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We use a nonperturbative extended contractor renormalization �ENCORE� method for engineering quantum
devices for the implementation of topologically protected quantum bits described by an effective quantum
dimer model on the triangular lattice. By tuning the couplings of the device, topological protection might be
achieved if the ratio between effective two-dimer interactions and flip amplitudes lies in the liquid phase of the
phase diagram of the quantum dimer model. For a proposal based on a quantum Josephson junction array
�L. B. Ioffe et al., Nature �London� 415, 503 �2002�� our results show that optimal operational temperatures
below 1 mK can only be obtained if extra interactions and dimer flips, which are not present in the standard
quantum dimer model and involve three or four dimers, are included. It is unclear if these extra terms in the
quantum dimer Hamiltonian destroy the liquid phase needed for quantum computation. Minimizing the effects
of multidimer terms would require energy scales in the nano-Kelvin regime. An alternative implementation
based on cold atomic or molecular gases loaded into optical lattices is also discussed, and it is shown that the
small energy scales involved—implying long operational times—make such a device impractical. Given the
many orders of magnitude between bare couplings in devices, and the topological gap, the realization of
topological phases in quantum devices requires careful engineering and large bare interaction scales.

DOI: 10.1103/PhysRevB.78.014503 PACS number�s�: 74.81.Fa, 03.67.Pp, 75.10.Jm

I. INTRODUCTION

Systems characterized by topological quantum order
�TQO� have a degenerate ground state, which is not associ-
ated with any broken symmetry, i.e., the different degenerate
ground states are indistinguishable under the action of any
local operator.1 Instead, they can only be distinguished via
global operators intimately related to their topological prop-
erties. TQO does not fit into Landau’s paradigm for ordered
phases of matter,2 which makes it intrinsically interesting.
Furthermore, this robustness against local perturbations char-
acteristic of systems exhibiting TQO can be used to imple-
ment a fault-tolerant quantum computer.3

Within this approach, robust storage devices for quantum
states �“protected memory qubits”� can be built from Abelian
topological quantum states, whereas topologically protected
computations �“protected gates”� can be implemented using
non-Abelian states.3 Given the enormous challenges in-
volved in building conventional quantum computers caused
by the decoherence inherent to quantum-mechanical systems,
the alternative approach exploiting topological order has at-
tracted considerable interest recently because local operators
�i.e., noise� do not disturb the topological phase.

One promising class of systems exhibiting TQO are frac-
tional quantum Hall systems with filling factors �=5 /2 and
�=12 /5, which are conjectured to exhibit non-Abelian
anyonic excitations.4 Unfortunately, despite some evidence,5

the existence of anyons in these systems remains to be con-
firmed experimentally. On the other hand, a number of inter-
esting lattice models is known to exhibit TQO. Among these
are quantum dimer models �QDM� �Refs. 6–9�, spin models
and Hubbard models with generalized interactions defined on
Kagome lattices,10–13 toric,3 and color14 codes, as well as
Kitaev’s honeycomb anisotropic spin model.15 In general,

these lattice models incorporate unrealistic elements such as
artificially-constrained degrees of freedom or nontrivial in-
teractions and thus experimental realizations remain elusive.
Therefore, we are interested in engineering topologically or-
dered phases by emulating lattice models using highly ma-
nipulable quantum tool-boxes, such as Josephson junction
arrays8 and cold atomic16 or molecular17,18 gases loaded into
optical lattices. However, as promising as these approaches
might seem, the challenges imposed to the engineering of
such emulators are huge, requiring special attention to the
design of such devices and a careful analysis of the involved
energy scales as well as the possible existence of extra terms
in the emulated Hamiltonian.

Having these issues in mind, we use a nonperturbative
algorithm, extended contractor renormalization �ENCORE�
�Ref. 19�, an extended version of the contractor renormaliza-
tion �CORE� technique20,21 to design exotic phases to build
topological quantum computers as well as to propose con-
trollable experiments to investigate TQO. We consider an
emulator for the QDM on the triangular lattice based on an
array of quantum Josephson junctions.8 This system is a
good candidate for the implementation of a topologically
protected qubit for two reasons: First, quantum dimer models
are among the best understood systems exhibiting TQO and
the presence of a topological phase has been unequivocally
established in a number of studies.7,8,22–24 Second, the ma-
nipulation of Josephson junctions is an experimentally ma-
ture field where an exquisite degree of control has been
achieved. We are able to derive the couplings in the effective
model describing the low-energy physics in the array in an
unbiased way �the only limitations being caused by the finite
sizes of the clusters analyzed�. Our final conclusion is that,
although the approach of Ref. 8 seems promising based on
simple estimates, the energy scales obtained in the full analy-
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sis are too low to make this approach feasible.
In addition, we also discuss, by means of a perturbative

analysis, an implementation based on cold atomic/molecular
gases loaded into a Kagome-shaped optical lattice and en-
counter similar problems of too low-energy scales and too
long time scales.

