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We argue that surface magnetization of a metallic ferromagnet can be turned on and off isothermally by an
applied voltage. For this, the material’s electron subsystem must be close enough to the boundary between
paramagnetic and ferromagnetic regions on the electron density scale. For the 3d series, the boundary is
between Ni and Cu, which makes their alloy a primary candidate. Using Ginzburg-Landau functional, which
we build from Ni1−xCux empirical properties, ab-initio parameters of Ni and Cu, and orbital-free LSDA, we
show that the proposed effect is experimentally observable.
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Further evolution of magnetoelectronics1 depends highly
on the availability of materials in which local magnetization
can be turned on and off isothermally by an electric voltage.
The hopes to achieve this are mainly laid on the dilute mag-
netic semiconductors �DMS�,2 in which the effect was re-
cently demonstrated experimentally.3 The voltage-controlled
ferromagnetic ordering in DMS relies on the virtue of doped
semiconductors to allow external variation of the free-carrier
spatial density within the semiconductor depletion layer,
typically measured in dozens of nanometers. The voltage
variation of the high electron density in metals is possible
only within the atomic size Thomas-Fermi �TF� surface
layer. As a result, the voltage-controlled ferromagnetism in a
metal has not been considered a possibility lately.

We argue that by capacitively charging a metallic ferro-
magnet, one can drive the surface electron subsystem in and
out of its ferromagnetic state. At this, the electron system of
the metal has to be paramagnetic at the device operation
temperature �room temperature T0�, but close enough to the
ferromagnetic state on the temperature and/or electron den-
sity scales. The proximity of the ferromagnetic transition will
play a twofold role: �i� the capacitive change in the electron
density is relatively small so that the transition has to be
sufficiently close in order to reach the ferromagnetic region
with reasonable voltages, and �ii� due to the critical collec-
tive spin correlations, the spin-correlation length grows infi-
nitely as one approaches the transition point. Consequently,
even though the injected carriers are spatially limited to the
TF layer, the system must develop a much wider surface
magnetization profile. In this paper we investigate the pro-
posed possibility in Ni1−xCux.

The nature of ferromagnetism lies in the competition be-
tween the kinetic energy and the exchange interaction. The
kinetic energy of the spatial quantization tends to equalize
the numbers of spin up and down electrons by shifting the
fermionic antisymmetry into the spin sector of the many-
body wave function. In turn, the exchange interaction does
the opposite, struggling to unbalance the up and down spins.
For itinerant ferromagnets, the subclass of materials elemen-
tal ferromagnets belong to, the outcome of this competition
can be predicted from the Stoner criterion.4 According to the
Stoner criterion, ferromagnets possess a high density of
states �DOS� at the �paramagnetic� chemical potential. In the
3d series, the high DOS is provided by the 3d band on the
background of the low and wide 4s and 4p bands �see Fig.

1�a��. Thus, the elements with the chemical potential within
the 3d band, Fe, Co, and Ni, are ferromagnetic, whereas the
very next element, Cu, is not. Cu has an extra electron per
atom beyond Ni so that on the electron density scale, the
ferro-to-para boundary lies between Ni and Cu.

Despite their different magnetic properties, Ni and Cu are
very similar from the band structure point of view. In a crys-
talline state both form the face-centered cubic lattice with
almost the same lattice constant, a �6.69 vs 6.83 a.u.�. In
result, on alloying, Ni and Cu form substitutional solid solu-
tions at all compositions. Consequently, Ni1−xCux can be
thought of as an all-the-same structure solid, with the equi-
librium electron density varying linearly with x, �0=�Ni
+x /a3. Within this picture, x and �0 are interchangeable.

Other experimentally observed properties of the alloy5

can be well approximated as �see Figs. 1�b�–1�d�� the linear
dependence of the zero-temperature spin density s0��0 ,0�,
the Curie temperature TC��0� on �0, and the Landau depen-

FIG. 1. �a� Schematics showing the paramagnetic chemical po-
tentials of the elemental ferromagnets on the kinetic energy, �, and
the spatial electron density, �0 �outer shell electrons per atom�,
scales. The inset is the magnified dashed area, which shows the
graphic solution for Eq. �3� determining the spin density, s0, the
paramagnetic and ferromagnetic chemical potentials, �P and �, and
the spin up and down kinetic Fermi energies, �F

↑↓, as functions of �0

for pure Ni, �0=�Ni. �b�–�d� The experimentally observed properties
of Ni1−xCux: �b� zero-temperature magnetization vs �0; �c� Curie
temperature vs �0; �d� the magnetization vs temperature, T.
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dence of the spin density s0��0 ,T� on temperature T:

2s0��0,0�/� = ��3d − �0����3d − �0� , �1a�

TC��0�/� = ��3d − �0����3d − �0� , �1b�

s0��0,T�/s0��0,0� = �1 − T̃�1/2���3d − �0� , �1c�

where T̃=T /TC��0�, � is the Heaviside step function, �3d
=�Ni+0.53 /a3 is the position of the 3d band edge on the
density scale, and � and � are the slopes of the 2s0��0 ,0� and
TC��0� lines. For nickel 2s0��Ni,0�=0.66 /a3 and TC��Ni�
=627 K so that ��1.25 and ��1.2�102 Ka3.

A rather accurate quantitative look at the itinerant ferro-
magnetism can be taken via the Stoner approximation.4 In a
homogeneous system case, the zero-temperature energy per
volume is the sum of the kinetic and exchange parts:

EKX��0,s0� = �↑↓ K��0
↑↓� − Js0

2, �2�

where �0
↑↓=�0 /2	s0 are the up and down spin densities, J is

the Heisenberg exchange interaction constant,6 and the ki-

netic energy is defined as K��0
↑↓�=�−


�F
↑↓

�������d��, with �F
↑↓

��F��0
↑↓� being the kinetic spin up and down Fermi energies,

and � being the DOS �per spin�.7 The function �F defines the
one-to-one correspondence between the �spin� density and
the position of the Fermi energy on the kinetic energy scale.
It can be defined via its inverse function as �=�−


�F �����d��
so that ��F /��=���F�−1 and �K /��=�F, i.e., �F and � are the
Legandre conjugates with respect to K.

For the ground state, vanishing variations of EKX in �0
and s0 yield the equations determining the ground state’s spin
density and the chemical potential as functions of �0:

2s0��0�J = �F
↑ − �F

↓ ,���0� = ��F
↑ + �F

↓�/2. �3�

To get Eq. �1� from Eq. �3� �the graphic solution for pure Ni
is given in the inset of Fig. 1�a��, the DOS has to be of the
following simple form ��3d is the 3d band edge�:

���� = �Ni���3d − �� + �Cu��� − �3d� .

Then,

� = ��Cu
−1 − �Ni

−1�/��Ni
−1 + �Cu

−1 − 2J�

and

���0� = �P��0� − ����0� , �4�

where

�P��0� = �3d +
1

2
��0 − �3d� � 	�Ni

−1, �0 
 �3d,

�Cu
−1 , �0 � �3d,


 �5�

is the chemical potential corresponding to the paramagnetic
solution �s0=0, �P=�=�F

↑↓=�F��0 /2��, and

����0� = �2���−1��0 − �3d����3d − �0� , �6�

is the chemical potential shift due to the switching from the
paramagnetic to the ferromagnetic state, with ��−1=��J
−�Ni

−1�.8 Numerical estimates for the parameters of the model
can be obtained by fitting �P��Ni,Cu�−�3d from Eq. �5� and

the exchange spitting in Ni, 2s0��Ni�J, with their ab-initio
values:9 �Cu,Ni

−1 =6.7, 0.79 eVa3, J=1.3 eVa3, and ��−1

=0.61 eVa3.
For nonzero temperatures, the free energy of a homoge-

neous system can be assumed a function of �0, s0, and T. Its
spatial density can be given as the sum of the paramagnetic
and ferromagnetic �Landau� parts

FKX��0,s0,T� = FP��0,T� + �F��0,s0,T� . �7a�

FP is determined mostly by the crystal structure. For not
very high temperatures, such that all the structural phase
transitions are far on the �T ,�� plane, Fp can be assumed
temperature independent and consequently equal to the para-
magnetic part of the zero-temperature energy so that ��0

FP

=�P��0�.
The ferromagnetic properties of the alloy �Eqs. �1a�–�1c��

determine the Landau part of the free energy up to an un-
known factor f:

�F = f�2��0 − �3d�2�T̃ − 1��2s0/��2 + �2s0/��4� . �7b�

The para-to-ferro shift of the chemical potential provided by
�F is

����0,T� = − ��0
�f��0 − �3d�4�T̃ − 1�2���1 − T̃� .

The comparison of the previous equation at T=0 with Eq.
�6�, together with the assumption that f is also temperature
independent, uniquely defines the function f

f��0� = ��0 − �3d�−2/�4��� . �7c�

Accordingly, ����0 ,T�=����0��1− T̃���1− T̃�, with ����0�
from Eq. �6� �see Fig. 2�a��.

