
Optical properties of graphene antidot lattices

Thomas G. Pedersen,1 Christian Flindt,2 Jesper Pedersen,2 Antti-Pekka Jauho,2,3 Niels Asger Mortensen,2 and Kjeld Pedersen1

1Department of Physics and Nanotechnology, Aalborg University, DK-9220 Aalborg Ø, Denmark
2Department of Micro and Nanotechnology, NanoDTU, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

3Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, 02015 HUT, Finland
�Received 14 February 2008; revised manuscript received 30 April 2008; published 23 June 2008�

Undoped graphene is semimetallic and thus not suitable for many electronic and optoelectronic applications
requiring gapped semiconductor materials. However, a periodic array of holes �antidot lattice� renders
graphene semiconducting with a controllable band gap. Using atomistic modeling, we demonstrate that this
artificial nanomaterial is a dipole-allowed direct-gap semiconductor with a very pronounced optical-absorption
edge. Hence, optical infrared spectroscopy should be an ideal probe of the electronic structure. To address
realistic experimental situations, we include effects due to disorder and the presence of a substrate in the
analysis.
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I. INTRODUCTION

Graphene has emerged as a promising material for nano-
scale electronic devices. Most importantly, graphene com-
bines a high mobility ��15 000 cm2 /V s �Refs. 1 and 2��
with the possibility of patterning using e-beam
lithography.2–4 In addition, the very long spin-coherence time
is important for potential spintronics applications.5,6 Pattern-
ing of graphene into Hall bars,1,7 quantum dots,2,3

nanoribbons,4 and circular Aharonov-Bohm interferometers8

has been demonstrated. Recently, we have proposed adding
graphene antidot lattices9 to this list. Our proposed antidot
structure consists of a hexagonal array of circular holes per-
forating the graphene sheet. Such a periodic perturbation
turns the semimetallic sheet into a semiconductor with a con-
trollable band gap. Furthermore, “defects” in the lattice
formed by leaving one or several unit cells intact support
localized states that could lead to realization of a graphene
spin qubit architecture.9 However, the fully periodic antidot
lattice is highly interesting in itself. For instance, transport
under magnetic fields could lead to Hofstadter butterfly
features.10 Also, the tunable band gap could be used to de-
sign quantum wells and channels for electronic devices. It is
even conceivable that tunable absorption and emission of
light could lead to novel graphene optoelectronic devices.

In this work, we present a theoretical study of the optical
properties of graphene antidot lattices. Expanding on our
previous work,9 we demonstrate how optical spectroscopy
will be useful in characterizing the electronic structure of
antidot lattices. In particular, we predict a highly visible ab-
sorption edge corresponding to the band gap. Hence, optical
�infrared� absorption spectroscopy is a promising candidate
for characterization. We compute the optical properties using
a tight-binding formalism.11 To accelerate convergence with
respect to k-point sampling, an improved triangle integration
method including k-dependent matrix elements has been de-
veloped. We present a systematic study of the absorption
signature in two different families of lattices as the size of
the perforation increases. In practice, variation in hole posi-
tion and size/shape will lead to inhomogeneously broadened
spectra. We study the influence of broadening on the optical

spectra to gauge the effect on the measurable response. Also,
samples placed on substrates are considered. We find that
even in the presence of broadening, both absorption and re-
flection contrast spectra display clearly detectable band-gap
features. Finally, the dependence of the low-frequency re-
fractive index on energy gap is analyzed for a large compi-
lation of antidot structures.

