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Field-induced quantum �zero temperature� criticality described using parameters that are not associated with
a symmetry-breaking long-range order is found in the spin-1

2 antiferromagnetic three-leg Heisenberg ladder.
These parameters represent the spin bond order, which is a consequence of the probability for spins on adjacent
sites to be bound in a singletlike arrangement. They underwent two phase transitions, one at the lower critical
field hc1 and the other at the upper critical field hc2. The field dependence of these bond parameters and of the
magnetization is calculated for several values of the rung coupling in all regimes. This yields the coupling field
phase diagram. It is found that the rung coupling must exceed a threshold value for the plateau, at one third of
the saturation magnetization, to appear. The results obtained here within the bond mean-field theory compare
well with existing numerical data.
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I. INTRODUCTION

Quantum or zero-temperature criticality has attracted a
significant attention in strongly correlated electron systems.1

Recently, field-induced quantum criticality has been found in
the spin-1

2 Heisenberg chain and two-leg ladder.2 In the
chain, the spin bond parameter3 undergoes a zero-
temperature phase transition at the same magnetic field
where the magnetization saturates. The three-leg ladder is
known to renormalize down to a single chain in the low-
energy limit.4 Because its energy spectra5 consist of more
than one band contrary to the chain, one expects a richer
coupling field phase diagram, which we calculate here for
the three-leg ladder. We recover the fact that in the strong
rung coupling limit, the three-leg ladder has a magnetization
versus magnetic field characterized by a plateau at one third
of the saturation value Ms and by a saturation plateau in the
strong-field limit.6–8 In addition, we show that this system is
characterized by spin bond parameters that display zero-
temperature criticality and plateaus too. It is also found that
the rung coupling must exceed a threshold value for the pla-
teau at one third of saturation to occur in the magnetization
and in the bond parameters. The mechanism responsible for
these plateaus and criticality is explained using the energy
spectra of the Jordan-Wigner3,9 �JW� fermions that are used
to map the spin-1

2 degrees of freedom.
The density-matrix renormalization group �DMRG� tech-

nique and the strong-coupling series expansion have been
used successfully to study the antiferromagnetic �AF�
Heisenberg model on the three-leg ladder in the strong-
coupling regime.6–8 However, in the intermediate-coupling
and weak-coupling regimes, the strong-coupling series ex-
pansion obviously breaks down and the DMRG utilized by
Tandon et al.6 used the existence of a magnetization plateau
as a prerequisite. As we find here, there is no plateau at the
third of the saturation magnetization in the weak rung cou-
pling regime. Moreover, the bosonization technique becomes
doubtful when the rung coupling exceeds a value of the order
of the chain coupling. This therefore justifies the need for a
method, such as the one applied here, valid in all coupling
regimes.

This paper is organized as follows: In Sec. II, we analyze
the AF three-leg ladder in a uniform magnetic field using the
bond mean-field theory3 �BMFT�. In Sec. III we study the
field dependence of zero-temperature magnetization and sus-
ceptibility. Section IV deals with the field dependence of the
bond mean-field parameters. Section V explains for the
mechanism that causes the plateaus in both magnetization
and spin bond parameters. In Sec. VI, the effect of tempera-
ture on the field dependence of magnetization, susceptibility,
and spin bond parameters is worked out. In Sec. VII, an
analytical solution that shows the occurrence of the quantum
phase transitions in the three-leg ladder is presented. In Sec.
VIII conclusions are drawn.

II. THREE-LEG HEISENBERG LADDER IN A
MAGNETIC FIELD

A. Derivation of the BMFT energy spectra

We extend the BMFT used in Refs. 2 and 5 to the case
where an external magnetic field is applied to the three-leg
ladder. The AF Heisenberg model on this system �Fig. 1� is
given by the following Hamiltonian:

FIG. 1. Sites within the shaded area are taken into account in the
calculation of the phase �i,1 of Si,1 in the JW transformation �Eq.
�2�� for the three-leg ladder. The phase for sites Si,2 and Si,3 are
obtained by adding to �i,1, �ni,1, and ��ni,1+ni,2�, respectively.
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H = �
i=1

N ��
j=1

3

JSi,jSi+1,j + �
j=1

2

J�Si,j · Si,j+1� − g�BB�
i,j

Si,j
z ,

�1�

where J�0 and J��0 are the exchange coupling constants
along the chains and rungs, respectively. The index i
=0, . . . ,N−1 labels the N sites on each of the chains and
j=1,2 ,3 labels the chains. We define �=J� /J and set J to be
the unit of energy. B designates the applied magnetic field, g
designates the Landé factor, and �B designates the Bohr
magneton. For simplicity we define h=g�BB. The open
boundary conditions �BCs� along the rungs and the periodic
boundary ones along the chains are considered.

