a func-
tion of the disorder scattering rate. One can see that the e-e
scattering strongly enhances the Gilbert damping for small
polarizations/weak ferromagnets �see the red �solid� line�.
This stems from the fact that 1 /
�

dis is proportional to 1 /
 and
independent of polarization for small polarizations, while
1 /
�

ee is enhanced by a large prefactor ��p�=2� / �1−�2�
+ �1 /2�ln��1+�� / �1−���, where �= �1− p�1/3 / �1+ p�1/3. On
the other hand, for strong polarizations �dotted and dash-
dotted lines in Fig. 1�, the disorder dominates in a broad
range of 1 /
 and the inhomogenous contribution to the Gil-
bert damping is rather small. Finally, we note that our calcu-
lation of the e-e interaction contribution to the Gilbert damp-

ing is valid under the assumption of 	��kBT �which is
certainly the case if �=0�. More generally, as follows from
Eqs. �21� and �22� of Ref. 11, a finite frequency � can be
included through the replacement �2�kBT�2→ �2�kBT�2

+ �	��2 in Eq. �19�. Thus 1 /
�
ee is proportional to the scatter-

ing rate of quasiparticles near the Fermi level, and our damp-
ing constant in the clean limit becomes qualitatively similar
to the damping parameter obtained by Mineev9 for � corre-
sponding to the spin-wave resonance condition in some ex-
ternal magnetic field �which in practice is much smaller than
the ferromagnetic exchange splitting �0�.

IV. SUMMARY

We have presented a unified theory of the Gilbert damp-
ing in itinerant electron ferromagnets at the order q2, includ-
ing e-e interactions and disorder on equal footing. For the
inhomogeneous dynamics �q�0�, these processes add to a
q=0 damping contribution that is governed by magnetic dis-
order and/or spin-orbit interactions. We have shown that the
calculation of the Gilbert damping can be formulated in the
language of the spin conductivity, which takes an intuitive
Matthiessen form with the disorder and interaction contribu-
tions being simply additive. It is still a common practice,
e.g., in the micromagnetic calculations of spin-wave disper-
sions and linewidths, to use a Gilbert damping parameter
independent of q. However, such calculations are often at
odds with experiments on the quantitative side, particularly
where the linewidth is concerned.2 We suggest that the inclu-
sion of the q2 damping �as well as the associated magnetic
noise� may help in reconciling theoretical calculations with
experiments.

ACKNOWLEDGMENTS

This work was supported in part by the NSF under
Grants No. DMR-0313681 and No. DMR-0705460 as well
as Fordham Research Grant. Y.T. thanks A. Brataas and
G. E. W. Bauer for useful discussions.

*hankiewicz@fordham.edu
1 Y. Tserkovnyak, A. Brataas, G. E. Bauer, and B. I. Halperin,

Rev. Mod. Phys. 77, 1375 �2005�.
2 I. N. Krivorotov, D. V. Berkov, N. L. Gorn, N. C. Emley, J. C.

Sankey, D. C. Ralph, and R. A. Buhrman, Phys. Rev. B 76,
024418 �2007�.

3 T. L. Gilbert, IEEE Trans. Magn. 40, 3443 �2004�.
4 E. M. Hankiewicz, G. Vignale, and Y. Tserkovnyak, Phys. Rev.

B 75, 174434 �2007�.
5 A. Singh, Phys. Rev. B 39, 505 �1989�.
6 A. Singh and Z. Tesanovic, Phys. Rev. B 39, 7284 �1989�.
7 V. L. Safonov and H. N. Bertram, Phys. Rev. B 61, R14893

�2000�.
8 V. P. Silin, Sov. Phys. JETP 6, 945 �1958�.
9 V. P. Mineev, Phys. Rev. B 69, 144429 �2004�.

10 Y. Takahashi, K. Shizume, and N. Masuhara, Phys. Rev. B 60,
4856 �1999�.

11 Z. Qian and G. Vignale, Phys. Rev. Lett. 88, 056404 �2002�.

12 N. D. Mermin, Phys. Rev. B 1, 2362 �1970�.
13 G. F. Giuliani and G. Vignale, Quantum Theory of the Electron

Liquid �Cambridge University Press, Cambridge, UK, 2005�.
14 E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2,

Course of Theoretical Physics Vol. 9, 3rd ed. �Pergamon, Ox-
ford, 1980�.

15 Y. Tserkovnyak, A. Brataas, and G. E. Bauer, J. Magn. Magn.
Mater. 320, 1282 �2008�, and references therein.

16 In ferromagnets which nonuniformities are beyond the linearized
spin waves, there is a nonlinear q2 contribution to damping �see
J. Foros, A. Brataas, Y. Tserkovnyak, and G. E. W. Bauer,
arXiv:0803.2175 �unpublished�� which has a different physical
origin, related to the longitudinal spin-current fluctuations.

17 Although both 
� and �̃� are in principle tensors in transverse
spin space, they are proportional to �ab in axially symmetric
systems; hence we use scalar notation.

18 I. D’Amico and G. Vignale, Phys. Rev. B 62, 4853 �2000�.

FIG. 1. �Color online� The Gilbert damping � as a function of
the disorder scattering rate 1 /
. The red �solid� line shows the Gil-
bert damping for polarization p=0.1 in the presence of the e-e and
disorder scattering, while the dashed line does not include the
e-e scattering. The blue �dotted� and black �dash-dotted� lines
show Gilbert damping for p=0.5 and p=0.99, respectively. We
took q=0.1kF, T=54 K, �0=EF��1+ p�2/3− �1− p�2/3�, M0=�pn /2,
m�=me, n=1.4�1021cm−3, rs=5, and a�=2a0.
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