Now, in the spirit of the orbital-free local spin density

FIG. 2. �a� The chemical potential provided by the proposed
model vs temperature. �b� The area on the �T ,�� plane under con-
sideration �dashed rectangle�. The parameters ��, �C,��, and �T are
introduced in the text. The arrow symbolizes the effect of the �posi-
tive� bias on the surface electron subsystem. �c� The widths of the
spatial profiles of the magnetization and the density are determined
by the spin and density correlation lengths �Eq. �9��, and �s���.
�d� The surface magnetization, M, vs surface charge, �. �Insets�
The threshold charging, �tr, and the characteristic magnetization,
M�, vs the alloy’s detuning from the transition, �T.
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approximation �LSDA�, we turn to an inhomogeneous case
by letting the electron and the spin densities spatially vary:
�0→��x�, s0→s�x�. Capacitively charging the conductor we
make it an open system, which is governed by the � func-
tional

� =� d3x�W + FKX − �0� + e��� − �0�/2� . �8a�

Here FKX is defined by Eqs. �7a� and �7c�, �0����0 ,T0�,
�=e�d3x����x��−�0� / �x−x�� is the direct interaction poten-
tial with e being the electron charge, and the nonlocality of
the kinetic energy functional is accounted for by the � von
Weiszacker term,10 W=��2 / �8m���↑↓���↑↓�2 /�h

↑↓, with m�

being the effective mass of the 3d holes and with �h
↑↓

��3d /2−�↑↓ being the spin up and down hole densities. We
adopt �=1 /9, the case when the � von Weiszacker approxi-
mation is asymptotically correct for long wavelengths,11 i.e.,
the domain of the applicability of the Ginzburg-Landau �GL�
theory below.

As we already mentioned, the TF layer’s spatial electron
density variation, due to the injection of the carriers, is rela-
tively small. Therefore, to be able to reach the ferromagnetic
region from an initially paramagnetic state, we need an alloy
which is close to its transition at T0—TC�TC��0�
T0, �T
=T0−TC�T0 �see Fig. 2�b��—so that ��=�0−�C=�T /�
���, where �C=�3d−�� and ��=T0 /��0.25 /a3. Having
chosen the composition, we can focus on a small area on
�� ,T� plane, such that ��−�C����. Within the area, �h

↑↓

��� /2, and the von Weiszacker term simplifies as

W � ��2�����2 + 4��s�2�/�8m���� . �8b�

In the Thomas-Fermi picture of a Fermi liquid, which the
von Weiszacker correction relies on, the DOS at the chemical
potential is given as �TF=kFm� / �2�2�2�, where kF
= �3�2���1/3 is the Fermi wave vector. To make the von
Weiszacker term energywise consistent with the rest of the �
potential obtained by the physical arguments different from
the orbital-free LSDA, we can require that �TF=�Ni, or m�

�8.2m0. This value of the effective mass lies well within the
wide range of the 3d sub-bands’ effective masses, which
vary from several m0 to almost 30m0 �see, e.g., Ref. 12�.

Even though the orbital-free LSDA has proven successful
in some atomic-scale nonhomogeneous problems, in our case
any atomic-scale results obtained from Eqs. �8� would have a
rather qualitative character. Indeed, the very notion of the
composition of a solid solution is well defined only on scales
larger than the lattice constant. Furthermore, the microscopic
properties of the electron subsystem of the TF layer differ
from those of the bulk and are interface-material dependent.
The � potential �Eq. �8��, however, can be used to find the
characteristic distances of the spatial variations of � and s,
which are given by the density and the spin correlation
lengths, �� and �s. Omitting intermediate derivations, the
correlation lengths obtained from Eq. �8� in a linear response
manner are

�� = 2−1/2�TF Re
1 + 
1 − kF/��2���TF
2 � , �9a�

�s = ����/�T�1/2. �9b�

Here the Thomas-Fermi radius �TF= �4�e2�2�Ni��−1/2 and �
=���2�� / �4m���

2�.
The numerical estimations lead to ��7�102 K. In the

vicinity of the transition, the inequality �T�� is well satis-
fied so that the spin and the density scale separate, �s���

�see Eq. �9b��. Thus, we arrived at a typical picture of the
critical phenomena theory. The spin density is a “ready-to-
condense” soft variable, behavior of which is governed by
the large-scale low-energy GL functional �the s-dependent
part of Eq. �8��, which in the �T ,��, the area under consid-
eration, has the following form:

FGL =� d3x�A��s�2 + b�� − �C�s2 + Cs4/2� , �10�

with b=2 / ��4�����, A=ksb, C=4b / ��2���. The high-
energy stiff variable, �, plays a guiding role via the � depen-
dence of the effective chemical potential for the magnetiza-
tion �the overall coefficient in s2 term of Eq. �10�, B=b��
−�C��. The feedback action of the soft variable, s, on the stiff
variable, �, is weak and/or unimportant.