The Hamiltonian Eq. �1� is transformed using the two-
dimensional �2D� generalized JW transformation of Ref. 3,
which is adapted to the three-leg ladder geometry. Following
the notation of Fig. 1, the spin operators at sites �i ,1�, �i ,2�,
and �i ,3� are written as follows:

Si,1
− = ci,1ei�i,1, �i,1 = ��

d=0

i−1

�
f=1

3

nd,f ,

Si,2
− = ci,2ei�i,2, �i,2 = �i,1 + �ni,1,

Si,3
− = ci,3ei�i,3, �i,3 = �i,2 + �ni,2,

Si,j
z = ci,j

† ci,j −
1

2
, �2�

where ni,j =ci,j
† ci,j is the occupation operator for the JW fer-

mions. The BMFT consists on one hand by approximating
the sum of the phase differences resulting to the hopping of
the JW fermions around each plaquette by �.2,3,10 When
written, using the JW transformation, the quartic Ising terms
of Hamiltonian Eq. �1� yield on the other hand terms of the
form,

�
i,j

�Jni,jni+1,j + J�ni,jni,j+1� , �3�

which are decoupled using the bond parameters Q
= �c2i,jc2i+1,j

† 	 for chain one �j=1� and chain three �j=3�, and
Q�= �c2i,2c2i+1,2

† 	 for chain two in the direction parallel to the
chains. P= �ci,jci,j+1

† 	 is used to decouple the interactions
along the rungs. This choice is consistent with the fact that
the three-leg ladder is symmetric with respect to exchanging
the chain labels one and three.5 The parameters Q, Q�, and P
can be interpreted as the probability for the spins on any two
adjacent sites to be found in a singlet arrangement because
�crcr�

† 	
�Sr
−Sr�

+ 	. r and r� designate two adjacent sites. When
these parameters are nonzero, it becomes possible for all
spins to pair in order to form such singlets, thus giving some
kind of ordering that does not break symmetry.

Exact numerical methods show that the magnetization in
the three-leg Heisenberg ladder �with open BCs along the
rungs� increases linearly with external magnetic field.6 This
is a consequence of the fact that in zero field and temperature
this system behaves as a single chain with a renormalized
coupling in the strong rung coupling.5 For the Heisenberg

chain, it is known that the magnetization increases linearly
with field in the weak-field regime.11 Thus, we have to con-
sider as well the decoupling of the Ising term using the pa-
rameter �ci,j

† ci.j	 that is related to the uniform magnetization
Mz= �Si

z	 by

�ci,j
† ci.j	 = Mz + 1/2, �4�

as a result of Eq. �2�. Thus considering this magnetization
channel in the decoupling procedure, one gets

Si,j
z Si�,j�

z � MzSi,j
z + MzSi�,j�

z − Mz
2

= Mzni,j + Mzni�,j� − Mz�Mz + 1� . �5�

Further details on the BMFT can be found elsewhere.12–15

Fourier transforming along the chains �while keeping the
chain labels in the real space� and using the Nambu
formalism16 on a bipartite lattice �with sublattices A and B�
yield the following mean-field Hamiltonian:

H = �
k

�k
†H�k − N�3J + 2J��Mz�Mz + 1�

+ N�2JQ2 + JQ�2 + 2J�P2 +
3

2
h� , �6�

where the Nambu spinor is given by

�k
† = �c1k

A†c1k
B†c2k

A†c2k
B†c3k

A†c3k
B†� , �7�

and the Hamiltonian density by

H = �
− h� e�k� 0

J�1

2
0 0

e��k� − h�
J�1

2
0 0 0

0
J�1

2
− h� e��k� 0

J�1

2

J�1

2
0 e���k� − h�

J�1

2
0

0 0 0
J�1

2
− h� e�k�

0 0
J�1

2
0 e��k� − h�

 , �8�

with e�k�= iJ1 sin k, e��k�= iJ1�sin k, h�=h− �2J+J��Mz, and
h�=h−2�J+J��Mz. Notice the difference in the J� depen-
dence in h� and h�. The factor two in 2J� in h� is a result of
the fact that each of the spins on sites belonging to the inter-
nal chain is coupled to two spins; each on one of the outer
chains. This is not the case for each of the spins on the outer
chains, which are coupled to a single spin only along the
rungs. Diagonalizing H yields the following eigenenergies:

E1
��k� = − h� � J1 sin k ,

E2
��k� =

1

2
��J1 − J1��sin k − h� − h� � �−�k�� ,
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E3
��k� =

1

2
��J1� − J1�sin k − h� − h� � �+�k�� , �9�

with

���k� = ���J1 + J1��sin k � J�Mz�2 + 2J�1
2 ,

J1 = J�1 + 2Q� ,

J1� = J�1 + 2Q�� ,

J�1 = J��1 + 2P� . �10�

In zero external fields, the three-leg ladder has been studied
using the same method as here. The energy excitation spec-
trum E1�k� with h=0 has the same form as the des
Cloizeaux–Pearson spectrum of the AF Heisenberg chain.17

E2�k� and E3�k� are characterized by a gap of the order of J�.
Thus, in the case of zero applied field the energy excitations
consist of three bands, two of which are gapped.5

Next, we will derive the mean-field equations satisfied by
the bond parameters in the cases Q�Q� and Q�=Q. We will
calculate the field dependence for both cases and find out
which state is the stable one thermodynamically.

B. Mean-field equations for the state with QÅQ�: State I

In the present mean-field approach, the free energy per
site corresponding to Hamiltonian Eq. �6� is

f I�T,h� =
1

3
�2JQ2 + JQ�2 + 2J�P2� −

1

3
�3J + 2J��Mz�Mz + 1�

+
h

2
−

kBT

2Nt
�

k
�
s=�

�
j=1

3

ln�1 + e−	Ej
s�k�� , �11�

where Nt=3N is the total number of lattice sites and 	
=1 /kBT, with kB being Boltzmann constant. The parameters
Q, Q�, and P are determined by minimizing f I�T ,h� with
respect to all three bond parameters; �f I /�Q=�f I /�Q�
=�f I /�P=0. This gives

Q =
− 1

8JN
�

k
�
s=�

�
j=1

3
�Ej

s�k�
�Q

nF�Ej
s�k�� ,

Q� =
− 1

4JN
�

k
�
s=�

�
j=2

3
�Ej

s�k�
�Q�

nF�Ej
s�k�� ,

P =
− 1

8J�N
�

k
�
s=�

�
j=2

3
�Ej

s�k�
�P

nF�Ej
s�k�� , �12�

with

�E1
s

�Q
= 2sJ sin k ,

�E2
s

�Q
= J sin k�1 +

s��J1 + J1��sin k − J�Mz�
�−�k� � ,

�E3
s

�Q
= J sin k�− 1 +

s��J1 + J1��sin k + J�Mz�
�+�k� � ,

�E2
s

�Q�
= J sin k�− 1 +

s��J1 + J1��sin k − J�Mz�
�−�k� � ,

�E3
s

�Q�
= J sin k�1 +

s��J1 + J1��sin k + J�Mz�
�+�k� � ,

�E2
s

�P
=

2sJ�J�1

�−�k�
,

�E3
s

�P
=

2sJ�J�1

�+�k�
, s = � . �13�

The magnetization Mz=−�f I /�h is given by

Mz =
1

6N
�

k
�
s=�

�
j=1

3

nF�Ej
s�k�� − 1/2. �14�

Note that this equation determines Mz in a self-consistent
way because the energy spectra �Eq. �9�� on the left-hand
side of Eq. �14� depend on Mz. nF�x�=1 / �1+e	x� is the
Fermi-Dirac factor.

C. Mean-field equations for the state with Q=Q�: State II

Now, if we impose to the bond parameters Q and Q� to be
equal, the free energy per site will become

f II�T,h� =
1

3
�3JQ2 + 2J�P2� −

1

3
�3J + 2J��Mz�Mz + 1�

+
h

2
−

kBT

2Nt
�

k
�
s=�

�
j=1

3

ln�1 + e−	Ej
s�k�� , �15�

and the energy spectra reduce to

E1
��k� = − h� � J1 sin k ,

E2
��k� =

1

2
�− h� − h� � �−�k�� ,

E3
��k� =

1

2
�− h� − h� � �+�k�� , �16�

with ���k� becoming,

���k� = ��2J1 sin k � J�Mz�2 + 2J�1
2 .