II. THEORY AND METHODS

The optical properties of an extremely thin layer, such as
monolayer graphene, can be characterized in two distinct
ways. Physically, it is appropriate to view the layer as a
charge sheet with complex sheet conductivity �̃���. Alterna-
tively, the sheet may be viewed as a homogeneous layer with
a small but finite thickness dg, taken as the graphite inter-
layer lattice constant �3.35 Å, and characterized by a di-
electric constant ����. As long as the layer thickness is much
less than the wavelength, the two approaches lead to virtu-
ally identical results provided the response functions are re-
lated via �̃���=−idg�0������−1�. The antidot lattice is a
periodic structure and as such all properties are calculated as
appropriate integrals over a two-dimensional Brillouin zone.
We apply the following approach in all computations: First,
the limit of vanishing broadening is considered. This allows
us to calculate the real part of the conductivity using a highly
accurate triangle integration method including k-dependent
matrix elements. The details of this method are given in Ap-
pendix. Second, the imaginary part of the conductivity is
obtained via a Kramers-Kronig transform. Finally, broaden-
ing is reintroduced by convoluting with a Gaussian line
broadening function. We consider only fully periodic struc-
tures and ignore exciton effects in the present work. Local-
ized excitons produce additional discrete absorption reso-
nances below the band gap and the continuous spectrum
above the gap is modified by continuum excitons. By ignor-
ing electron-hole interaction, we disregard discrete reso-
nances and approximate the continuous spectrum by the
single-electron response. The single-electron response is suf-
ficiently complex and computationally demanding that we
choose to postpone exciton effects to future work, however.

PHYSICAL REVIEW B 77, 245431 �2008�

1098-0121/2008/77�24�/245431�6� ©2008 The American Physical Society245431-1

http://dx.doi.org/10.1103/PhysRevB.77.245431


Following Ref. 12, the real part of the conductivity ����
=Re �̃��� at low temperature is

���� =
e2

2�m2�
�
v,c
� �Pvc�2��Ecv�k�� − ���d2k , �1�

where Pvc is the in-plane momentum matrix element and
Ecv	Ec−Ev is the transition energy between valence band v
and conduction band c. This expression applies to regular
graphene as well as graphene antidot lattices provided the
integral is taken over appropriate Brillouin zones. Energies
and matrix elements are computed from tight-binding eigen-
states. We use a simple orthogonal �-electron model with a
nearest-neighbor transfer integral of �=3.033 eV.13 This
model is known to agree with the first-principles band struc-
ture in the low-energy range. Corrections for edge effects can
be incorporated into the transfer integral but lead only to a
slight opening of the antidot band gap.9 The momentum op-
erator is given solely by the k-space gradient of the tight-

binding Hamiltonian P� = �m /���kH since intra-atomic terms
are absent in �-electron models.11

As a reference, we first consider a regular graphene sheet
without an antidot lattice. In this case, the analytic results of
Ref. 12 �correcting typographical errors� yield a conductivity

���� =
e2


24��	3/2Re�144 − 12	 + 	3

24
K� �6 − 	��2 + 	�3

128	


− 12E� �6 − 	��2 + 	�3

128	
� , �2�

where 	=�� /� and K and E are elliptic integrals. It can be
shown that taking the zero-frequency limit of the above ex-
pression leads to a minimum graphene conductivity of �
=�0	e2 /4� in agreement with several other
calculations.14,15 Retaining the first nonvanishing correction
one finds ���0�1+	2 /9� at low frequencies. The low-
frequency response is modified if the chemical potential is
shifted away from the Dirac point via doping16 but in the
present work only intrinsic graphene is considered. To illus-
trate the accuracy of the improved triangle method we com-
pare in Fig. 1 the exact result given by Eq. �2� to numerical
integration based on �a� the triangle method with 153 k
points and �b� simple rectangular discretization of Eq. �1�
using 5050 k points and a broadening of 20 meV. Numerical
integration is taken over the irreducible Brillouin zone using
a symmetrized matrix element �Pvc�2= ��Pvc

x �2+ �Pvc
y �2� /2.

Even with only a fraction of the k points, the triangle inte-
gration is clearly superior to simple discretization. Moreover,
the agreement with the exact curve is excellent.