II. DEVICES FOR EMULATING QUANTUM DIMER
MODELS

A. Quantum dimer model on a triangular lattice

The QDM has first been introduced by Rokhsar and
Kivelson6 in the context of the resonating valence-bond
�RVB� scenario for cuprate superconductors.25 The square
lattice version of this model only displays valence-bond
crystal phases, with the notable exception of a single point at
which the correlations decay algebraically with distance and
the ground state splits into many topological sectors.6 Its
triangular lattice version, first analyzed by Moessner and
Sondhi,7 has a gapped liquid phase with exponentially decay-
ing correlations extending through a finite range of the model
parameters.

The triangular lattice QDM is given by the following
Hamiltonian:

H = H + H + H ,
�1�

with

H = −t

∑ [
| 〉〈 | + | 〉〈 |

]
+ v

∑ [
| 〉〈 | + | 〉〈 |

]

�2�
and similar definitions for

H and H .

Parallel dimers sitting on the same rhombus �henceforth we
refer to such configurations as flippable rhombi� flip with
amplitude t and interact with each other via a potential
strength v; the sum runs over all the rhombi with a given
orientation.

Despite its apparent simplicity, the phase diagram of the
QDM on the triangular lattice is rich, comprising different
crystalline phases.7,8,22–24 Here we are only interested in the
quantum liquid phase, which is stabilized in the range
0.82�v / t�1,24 with exponentially decaying correlations
between dimers and a gap ��0.1t against excitations.8 In
this phase the system’s ground state is degenerate: twofold
degeneracy on a cylindrical geometry, fourfold on a torus
�full periodic boundary conditions�. The topological sector to
which a given dimer configuration belongs can be deter-
mined via the parity of the dimer count along an arbitrarily
chosen reference line �see Fig. 1�, a property which can be
used to build a two-level system for a topologically protected
quantum bit.8 Note that the topologically ordered phase of
the QDM is also stable toward the presence of disorder,8 a
particularly useful feature since the presence of imperfec-
tions would be unavoidable in any putative engineered de-
vice.

B. Emulator based on Josephson junctions

The emulation of the quantum dimer model on the trian-
gular lattice can be achieved by using Josephson junction
arrays. Ioffe et al.8 introduced two different Josephson junc-
tion array emulators for the QDM. In this work we discuss
the implementation defined on the Kagome lattice only, since
it has a smaller number of superconducting islands attached
to each site of the underlying triangular lattice and thus is
more amenable to numerical studies. However, our main
conclusions are immediately extended to the alternative
implementation on a decorated triangular lattice.

The proposed emulator is built from an array of X-shaped
superconducting islands structured as a Kagome lattice, see
Fig. 1 �thick black lines�. Each X-shaped island is coupled to
its four neighboring islands by a capacitance Ch and a Jo-
sephson current Jh. Inside every hexagon of the Kagome
lattice a star-shaped island �thin black lines in Fig. 1� is
placed, which couples only capacitively to the X-shaped is-
lands via the capacitance Ci. The ground capacitance of an
X-shaped island is CX, whereas the ground capacitance of a
star-shaped island is C�. The energies associated with these
couplings are given by

EC =
�2e�2

2C
, �3�

where e denotes the elementary charge, and EJ=�J /2e. We
set �=2e=1.

One dimer in this array is equivalent to a Cooper pair
sitting on one of the six X-shaped islands surrounding a

CX

Ci

C

C , Jh h

W

FIG. 1. �Color online� Array of Josephson junctions used to
emulate the quantum dimer model on the triangular lattice. The
array is formed by X-shaped superconducting islands �thick black
lines�, which form a Kagome lattice and normal-state star-shaped
islands �thin black lines� placed at the center of every hexagon of
the Kagome lattice. The shaded lines are guides to the eye to em-
phasize the underlying triangular lattice of the effective QDM. Coo-
per pairs hop between nearest-neighbors X-shaped islands with an
amplitude given by the Josephson current Jh. A large ratio between
the capacitances Ci and Ch defines a sizable on-hexagon repulsion
Ehex to emulate the hard-core dimer constraint. The dimers are rep-
resented by ellipses sitting on one of the six links of a given star-
shaped island. The parity of the dimer count along a reference line
� �dotted line� is invariant under the dimer flips in the Hamiltonian
�Eq. �1��.
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given star-shaped island, each one corresponding to one of
the links of the underlying triangular lattice �see Fig. 1,
shaded thick lines�. By applying a global bias to the array,
only half of a Cooper pair is made available per star-shaped
island and, in order to impose the dimer hard-core condition
and emulate the QDM Hamiltonian, we need to tune the
different capacitances and Josephson currents. In order to
guarantee that no hexagon can participate in the formation of
more than one dimer �represented by ellipses in Fig. 1�, we
assign a large value to the capacitance Ci such that there is a
strong repulsion between Cooper pairs placed around the
same star-shaped island.