The proposed form of the near-critical s-� coupling can be
obtained on a more general footing. Indeed, Taylor expand-
ing B around the transition point at which B�T0 ,�0�=0, and
noticing that in itinerant ferromagnets the s-� coupling can
only be local �especially on the �s scale�, we arrive at B
�b��−�0�+b��T0−TC��b��−�C�, with �C=�0−��, ��
= �T0−TC� /�, ��b /b�. For quantitative studies, however, it
is crucial to possess reliable values of the three material-
specific parameters for Eq. �10�. The way the parameters for
Ni1−xCux are derived in this Brief Report can now be sum-
marized as follows: A is obtained from the orbital-free LSDA
considerations �Eq. �8b��; the mutual relation between b and
C from the empirical properties of the alloy and from the
Landau theory for the II-order phase transitions �Eq. �7b��;
the overall energy factor for b and C from previous ab-initio
parameters of Ni and Cu and from the Stoner theory of itin-
erant ferromagnetism �Eqs. �6� and �7c��.

On the �s scale, the microscopic effects are scaled out.
The magnetization is ignorant to the microscopic details of
the electron density profile, e.g., the Friedel oscillations. The
injected carriers’ spatial density in the TF layer, with a width
of the order of ��, can be assumed infinitely narrow. There-
fore, a positively-biased surface can be represented as a one-
dimensional �1D� semi-infinite solution �z
0, see Fig. 2�c��
of the GL Euler equation with ��x�→�0 and with the follow-
ing boundary condition imposed by the form of the s-� cou-
pling: �s��z ln s�z=0=� /�tr, where �=−�−


0 ���z�−�0�dz is the
surface density of the excess holes and �tr=�s�� is the
threshold charging. The solution is s=s��sinh�coth−1�� /�tr�
−z /�s��−1���−�tr�, where s�= �2b�� /C�1/2. The magnetic re-
sponse of the surface can be characterized by the surface
density of Bohr magnetons, M=�−


0 2s�z�dz �see Fig. 2�d��:
M=M� log�� /�tr+ ��� /�tr�2−1�1/2����−�tr�, where M�

= �2A /C�1/2. The characteristic magnetization, M�, is inde-
pendent of �T so that the effective magnetic susceptibility to
the charging, M� /�tr��T−1/2, grows infinitely as one ap-
proaches the transition point �see Fig. 2�d� inset�.
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In reality, the surface charge is limited by the breakdown
of the insulating interface material. For SiO2, the breakdown
electric field ESiO2

�107 V /cm, which corresponds to the
following charging �SiO2

=�ESiO2
/ �4�e��2.5�1013 cm−2,

where �=4.5 is the SiO2 dielectric constant. According to our
estimations, for the Ni1−xCux /SiO2 interface, which is �T
=5 K away from the transition, the threshold charging �tr
�0.15��SiO2

, and on the edge of the semiconductor break-
down ����SiO2

� the surface magnetization is M�1.3
�1014 �B cm−2.

The magnetic properties of the surface are in fact different
from the bulk on their own, without charging. This difference
is modeled in the surface phase transition theory as a delta-
functional jump of the local Curie temperature at the surface
of the semi-infinite system �see, e.g., Ref. 13 and references
therein�. Within the proposed approach the jump can be
taken into account as an intrinsic shift of the charging density
�→�int+� �the cases �int�0 are known, respectively, as
ordinary and extraordinary transitions�. A reliable estimate
for the material- and interface-dependent �int can only be

obtained from ab-initio studies or experimental data.
Another issue is the quantum fluctuations, due to which

the critical exponent of the spin correlation length must ac-
quire the renormalization group correction: �s→�s

�

����TC /�T�1/2+� ���0.14 for, e.g., the d=4−�
approximation14�. Accordingly, the exponential tail of the
magnetization profile will be elongated and the magnetic re-
sponse should acquire an enhancement factor ��TC /�T��. On
the other hand, the intrinsic substitutional irregularity in a
solid solution must shorten �s due to the Anderson localiza-
tion mechanism. Near the transition, the quantum fluctua-
tions’ effect is dominant, and in reality the magnetic response
of the surface is stronger than the one obtained here on the
mean-field level.
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