The mean-field equations in this case with Q�=Q are

Q =
− 1

4JNt
�

k
�
s=�

�
j=1

3
�Ej

s�k�
�Q

nF�Ej
s�k�� ,

P =
− 1

8J�N
�

k
�
s=�

�
j=2

3
�Ej

s�k�
�P

nF�Ej
s�k�� , �17�

with
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�E1
s

�Q
= 2sJ sin k ,

�E2
s

�Q
= 2s

J sin k

�−�k�
�2J1 sin k − J�Mz� ,

�E3
s

�Q
= 2s

J sin k

�+�k�
�2J1 sin k + J�Mz� ,

�E2
s

�P
=

2sJ�J�1

�−�k�
,

�E3
s

�P
=

2sJ�J�1

�+�k�
. �18�

The expression for the magnetization remains the same as in
Eq. �14�, with the energy spectra replaced by those in Eq.
�16�.

D. Comparison of the free energies of the states I and II

We report in Figs. 2�a� and 2�b� the free energies, f I and
f II, for two rung coupling values ��=3 and 5� as functions of
magnetic field. The thermodynamically stable state is always
state I with Q�Q�. Also, we found that a field-induced
phase transition does not exist because no crossing between

the free energies takes place. Note however that the differ-
ence between these free energies becomes negligibly small
when the field becomes large �h�J� with the free energy for
state I being the lowest always. In the strong-field limit
where all the bond parameters vanish, the free energies f I
and f II become equal. In the remainder of this paper, only
state I will be used except in Sec. VII where an analytic
solution is found for the simpler case of state II.

III. FIELD DEPENDENCE OF MAGNETIZATION AND
SUSCEPTIBILITY

The quantity we can readily compare to existing exact
numerical data for the Heisenberg three-leg ladder is the
magnetization. Thus we start by analyzing its field depen-
dence for several values of the rung coupling. We found that
there are two distinct regimes in this field dependence; one in
which the magnetization is characterized by two plateaus in
the strong rung coupling limit and one in which the magne-
tization is characterized by only one plateau in the weak rung
coupling regime. There exists a threshold value for the rung
coupling, �0, below which only the saturation plateau shows
up in the magnetization and above which an additional pla-
teau occurs at one third of the saturation magnetization. We
will analyze the reason for the existence of these two behav-
iors and calculate the �� ,h /J� phase diagram.

Figures 3�a�–3�d� show the magnetization as a function of
field for four values of �. While a plateau at the third of the
saturation magnetization Ms /3 occurs for �=1.5 or 3, none
takes place for �=0.5 and 1. The plateau at Ms /3 for �=3 is
wider than for �=1.5. The magnetization versus field for �
=3 is in good agreement with the result in Ref. 6. Figure 4
shows the magnetization and susceptibility 
 for �=3. 
 is
characterized by three sharp peaks at very low temperature
and is zero for the fields corresponding to the plateaus. The
field dependence of 
 is also in good qualitative agreement
with the result of Ref. 6. It is now important to find the field
dependent value of �, above which a plateau at Ms /3 sets in.
Note that the saturation magnetization Ms=1 /2 can be real-

0 1 2 3
h/J

-1.4

-1.3

-1.2

-1.1
Fr

ee
en

er
gy

/J

F
I
/J

F
II

/J

α=3

0 0.5 1 1.5 2 2.5
h/J

-1.9

-1.85

-1.8

-1.75

Fr
ee

en
er

gy
/J α=5

(b)

(a)

FIG. 2. The free energies f I and f II calculated at T=0.01J are
plotted as functions of field h for �a� �=3 and �b� �=5. The state
with Q�Q� is the stable one for all fields.
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FIG. 3. The magnetization Mz is drawn as a function of mag-
netic field for four values of �; �a� �=0.5, �b� �=1, �c� �=1.5, and
�d� �=3.
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ized for any coupling � when the field exceeds the upper
critical field hc2. The latter is found to increase practically
linearly with �. The field, above which the intermediate pla-
teau at Ms /3 appears, is known as the lower critical field hc1.
The latter also increases linearly with � but with a slope
much smaller than for hc2.