The energetic cost for placing two bosons around the
same hexagon Ehex defines the basic energy scale of the ar-
ray. It should not be confused with the on-site repulsion be-
tween two Cooper pairs sitting on the same X-shaped island.
The parity of the dimer count along the reference line �
�dotted line in Fig. 1� is invariant under dimer flips �local
perturbations� in the Hamiltonian �see Eq. �1�� and allows for
the determination of the topological sectors necessary to de-
fine a qubit state.

C. Emulator based on cold atomic/molecular gases

We also consider an implementation of the QDM based
on cold atomic/molecular gases loaded into a Kagome opti-
cal lattice, which can in principle be created by using three
laser beams,26 with the following Hamiltonian:

H =
U

2 �
i

ni�1 − ni� +
E
˝

2 �̋ n
˝

�n
˝

− 1� − J�
�i,j�

�bi
†bj + bj

†bi� .

�4�

Here ni=bi
†bi is the bosonic number operator at the site i of

the Kagome lattice, U is a repulsion between two bosons
sitting on the same site and J is the hopping amplitude be-
tween nearest-neighbors sites �i , j� in the Kagome lattice. E

˝

is the energy required for placing two bosons on different
sites around the same hexagon in the Kagome lattice and
enforces the hard-core dimer condition. n

˝

is the number of
bosons sitting around a given hexagon. Due to the short-
ranged interactions between cold atomic gases, the engineer-
ing of interaction terms as in Eq. �4� would likely be a highly
nontrivial task. One possible solution to this problem is to
use polar molecules17,18 whose permanent dipole moment
permits long-range interactions.

III. EFFECTIVE HAMILTONIANS FROM THE ENCORE
METHOD

The CORE method was originally introduced by Morn-
ingstar and Weinstein20,21 and since then has been success-
fully applied to different problems in strongly correlated
systems.27–33 For our application we use an extended version,
ENCORE, suitable for constrained models, such as the quan-
tum dimer model.19

The fundamental idea behind CORE and ENCORE is to
derive an effective model describing the low-energy physics
of a lattice Hamiltonian by reducing the number of degrees

of freedom. The usefulness of the method relies on a fast
decay of the effective interactions for the specific effective
model, something which needs to be verified for each case. A
large amount of physical intuition is required to obtain physi-
cally sound results, which is one reason why CORE has not
found a more widespread use to date.

The effective Hamiltonian obtained with ENCORE gen-
erally includes arbitrarily ranged terms. Large couplings as-
sociated with long-range terms indicate that the restricted
subspace does not accurately describe the low-energy behav-
ior of the original model. However, if we are interested in
engineering an emulation of a certain Hamiltonian, the afore-
mentioned problems are irrelevant because in this case the
effective model and the restricted Hilbert space are known a
priori. If the ENCORE method fails we simply conclude that
emulation is not possible.

The breakdown of the mapping is also signaled by the
appearance of “intruder” states in the low-lying spectrum.
These are states with negligible overlap with any of the de-
sired low-energy states. Since both previously-mentioned ef-
fects are correlated,19 we avoid the adoption of an arbitrarily
defined threshold value for the long-range interactions and
we define the breakdown of the mapping onto a QDM as the
point where a first intruder state appears in the device’s low-
energy spectrum.

Since our primary goal in the present paper is to verify the
feasibility of a fault-tolerant quantum bit engineered from a
system with a topologically ordered phase, the device’s pa-
rameters must be tuned in order to ensure that the emulated
model has couplings known to correspond to a quantum
dimer liquid phase. In addition, a careful analysis of the in-
volved energy scales is necessary in order to avoid techno-
logical limitations.

IV. EMULATING QUANTUM DIMER MODELS USING
JOSEPHSON JUNCTION ARRAYS

The array of Josephson junctions discussed in Sec. II B
can be described by the following generalized Bose-Hubbard
Hamiltonian,

H =
1

2�
j,k

njĈj,k
−1nk − Jh�

�j,k�
�bj

†bk + bk
†bj� . �5�

The positions of the X-shaped islands in the array are de-
noted by the indices j and k. �j ,k� represent nearest-neighbor
�NN� sites in the Kagome lattice. nj =bj

†bj is the bosonic

occupation number at site rj
�, Jh is the Josephson current

between two X-shaped islands.