III. RESULTS

We now turn to antidot lattices in which an energy gap
opens around the Fermi level. As demonstrated in Ref. 9,
perforation of a graphene sheet by a regular hexagonal array
of circular holes yields a gapped band structure that can be
controlled to a large extent by varying the radius and dis-
tance between holes. In addition, hole shape may play an
important role in determining the properties. For instance,

replacing the circular perforation with a triangular one hav-
ing zigzag edges produces a dispersionless “metallic” band
at the Fermi level. The different band structures are illus-
trated in Fig. 2. Here, the circular structure is a �10,3� antidot
lattice in the �L ,R� notation suggested in Ref. 9: L is the side
length and R the radius of the perforation, both in units of the
graphene lattice constant. The unit cell of the triangular
structure is similar in size to the circular case and the area of
the triangular perforation is roughly equal to that of the cir-
cular hole. The bandwidth of the dispersionless band is iden-
tically zero because the simple nearest-neighbor model al-
lows for eigenstates in which the node-structure completely
decouples all occupied � orbitals in the zigzag case. If inter-
actions beyond nearest neighbors are included, a small but
finite bandwidth is observed. Antidot lattices with such tri-
angular perforations would lead to additional interesting fea-
tures in the optical response such as controllable transpar-
ency windows. Presumably, their fabrication using, e.g.,
e-beam lithography will be rather demanding, however, and
in the remaining part of the paper we focus on circular per-
forations.

FIG. 1. �Color online� Comparison of numerical triangle inte-
gration with the exact conductivity and simple discretization. Note
the different k-point sampling for the two numerical schemes.

FIG. 2. �Color online� Band structures of a �10,3� antidot lattice
and similar structure having a triangular hole with zigzag edges.
Note the dispersionless band at 0 eV in the triangular case.
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For numerical integration, the irreducible Brillouin zone
is partitioned into 4098 triangles, which is equivalent to 2145
unique k points. In usual two-dimensional direct band-gap
semiconductors with parabolic energy dispersion, the absorp-
tion edge is a clearly discernable step profile.17 Our numeri-
cal results show that a similar behavior is found in graphene
antidot lattices. As an illustration, in Figs. 3 and 4 the con-
ductivity spectra are shown for �10,R� and �12,R� lattices.
The steplike absorption edge coincides with the band gap
and demonstrates that antidot lattices are two-dimensional
dipole-allowed direct-gap semiconductors. This will be im-
portant for possible optoelectronic applications including
light emission and detection. Also, experimental detection of
band gaps using infrared spectroscopy should be feasible
with such a clear signature.

To fully characterize the optical properties we need to
determine both real and imaginary parts of the frequency-
dependent conductivity. Also, inhomogeneous broadening
must be considered as practical e-beam patterning will lead
to variations in hole size, shape, and position. The imaginary
part of �̃��� is readily obtained from a Kramers-Kronig

transform of the real part. Care should be taken, however,
that the real part is calculated up to sufficiently large fre-
quencies. Subsequently, broadening can be included by con-
voluting with a Gaussian line-shape function exp�−��
−���2 /
2� / �

��. The broadening 
 reflects the degree of
disorder and we estimate that high quality samples should
have �
�100 meV. In Fig. 5, we show the effect on the
complex conductivity of broadening by �
=20 and 50 meV.
Increased broadening tends to blur finer features in the spec-
tra but at this level of disorder the absorption edge is still
clearly visible. We emphasize that it is the steplike absorp-
tion edge of the two-dimensional semiconductor that makes
band-edge detection feasible for samples with relatively low
disorder.

In practical experiments, graphene samples are usually
positioned on a suitable substrate for investigations. Hence,
it is of importance to discuss the role of substrates on the
optical signatures of antidot lattices. For transmission mea-
surements any transparent substrate can be used and the re-
corded spectrum will essentially provide the real part of the
conductivity directly. Alternatively, a reflection geometry can
be used. Usually, an oxidized silicon wafer is applied for this
purpose. In fact, monolayer graphene is usually identified in
mechanically peeled graphite flakes by observing flakes of
varying thickness on oxidized Si wafers in an optical
microscope.1,2 Using white light illumination and an oxide
thickness of 300 nm, it turns out that even monolayer
graphene is clearly visible in the microscope. The contrast,
which is around 15%, is a result of a fortuitous choice of
oxide thickness and the large conductivity of graphene.18–20

The geometry of such a sample is illustrated in Fig. 6. We
denote the frequency-dependent refractive indices of SiO2
and Si by n1 and n2, respectively, and the oxide thickness by
d. Introducing a dimensionless graphene conductivity �̄
	 �̃ /�0c the reflectance at normal incidence is given by

R = � e2idn1�/c�1 + n1 − �̄��n1 − n2� + �1 − n1 − �̄��n1 + n2�
e2idn1�/c�1 − n1 + �̄��n1 − n2� + �1 + n1 + �̄��n1 + n2�

�2

.