Figure 5 displays the zero-temperature �� ,h /J� phase dia-
gram. The latter consists of five regimes, which are distin-
guished by the way the magnetization behaves as a function
of field. These regimes are �i� the one where the magnetiza-
tion assumes the maximum value Mz�Ms=1 /2, forming a
plateau in the strong-field domain for any rung coupling �.
�ii� The regime with the plateau at one third of the saturation
magnetization, Mz=Ms /3, is realized for hc1�h�h+ and �
��0, with �0�1.01 and h+ the field above which the mag-
netization departs from the Mz=Ms /3 plateau. �iii� The re-
gion with magnetization Mz�Ms /3 is realized in the weak-
field limit for ���0. �iv� The region with no intermediate
plateau at Ms /3 is realized for fields smaller than hc2 and for

���0. �v� Finally, the region with the magnetization be-
tween Ms /3 and Ms is realized for ���0 and fields h+�h
�hc2. The most interesting in this phase diagram is that the
Ms /3 plateau does not extend to weak rung couplings. The
present mean-field approach indicates that ���0�1.01 is a
necessary condition for the appearance of the plateau at
Ms /3 in the magnetization. The lower �hc1� and upper �hc2�
critical fields are shown in Fig. 5 as a dashed-dotted line and
a continuous line, respectively. The field h+, above which the
magnetization departs from the Ms /3 plateau, is shown as a
dashed line that satisfies h+����1.46�J. hc1 and hc2 are ap-
proximately given by

hc1 � 1.53J + 0.13J� ,

hc2 � 2J + 1.46J� . �19�

The fits in Eq. �19� give hc1�1.92J �very close to the actual
value 1.91J� for �=3, which is in excellent agreement with
the numerical result of Tandon et al.6 However, the width of
the Ms /3 plateau we find here �2.79J� is greater than the one
found by these authors, which is 1.88J. This means that our
value for h+ does not compare well with Tandon et al. Note
that the upper critical field hc2�6J �6.38J using the fit in Eq.
�19�� compares relatively well with theirs, which is about
6.5J. In the limit �→0, hc1 does not exist and hc2 tends to
2J, which is the critical field for the single Heisenberg
chain.2,11

IV. FIELD DEPENDENCE OF THE SPIN BOND
PARAMETERS

Figures 6�a� and 6�b� show the field dependence of the
mean-field parameters for �=3 and 1, respectively. The tem-
perature is �0.005J� practically zero for both coupling values.
We see that the bond parameters show plateaus for �=3 but
no plateaus occur for �=1. We checked that a plateau ap-
pears in the spin bond parameters only above the threshold
value �0. When the field is greater than hc2, all the bond
parameters are zero. Next we discuss separately the regimes
below and above �0.

A. Strong rung coupling regime �œ�0

This is the regime where the Ms /3 intermediate plateau
appears in the magnetization. In this regime, the spin bond
parameters are all characterized by a plateau in the same field
region where the Ms /3 magnetization plateau occurs. The
three bond parameters Q, Q�, and P do not show the same
field dependence in general. For example, for �=3, Q de-
creases when the field h increases away from zero, levels off
for all the fields hc1�h�h+ corresponding to the Ms /3 pla-
teau, starts to vary again when the field exceeds h+, becomes
even negative, and passes through a minimum before vanish-
ing at hc2. Q� is smaller than Q but shows the same field
dependence as Q for the fields h�h+. Q� increases sharply
for h�h+, passes through a maximum, and then vanishes at
hc2. The fact that Q becomes negative but not Q� is an indi-
cation that the spin bond topology along the rungs
. . .�↑i,1↓i,2��↓i,2↑i,3�. . . becomes frustrated and that the phase
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FIG. 4. The magnetization Mz and the spin susceptibility 
 are
drawn as functions of magnetic field for �=3 and T=0.005J.
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FIG. 5. The �� ,h /J� phase diagram for the three-leg ladder is
displayed. The critical fields hc1 and hc2 are displayed as continuous
and dashed-dotted lines, respectively. Ms stands for the saturation
value of the magnetization. For ���0, the plateau at Ms /3 does not
exist ��0�1.01�. This phase diagram agrees qualitatively well with
the one calculated by Cabra et al. �Ref. 7� in the large rung coupling
and field regime.
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per plaquette becomes irrelevant because the magnetic field
tends to align all the spins in its direction. �↑i,1↓i,2� desig-
nates a spin singlet arrangement. This explanation is sup-
ported by the fact that in the field region where Q becomes
negative the rung bond parameter P decreases sharply. Con-
trary to Q and Q�, the parameter P increases with field when
h�hc1, forms a plateau for hc1�h�h+, then decreases, and
finally vanishes at hc2. It is worth to mention that the phase
transitions occurring as a consequence of the sudden changes
in the bond parameters happen at the same fields where the
magnetization shows its abrupt changes.

Near the critical points of the parameters Q, Q�, and P,
here for �=3 and for any ���0, one can expand the
ground-state energy and get analytical expressions for these
parameters �refer to Sec. VII where this is done for the sim-
pler case of state II�.