Ĉ−1 is obtained by numerically inverting the capacitance

matrix Ĉ of the array. The matrix elements connecting two
X-shaped islands in this matrix are given by

Ĉj,k = �CX + � jCi + � jCh��rj
�,rk

� + Ch�rj
�,rk

�+r̂, �6�

where r̂ connects NN sites in the Kagome lattice, � is the
number of hexagons a given X-shaped island joins ��=2 for
full periodic boundary conditions �PBC�� and � is its number
of NN ��=4 for PBC�.
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The normal-state star-shaped islands are only capacitively
connected to the X-shaped islands and their only role is to set

up the interactions in the Hamiltonian. The inverse Ĉ−1

appearing in the Hamiltonian is sensitive also to these
interactions, specified in the following. Star-shaped islands

sitting on the sites R	
� and R


� of the underlying triangular
lattice contribute with,

Ĉ	,
 = �C� + 6Ci��R	
�,R


� , �7�

and the elements connecting X- and star-shaped islands are

Ĉj,	 = Ci�rj
�,r	
�+s�, �8�

where s� are the vectors connecting a star-shaped island to the
X-shaped islands surrounding it.

The energy Ehex to place two dimers on a hexagon can be

obtained from certain matrix elements of Ĉ−1. Quantum fluc-
tuations due to the Josephson coupling Jh reduce this bare
value and we thus include them in second order in perturba-
tion theory in our discussions below. To ensure that we are
allowed to restrict the calculations to hard-core bosons, we
have verified that the on-site repulsion is larger than Jh by a
factor of at least 50 for all sets of couplings in the array.

Our results are obtained by analyzing the small open-
boundary clusters depicted in Fig. 2: ladderlike clusters with
N�2 hexagons �N=3, 4, and 5�, a ten-hexagon cluster �from
which most results have been obtained�, and three special
clusters with four, six, and eight hexagons, which accommo-
date only two distinct dimer configurations each.

Finally we need to take into account experimental limita-
tions. The smallest values for capacitances between two su-
perconducting islands obtainable with current technologies
are such that EC=1 /2C�1 K �see Eq. �3��, higher values of
EC can be obtained for ground capacitances. We set the
smallest junction capacitance Ch=0.5, such that Eh

C=1 to set
the energy scale, and we restrict our analysis to values of
Ci�Ch throughout the rest of this paper. In this way, assum-

ing a value of Eh
C	1 K, a priori taking into account current

technological limits, all energies are fortuitously directly
given in Kelvin.

A. Dimer flips

The simplest dimer flip involves two parallel dimers on
the same rhombus of the triangular lattice, as illustrated in
Fig. 2�c�. It involves the creation of a virtual state in which
one hexagon is doubly occupied, occurring with an
amplitude given in second-order perturbation theory by
t	Jh

2 /Ehex. Using ENCORE, we now analyze the amplitude
associated with this dimer move for the set of capacitances
studied in Ref. 8:

C� = 10, CX = 10,

Ci = 2.0, Ch = 0.5. �9�

In Fig. 3�a� we show the results for the clusters depicted
in Figs. 2�a�–2�c�. The absence of substantial finite-size ef-
fects confirms that the two-dimer flip is a local process. The

(a)
(c)

(b)

(d)

(e)

FIG. 2. �Color online� Open-boundary clusters studied: �a�
N�2 �N=3 in the figure� hexagon ladders; �b� ten-hexagon cluster;
�c�–�e� special clusters with four, six and eight hexagons, accom-
modating the lowest-order flip �represented by the associated tran-
sition graphs where full dimers flip to open ones� involving two,
three, and four dimers, respectively.
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FIG. 3. �Color online� �a� Two-dimer flip amplitude t calculated
with ENCORE versus the Josephson current Jh for the clusters de-
picted in Fig. 2. The parameters of Ref. 8 are used: C�=CX=10,
Ci=2, and Ch=0.5. Solid lines are only guides to the eye. The
vertical dashed line indicates the point where the mapping onto a
QDM breaks down �cf. Sec. III�. Second-order perturbative results
obtained by numerically calculating Ehex are indicated by the thick
black curve. The dotted curve corresponds to the results obtained by
using the expression for Ehex derived in Ref. 8. �b� Amplitudes for
each of the five nonequivalent two-dimer flips in the ten-hexagon
cluster �dashed curves, see main text�, compared to their average
�downward triangles�.
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different clusters differ only after the point where the map-
ping onto a QDM breaks down due to the appearance of
intruder states �see Sec. III�. The results from the ten-
hexagon cluster are obtained from an average between the
amplitudes for five possible nonequivalent two-dimer flips
occurring within slightly different “dimer environments,” the
different ways the dimers not participating in the flip are
arranged in the cluster.19 Again, the amplitudes for these in-
dividual processes only deviate slightly from their average
until the point where the dimer picture breaks down, as
shown in Fig. 3�b�.

In Fig. 3�a� we also compare to second-order perturbative
data for t, obtained from t=Jh

2 /Ehex by numerically calculat-
ing Ehex for the ten-hexagon cluster �solid line; see Fig. 4�, as
well as by using the approximation Ehex�0.2�Ci /CX�2E�

C of
Ref. 8. The discrepancy between the two estimates clearly
illustrates the nontrivial dependence of Ehex on the set of
capacitances adopted for the array. Note that Ehex vanishes
when Ch=Ci. Using the accurate estimate for Ehex �solid line
in Fig. 4�, we find reasonable agreement with the ENCORE
results, which motivates us to use the perturbative results to
guide our optimizations below.

Additional flips involving three and four dimers occurring
within third and fourth order in the small parameter Jh with
amplitudes t3 and t4, respectively, are depicted in Figs. 2�d�
and 2�e�. Together with the two-dimer flip, these processes
are special because they are the lowest-order possible dimer
moves in the array: comprising m dimers, they appear as mth
order processes in Jh. All other flip terms are strongly sup-
pressed in the limit of small currents Jh. Throughout this
paper, we denote the sum of the absolute values of the am-
plitudes for all other dimer moves by , and we use this
quantity to gauge the validity of the mapping onto a QDM.

Of particular interest is the flip involving three dimers in a
triangular configuration depicted in Fig. 2�d�, which has also
been found in a recent mean-field mapping by Vernay et al.23

of a spin-orbital model for the compound LiNiO2 onto a
QDM. They found that this extra dimer move considerably
extends the liquid phase, allowing for “extra room” in trying
to optimize the couplings in the array. One is tempted to
conclude that the four-dimer term t4 has similar effects, and
it will be of interest to confirm this numerically.

B. Dimer interactions

Dimer-dimer interactions have a nontrivial dependence on
the particular choice of capacitances in the array and must be
tuned in order for the ratio v / t to lie in the liquid phase. To
investigate them, we first analyze a 4�4 cluster with PBC in
the limit of zero Josephson current �Jh=0� by inverting the
capacitance matrix on this cluster. In Fig. 5�a� we show the
Coulomb energy as a function of the number of flippable
rhombi in each configuration. The total energy scales well
with the number of flippable rhombi, confirming that the
interaction between parallel dimers sitting on the same rhom-
bus v is the dominant diagonal term in the emulated dimer
Hamiltonian. The deviations from the linear behavior in Fig.
5�a� indicate that other interaction terms are also present.
These extra contributions cannot be explained by pairwise
interactions, but all such deviations are entirely described if
we take into account three-dimer interactions with strengths
u1 and u2 �as shown in Fig. 5�b��.

Understanding the dependence of the interaction strengths
on the capacitances of the array is essential for the optimi-
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FIG. 4. Numerical second-order perturbative results for the on-
hexagon repulsion Ehex for the ten-hexagon cluster as a function of
the capacitance Ch for C�=CX=10 and Ci=2. The horizontal dotted
line is Ehex�0.2�Ci /CX�2E�

C, as obtained in Ref. 8.
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FIG. 5. �Color online� �a� Total Coulomb energy versus number
of flippable rhombi �parallel dimers which can flip� for a 4�4 PBC
cluster in the limit Jh=0 and with C�=CX=10, Ci=2, and Ch=0.5.
Deviations from the dominant linear behavior signal the presence of
extra interaction terms beyond the one between parallel dimers sit-
ting on the same rhombus with strength v. �b� Interactions present
in the limit Jh=0. In addition to the dominant rhombus term v, two
further interaction terms involving three dimers with amplitudes u1

and u2 have to be included. The deviations from the main contribu-
tion in panel �a� can be explained by the presence of these extra
terms.

ENGINEERING EXOTIC PHASES FOR TOPOLOGICALLY… PHYSICAL REVIEW B 78, 014503 �2008�

014503-5



zation of the energy scales in the emulated Hamiltonian, and
for the minimization of the couplings associated with the
three-dimer interactions, the effect of which are unknown.
Figure 6 shows the dependence of the couplings v, u1, and u2
on the capacitances34 on the same 4�4 cluster with PBC for
Jh=0. The interaction term v�Jh=0� peaks for small values of
Ci and CX, and u1�Jh=0� and u2�Jh=0� are appreciable over
a significant regime of the parameter space. Decreasing C�

leads to larger values of u1�Jh=0� and u2�Jh=0� �not shown�
but has no significant effects on v�Jh=0�.