B. Weak rung coupling regime �›�0

Contrary to the case ���0, the parameters Q, Q�, and P
show no plateau in the weak-coupling limit ���0. Similarly
magnetization shows no intermediate plateau in this case.
Figure 6�b� displays the bond parameters versus field for �
=1. These parameters are now characterized by cusps, which
are due to the crossing of the energy bands by the chemical

potential �field h� of the JW fermions as the field varies. To
understand why in the strong-coupling regime plateaus exist
but not in the weak-coupling regime, we will analyze in the
next section �Sec. V� the field dependence of the energy band
structure.

V. INTERPRETATION OF THE PLATEAUS IN
MAGNETIZATION AND BOND PARAMETERS

In order to understand why the Ms /3 plateau exists for
���0 but not for ���0, we calculate the energy spectra as
functions of the wave number k for different values of the
rung coupling and magnetic field. In this way we also ex-
plain the existence of the threshold value of the rung cou-
pling �0. We consider first a value for � larger than �0; �
=3. Figures 7�a�–7�d� display the spectra for the fields h=0,
J, 3J, and 6J, respectively. In terms of the JW fermions, the
magnetic field acts as their chemical potential so that when
the field �Zeeman energy h=g�BB� is varied within the gap
between the two upper-energy bands and the ones just be-
neath them, no change occurs in Mz, Q, Q�, or P. This leads
to a plateau in each of these quantities. This is well illus-
trated for h=3J in Fig. 7�c�. When the field goes above the
upper-energy bands, the saturation regime of magnetization
is entered and all bond parameters vanish.

When ���0, the gap between the upper-energy and
intermediate-energy bands closes. For �=0 and zero field,
the three chains of the ladder are completely decoupled. The
excitation energy spectra in this case are threefold degenerate
and are equivalent to the des Cloizeaux spectrum; namely,
E�k�=J�1+2Q��sin k�.17 Note that the excitation energies are
obtained by considering the energies that are above the
chemical potential h. When the rung coupling � increases,
this degeneracy is progressively lifted. The excitation spectra
consist then of three distinct bands as Eqs. �9� indicate. One
band remains gapless but the other two become gapped as
Fig. 8�a� shows for �=1 and zero field �h=0�. For as long as
a gap does not exist between the upper-energy bands and the
two ones just beneath them, no plateau shows up in the mag-
netization or the mean-field parameters. Figure 8�b� shows
the spectra for �=1 and h=J where no gap exists between
the upper-energy and intermediate-energy bands. In the weak
rung coupling regime ���0, when the field increases, the
chemical potential h goes from crossing only the
intermediate-energy bands to crossing the latter and the
upper-energy ones together, and then to crossing the latter
alone. Finally, in the strong-field limit �with h�hc2�, all
bands fall below the chemical potential implying that any
variation in field �h�hc2� affects neither magnetization nor
spin bond parameters.

To illustrate even better the existence of the threshold
value �0�1.01, we plot the energy spectra for a � slightly
greater than �0; that is �=1.1, and for h=1.75J in Fig. 9.
One can note that a very small gap has opened near zero
energy, which is the JW Fermi energy indicated by the hori-
zontal dashed line in this figure. The present analysis based
on the lifting of degeneracy and based on the opening of a
gap between bands makes it clear that the value of the rung
coupling, above which magnetization displays a plateau,
must be greater than zero.
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FIG. 6. The mean-field parameters are plotted as functions of
magnetic field for two values of �: �a� �=3 and �b� �=1. Tempera-
ture is T=0.005J.
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VI. EFFECT OF TEMPERATURE ON QUANTUM
CRITICALITY

Figure 10 shows the magnetization Mz�h ,T� versus field
for six values of temperature T and for �=3. The strongest
temperature dependence is shown by the Ms /3 plateau,
which disappears completely when T becomes greater than
about 0.4J. The fading away of the plateau is caused by the
filling of the gap in E2

+ and E3
+ by thermally excited JW

fermions, i.e., by the filling of the gap by thermal induced
spin excitations. Figure 11 displays the spin susceptibility

�h ,T�=�Mz /�h as a function of the field for the same value
of � and for the same six temperatures as in Fig. 10. At very
low temperatures, 
�h ,T� is characterized by three peaks.
However as temperature increases, the peaks decrease in am-
plitude and completely disappear again for T�0.4J. The sus-
ceptibility, which is zero between the first peak and the sec-
ond one at zero T, becomes nonzero at finite T �a
consequence of the disappearance of the intermediate mag-
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FIG. 7. The energy spectra for the three-leg ladder are drawn as
functions of =k /�. The magnetic field is h=0 in �a�, h=J in �b�,
h=3J in �c�, and h=6J in �d�. Temperature is T=0.005J �practically
zero�, and �=3. The continuous line is E1