To include the effects of nonzero Josephson current Jh on
the interactions, we study the ten-hexagon cluster shown in
Fig. 2�b� using ENCORE. Due to the small size of the clus-
ter, only four-dimer configurations, out of a total of 14 in this
cluster, give nonequivalent diagonal contributions in the ef-
fective dimer Hamiltonian. Boundary interactions due to
open boundary conditions further complicate the estimates.
Without going to larger clusters �which is not possible with
current computational resources�, we cannot determine the
individual terms but only the following combined quantity:

v� 
 v − �u1 − u2� . �10�

which is nevertheless a good estimate for v as we can see by
analyzing the 4�4 cluster. As shown in Fig. 6�d�, v� under-
estimates v by typically only 20% for Jh=0 in the region

where we have a valid mapping onto the QDM, and these
corrections do not change the conclusions drawn below.35

C. Tuning the ratio v Õ t

Having discussed the dimer flips and interactions in the
array of Josephson junctions, we now analyze the feasibility
of the emulation of a topological phase by adjusting the cou-
plings and required energy scales in the emulated QDM to
achieve an effective model with couplings in the desired
range 0.82�v / t�1.

In Fig. 7 we show the ratio v� / t as a function of the
Josephson current Jh for the set C�=CX=10, Ci=2, and
Ch=0.5 as proposed in Ref. 8 �Ref. 36�. As seen in Fig. 7, the
topological phase corresponding to v� / t�1 �marked by
dashed horizontal lines� is not reached before the breakdown
of the mapping to the QDM. This breakdown, marked by a
vertical dashed line is seen both in the appearance of nondi-
merlike states in the low-lying spectrum as well as by a
drastic increase in the summed amplitude for multidimer
flips ��. We conclude that for this value of capacitances no
topological phase exists.

In order to stabilize the mapping onto a QDM for larger
values of the Josephson current, we explore alternative sets
of capacitances leading to larger values for Ehex, more
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FIG. 6. �Color online� Dependence of the amplitudes v, u1, and u2 on the capacitances CX and Ci, for C�=1 and Ch=0.5. The results are
obtained from the analysis of the 4�4 PBC cluster with Jh=0. Panels �b� and �c� suggest that minimization of u1 and u2 is hard to be
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strongly suppressing non-hardcore-dimer configurations. The
goal is to avoid the breakdown of the mapping before the
target values for v / t—where the system is in the topological
liquid phase—is reached. The dependence of Ehex on the ca-
pacitances Ci and CX for two arbitrarily chosen values of C�,
obtained from a numerical second-order perturbative analy-
sis of the ten-hexagon cluster is shown in Figs. 8�a� and 8�c�.
There is a region close to the Ci axis where Ehex peaks, the
peak value increasing for smaller values of C�.

Besides maximizing Ehex, we also want to optimize the
amplitude t since the topological phase appears only for tem-
peratures below the gap ��0.1t. We use second-order nu-
merical perturbative results for the ten-hexagon cluster as a
guide. For each set of capacitances we calculate the value of
the Josephson current Jh giving the desired ratio v / t=1, and
we plot the value of t in Figs. 8�b� and 8�d�. Since within
perturbation theory, we are not able to determine whether a
particular set of parameters leads to a valid mapping onto a
QDM, we introduce an arbitrary cutoff, Jh=Ehex /2, which,
based on our ENCORE results is a generous upper bound.
Capacitances for which the target ratio 0.82�v / t�1 is not
reached below this bound are discarded and indicated as
blank regions in the figures.

These perturbative results show that optimal values for t
are obtained in a region corresponding to small values of CX
and close to the point where the breakdown of the mapping
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onto a QDM occurs before the target ratio is reached. This
behavior can be understood if we analyze the dependence of
v�Jh=0� and Ehex on CX and Ci, shown in Figs. 6�a�, 8�a�,
and 8�c�. Since the ratio v / t decreases monotonically with Jh,
larger values of v�Jh=0� have the desirable effect that values
0.82�v / t�1 are reached for larger values of Jh, associated
with more favorable values for t and �. Decreasing Ci at
small values of CX, we can see from Fig. 6�a� that progres-
sively larger values of v�Jh=0� can be obtained. However,
eventually, the region where Ehex peaks is surpassed and the
mapping onto a QDM breaks down before the target ratio for
v / t is reached. Decreasing C� does virtually not affect v�Jh
=0� but considerably increases Ehex, therefore allowing us to
obtain even more favorable values for t, as shown in Fig.
8�d�.

We have confirmed the validity of this qualitative analysis
using ENCORE. In Fig. 9 we show v� / t as a function of Jh
for two different values of C�. For each value of C�, CX is
chosen such that Ehex is close to its maximum and optimal
values for t can be obtained �see Fig. 8�. We terminate each
curve when the mapping breaks down, as seen by nondimer
intruder states in the low-energy spectrum. In Fig. 9�a� we
see that for C�=1 and CX=0.25 more favorable results for t
can be obtained by decreasing Ci, but below Ci�1.5 the

mapping onto a QDM breaks down before the target ratio
0.82�v / t�1 is reached. We thus get an upper bound of
tmax�1.5 mK for the considered value of C�. Larger values
for the flip amplitude can be obtained if we choose smaller
C�. But as shown in Fig. 9�b�, only slightly larger values of
tmax�3 mK are obtained for values of C�, two orders of
magnitude smaller, suggesting that saturation is rapidly
reached. Since experimentally we cannot arbitrarily decrease
the ground capacitances, we conclude that we can estimate
an upper bound for the amplitude t consistent with
0.82�v / t�1 of only a few milli-Kelvin. These optimal val-
ues are associated with small Josephson currents only
slightly larger, Jh�10 mK, typical experimental values be-
ing close to 1 K. Returning to the fact that v� underestimates
v �Sec. IV B�, we see that this does not influence this upper
bound estimate.

Thus, even if we assume that the longer-range terms
present in the emulated QDM do not destroy the topological
liquid phase and that we can still estimate the topological
gap as ��0.1t, we can expect that the operational tempera-
tures for the putative quantum bit is in the micro-Kelvin
regime, clearly far below the limits of current technologies.

D. Extra flips and interactions

So far we have ignored the presence of interactions and
flips comprising three or more dimers in the effective Hamil-
tonian, although they are most likely relevant as suggested
by the analysis of the Jh=0 limit.37 In Fig. 10�a� we show the
dependence of the couplings on Jh for C�=1, CX=0.25,
Ci=2, and Ch=0.5. In particular, the amplitudes associated
with the unfrustrated flips involving three and four dimers
�Figs. 2�d� and 2�e�� are larger than the topological gap
��0.1t of the standard QDM. Vernay et al.23 showed that
the three-dimer flip extends the liquid phase. Thus, in order
to be able to precisely estimate the operational temperatures
for the emulated qubit, it is necessary to study the effects of
the inclusion of the extra terms in the QDM. However, even
in the absence of such a detailed analysis we can conclude
that the involved technological challenges in reaching the
sub-milli-Kelvin temperatures required for this device are
substantial.

Aiming for a simpler QDM with only two-and three-
dimer flips �Figs. 2�c� and 2�d�� requires the suppression of
higher-order flips. We find that this requires very small val-
ues of Jh and leads to even smaller values of t. To illustrate
this problem, we show in Fig. 10�b� the dependence of all
couplings on Jh in the emulated QDM for C�=100,
CX=500, Ci=10, and Ch=0.5. With Jh=0 the interactions are
given by v=0.879 nK, u1 /v=0.006, u2 /v=0.005, and
v�=0.878 nK; nano-Kelvin temperatures are unrealistic in a
solid-state device.

V. EMULATING QUANTUM DIMER MODELS USING
COLD ATOMIC/MOLECULAR GASES

We now turn our attention to the alternative implementa-
tion based on cold atomic/molecular gases loaded into an
optical lattice, which was presented in Sec. II C. Since no
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FIG. 9. �Color online� Dependence of the estimate for two-
dimer repulsion v� / t on the Josephson current Jh and capacitance Ci

for the ten-hexagon cluster obtained with the ENCORE algorithm
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ALBUQUERQUE et al. PHYSICAL REVIEW B 78, 014503 �2008�

014503-8



concrete microscopic proposal is available, we restrict our-
selves to order of magnitude estimates.

Flips comprising two dimers in this system similarly in-
volve the creation of a virtual state with energy E

˝

and thus
occur, within second order in J, with amplitude t=J2 /E

˝

�we
can also expect that flips involving three and four dimers
may play an important role here�. Since the mapping onto a
QDM necessarily breaks down when the kinetic energy
dominates over the on-hexagon repulsion, it follows that an
upper bound for the hopping amplitude consistent with a
dimer picture is given by Jmax	E

˝

/4, and the largest obtain-
able value for the flip amplitude in such emulator is thus
tmax=Jmax

2 /E
˝

	Jmax /4.
Preparation of the quantum bit state requires a controlled

mixing of dimer states belonging to different topological sec-
tors. This can be achieved by virtually breaking one dimer

and creating a virtual particle-hole excitation, the particle
corresponding to a doubly occupied hexagon and the hole to
an empty one.8 For a qubit with linear dimension corre-
sponding to M hexagons, an upper bound for the mixing
amplitude hx is given by

hx
max � Jmax� Jmax

2E
˝

�M−1

= Jmax�1

8
�M−1

. �11�

The largest attainable experimental values for the hopping
amplitude in cold atomic gases loaded into optical lattices
are close to 1 kHz, smaller values being expected for more
massive molecules. Thus, even on a rather small lattice com-
prised of the 10�10 hexagons �M 	10�, we can conclude
that the time-scale involved in a single qubit manipulation is
of the order of minutes, much longer than typical coherence
time in cold atomic gases in optical lattices.