+, the dashed line is E1
−, the

dashed-dotted line is E2
+, the dashed-dotted-dotted line is E3

+, the
dashed-dashed-dotted line is E3

−, and the long-dashed-dotted line is
E2

−. The horizontal dashed line designates the position of the Fermi
energy for the JW fermions.
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FIG. 8. The energy spectra are drawn as functions of =k /� for
magnetic fields h=0 in �a� and h=J in �b�. Temperature is zero and
�=1. The continuous line is E1
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−, the dashed-
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+, the dashed-dotted-dotted line is E3
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Note that in �b� E2
+ and E3

+ are practically equal. So we chose to
draw only E2

+. The horizontal dashed line designates the position of
the Fermi energy for the JW fermions. Notice that a gap does not
exist between the upper-energy bands, E2

+ and E3
+, on one hand and

E1
� on the other hand for �=1.
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netization plateau at Ms /3 due to the appearance of spin
excitations in the gap�.

The effect of temperature on the spin bond parameters is
reported in Fig. 12�a� for �=3 and T=0.1J, and in Fig. 12�b�
for �=3 and T=0.5J. We found that the critical behavior in
the bond parameters disappears as soon as temperature be-
comes nonzero, yielding only a crossover behavior. The pla-
teaus also tend to disappear when temperature increases as
clearly illustrated for T=0.5J in Fig. 12�b� where the plateau
in Q has completely disappeared. This behavior �the replace-
ment of criticality with a crossover when temperature be-
comes nonzero� is similar to that found previously in the
Heisenberg chain and two-leg ladder.2

VII. ANALYTICAL SOLUTION FOR THE BOND
PARAMETERS IN STATE II

A. Zero field

To illustrate analytically the existence of the quantum
phase transitions, we consider for simplicity state II with Q

=Q�, first in zero field, and expand the ground-state energy
in powers of 1 /� in the limit � large. The ground-state en-
ergy can be calculated using the zero-T limit in Eq. �15�. At
zero temperature, only the energy bands below the Fermi
energy of the JW fermions contribute to the integrals in Eq.
�15�. One gets the ground-state energy,

EGS =
1

3
�3JQ2 + 2J�P2� −

1

3
�

0

� dk

2�
E1�k� −

1

3
�

0

� dk

2�
��k� ,

�20�

with

E1�k� = J1 sin k ,

��k� = �4J1
2 sin2 k + 2J�1

2 . �21�

In the limit ��1, ��k� can be expanded in even powers of
1 /� as

��k� = �2J�1�1 +
J1

2

J�1
2 sin2 k −

J1
4

J�1
4 sin4 k� + O��−6� ,

because
J1

J�1
= 1

�
1+2Q
1+2P . We replace P by its mean-field value

and we focus only on the parameter Q for the sake of sim-
plicity. We write the ground-state energy as a series in pow-
ers of J1=J�1+2Q� after performing the integrals over k. The
result is

EGS = E0 + �a1 −
1

2
�J1 + �a2 +

1

4J
�J1

2 + a4J1
4 + . . . �22�

Here E0 is a J1-independent term, and the coefficients are
analytically given by

a1 = −
1

3
�

0

� dk

2�
sin k = −

1

3�
,

a2 = −
2�2

6J�1
�

0

� dk

2�
sin2 k = −

�2

12J�1
,

a4 =
2�2

6J�1
3 �

0

� dk

2�
sin4 k =

�2

16J�1
3 . �23�

Minimizing EGS with respect to J1, �EGS /�J1=0 leads to Q
�1 /3� in the limit �→�, in excellent agreement with the
result obtained numerically from Eq. �17�.