VI. CONCLUSIONS

We have studied proposals to emulate a triangular lattice
quantum dimer model �QDM�. A realistic emulation of the
QDM would allow the implementation of a fault-tolerant
quantum bit, allowing us to circumvent the problem of de-
coherence, which plagues more conventional proposals for
achieving quantum computation.

The Josephson junction emulator by Ioffe et al.8 was stud-
ied numerically using the ENCORE method. Our results
showed that the largest attainable values for the two-dimer
flip amplitude t are a few milli-Kelvin and require very small
Josephson currents. Since a device based on such an array
would only be operational at temperatures considerably be-
low the topological gap ��0.1t, implementation of a topo-
logically protected quantum bit with the considered array is
beyond the present day technology.

The alternative array introduced by Ioffe and
collaborators8 comprised of Y-shaped superconducting is-
lands forming a decorated triangular lattice would lead to
even lower values for the flip amplitudes since dimers in this
implementation correspond to a resonating Cooper pair and
dimer flips involve the tunneling of this pair through a
weaker link with much smaller Josephson current. Similar
challenges with too low energy scales and too long time
scales are also faced by implementations using cold atomic
gases.

Our results illustrate the challenges involved in the design
of emulators for exotic phases. The fundamental reason for
these difficulties resides in the fact that topological quantum
order is a low-temperature feature, since the system’s local
degrees of freedom must be highly entangled over long dis-
tances, of order of the system’s size, for topological order to
emerge. Since emulation of the relevant models is obtained
in the low-energy limit of the proposed quantum device, we
face the challenge that extremely low temperatures are re-
quired. Thus, the approach of emulating topologically or-
dered states for performing fault-tolerant quantum computa-
tion might only be a successful one if we can devise
emulators based on much stronger bare electronic interac-
tions, and a detailed analysis of engineering limits is re-
quired.
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FIG. 10. �Color online� Flip amplitudes and interactions ob-
tained by ENCORE for �a� C�=1, CX=0.25, Ci=2, and Ch=0.5 and
�b� C�=100, CX=500, Ci=10, and Ch=0.5. In the upper panel only,
the rightmost data point indicates the breakdown of the mapping
onto a QDM. Dashed horizontal lines indicate the range of param-
eters corresponding to the topological phase of the standard QDM.
Amplitudes for the special flips involving three �t3� and four �t4�
dimers are also shown. For t3, results are obtained from the analysis
of the ten �filled triangles� and six �empty triangles� hexagon clus-
ters; t4 is calculated from the eight-hexagon cluster. In the limit
Jh=0 the strengths of dimer interactions are: �a� v=525 �K
�v�=390 �K�, u1 /v=0.512, and u2 /v=0.253 and �b�
v=0.879 nK �v�=0.878 nK�, u1 /v=0.006, and u2 /v=0.005.
Values for t corresponding to the target ratio 0.82�v / t�1.0
are t�1 mK for the set in panel �a� and t�2 nK for the set in
panel �b�.
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Jh=0. These values should be compared with the ones obtained
from the analysis of the 4�4 PBC cluster: v=30.6 �K, u1 /v
=0.0842, and u2 /v=0.0478.

37 For the sets of capacitances investigated in Fig. 9 the interactions
in the limit Jh=0, as obtained from the analysis of the 4�4
PBC, follow. �a� C�=1, CX=0.25, and Ch=0.5—�i� Ci=1.5: v
=896 �K �v�=663 �K�, u1 /v=0.476, and u2 /v=0.216; �ii�
Ci=2.0: v=525 �K �v�=390 �K�, u1 /v=0.512, and u2 /v
=0.253; �iii� Ci=2.5: v=334 �K �v�=248 �K�, u1 /v=0.539,
and u2 /v=0.282; �iv� Ci=3.0: v=226 �K �v�=168 �K�,
u1 /v=0.561, and u2 /v=0.304; �b� C�=0.01, CX=0.05, and Ch

=0.5—�i� Ci=0.75: v=3.03 mK �v�=1.86 mK�, u1 /v=0.566,
and u2 /v=0.180; �ii� Ci=1: v=2.00 mK �v�=1.26 mK�, u1 /v
=0.586, and u2 /v=0.212; �iii� Ci=1.25: v=1.39 mK �v�
=0.89 mK�, u1 /v=0.601, and u2 /v=0.238; �iv� Ci=1.5: v
=1.01 mK �v�=0.65 mK�, u1 /v=0.614, and u2 /v=0.259.

38 F. Alet et al., J. Phys. Soc. Jpn. 74, 30 �2005�.
39 A. F. Albuquerque et al., J. Magn. Magn. Mater. 310, 1187

�2007�.
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