B. Nonzero field

An expansion is possible for the ground-state energy even
in the presence of the external magnetic field. For simplicity,
we consider fields in the vicinity of hc1 and we assume that �
is large enough for a gap to appear in the energy spectra, i.e.,
for a magnetization plateau to appear at Ms /3. The ground-
state energy is given by
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EGS = JQ2 +
2

3
J�P2 − �J +

2

3
J��Mz�Mz + 1� +

h

2

−
1

6
�� dk

2�
�E1

−�k� + E1
+�k�� −

1

6
�� dk

2�
��−�k� + �+�k�� ,

�24�

where the interval of integration ���� consists of only those k
points, for which the energies are negative at zero tempera-
ture. In the limit � large, because �+�k�+�−�k� is an even
function in J1, the expansion in powers of J1 /J� contains
only even powers. Up to the fourth order, one gets

�+ + �− � J��1 +
2J1

2 sin2 k

J�
2 �1 −

2J�
2 Mz

2

J�
2 �

−
4J1

4 sin4 k

J�
4 �1 + 36

J�
2 Mz

2

J�
2 �� , �25�

with J�
2 =2J�1

2 +J�
2 Mz

2. This yields

EGS�h� = E0�h� + �a1�h� −
1

2
�J1 + �a2�h� +

1

4J
�J1

2 + a4�h�J1
4

+ . . . �26�

where the coefficients are now field dependent. The magnetic
field is known to shift the chemical potential of the JW fer-
mions. This changes the bounds of the intervals of integra-
tion involved in the expressions of these coefficients. For
example, the magnetization reaches the 1/3 plateau when the
field is such that both bands E1

��k� go completely below the
Fermi energy. For hc1�h�h+, the chemical potential is be-
tween the upper-energy bands, E2

+ and E3
+, and the medium-

energy ones, E1
� �as illustrated in Fig. 7�c� for �=3�. In such

a situation, the coefficients assume the following expres-
sions:

a1 = 0,

a2 = −
1

6

1

J�
�1 −

2J�
2 Mz

2

J�
2 � ,

a4 =
1

4

1

J�
3 �1 + 36

J�
2 Mz

2

J�
2 � . �27�

For fields hc1�h�h+ corresponding to the magnetization
plateau at Mz=Ms /3=1 /6, minimizing EGS�h� in Eq. �26�
with respect to J1 gives

Q � Qp �
1

2� 3
2

J�

J − 1� , � � 1, �28�

in fairly good agreement with the numerically calculated val-
ues of Q using Eq. �17�. For example, the value calculated
using the approximation �Eq. �28�� is Qp�0.051 for �=3,
while the value obtained using Eq. �17� is 0.049. For �=10,
the values are respectively Qp�0.014 19 and 0.014 08,
hence implying a difference of less than a percent. Note that
Q is not field dependent on the plateau, a result Eq. �28�
satisfies exactly.

Following the same procedure as in Ref. 2, we find that
for fields slightly below the lower critical field hc1, the pa-
rameter Q assumes the expression,
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 along the z axis is plotted
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Q = Qp + c1�hc1 − h�1/2, c1 =
�2

3��J�1 + 2Qp�
. �29�

Here, hc1=J�1+2Qp�+J /3+J� /6. As for the magnetization,
for h slightly smaller than hc1, following again the same
procedure as in Ref. 2, Eq. �14� gives

Mz

Mp
= 1 −

2�2hc1

��J�1 + 2Qp�
�1 −

h

hc1
�1/2

, h � hc1, �30�

where Mp=Ms /3. The spin susceptibility for h�hc1 is


 =
�Mz

�h
=

�2

��J�1 + 2Qp�hc1
�1 −

h

hc1
�−1/2

, �31�

hence indicating a divergence governed by the mean-field
type exponent 1/2. In the plateau regime of the magnetiza-
tion above hc1, the susceptibility is zero. Thus the divergence
is observed only below hc1. Near the upper critical field hc2,
the magnetization and susceptibility are obtained by replac-
ing hc1 by hc2, Qp by zero, and Mp by Ms in Eqs. �30� and
�31�.

VIII. CONCLUSIONS

The spin-1
2 antiferromagnetic three-leg Heisenberg ladder

in the presence of an external magnetic field is studied. Upon

treating this system within the bond mean-field theory, we
find that it is characterized by zero-T spin bond order, which
disappears when field reaches the upper critical field hc2. The
coupling field phase diagram is calculated. It is found that for

the
Ms

3 -magnetization plateau to occur the rung coupling must
exceed a threshold value. Ms is the saturation magnetization.
Above this threshold coupling, each of the spin bond param-
eters is characterized by two zero-T critical points: one at the
lower critical field hc1 and the second one at the upper criti-
cal field hc2. The bond order is simply interpreted as the
probability for adjacent spins to form a spin singletlike ob-
ject. The magnetization and spin susceptibility versus field
we calculated agree well with existing numerical data, a fact
that indicates that the present approach works well. The ef-
fect of temperature on quantum criticality is studied. It is
found that the criticality is replaced by a crossover regime
once temperature becomes nonzero.
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