�3�

A general expression valid at arbitrary angle of incidence is
given in Ref. 20. The reflectance contrast is defined as �R0

FIG. 3. �Color online� Conductivity spectra for several �10,R�
antidot lattices with R indicated next to each spectrum. The conduc-
tivity is normalized to the dc value �0=e2 /4�.

FIG. 4. �Color online� Same as Fig. 3 but for the �12,R� family
of lattices.

FIG. 5. �Color online� Complex conductivity spectra including
broadening. Curves are real parts �solid lines� and imaginary parts
�dashed lines� for �
=20 meV �thick lines� and �
=50 meV �thin
lines�.
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−R� /R0, where R0 is calculated as above but taking �̄=0. We
take experimental refractive indices of SiO2 and Si from
Refs. 21 and 22, respectively.

In Fig. 7, we have displayed the reflectance contrast of
�10,3� and �12,5� antidot lattices positioned on 300 nm oxide
Si wafers. In the computation, the complex conductivity
spectra shown in Fig. 4 for the case �
=20 meV have been
applied. It is apparent that a large contrast exceeding 20% is
predicted for this situation. In the inset, the contrast for regu-
lar graphene in the visible is illustrated for comparison. The
magnitude and location of the resonance just below 600 nm
are in good agreement with experiments and other
calculations.18 For the �10,3� and �12,5� structures the band
gaps are around 0.34 and 0.41 eV, respectively �cf. Figs. 3
and 4�. This corresponds to resonance wavelengths of 3650
and 3025 nm. These resonances are clearly observed in the
contrast plots in Fig. 7. Hence, reflectance contrast measure-
ments could be a viable method of determining band edges.
Recently, optical spectroscopy on gated graphene in pre-
cisely this wavelength range has been reported,23 which fur-
ther supports the feasibility of our proposal.

Several optical and electro-optic applications of graphene
antidot lattices can be envisioned. For instance, light emit-
ting devices tailored to specific wavelengths could be fabri-
cated. It might also be possible to incorporate antidot lattices

into wave guiding structures fabricated on, e.g., the SiO2
substrate. For all optical and electro-optic applications, the
refractive index n is of importance and we wish to study the
effect of antidot geometry on n. To this end, we compute the
complex refractive index via the relation ñ���
=
1+ i�̃��� / �dg�0�� for a compilation of different antidot
structures with L in the range from 4 to 12 including both
large and small energy-gap structures. Below the gap Eg, the
real part of the refractive index dominates and we focus on
the real-valued low-frequency n= ñ�0� limit. In semiconduc-
tors, the refractive index generally decreases with increasing
energy gap because more remote electronic transitions make
little contribution at low frequencies. A similar tendency is
observed in graphene antidot samples, as illustrated in Fig. 8.
In the range of small energy gaps, n scales approximately as
a power law Eg

−0.47. Hence, tunability of the optical properties
also includes the refractive index. The attainable values be-
come very large for low-energy-gap structures approaching
the behavior of unmodified graphene.

IV. SUMMARY

In summary, the optical response of graphene antidot lat-
tices has been analyzed with a �-electron tight-binding
model. We find that these structures behave as dipole-
allowed direct-gap two-dimensional semiconductors. The op-
tical properties have been computed using an improved tri-
angle method capable of handling large structures with great
accuracy. In addition, inhomogeneous broadening caused by
disorder is taken into account. We find that optical infrared
spectroscopy is ideally suited for probing the electronic
structure. Placing the antidot sample on a dielectric substrate,
the response can be probed in both reflection and transmis-
sion geometries. We predict clearly visible band-gap features
in both modes. Finally, the low-frequency refractive index
has been studied for a range of different antidot geometries
and we find that the refractive index follows a decreasing
power-law behavior with increasing energy gap.

FIG. 6. �Color online� Graphene sample positioned on an oxi-
dized Si wafer.

FIG. 7. Infrared reflectance contrast for �10,3� and �12,5� lat-
tices. Inset: contrast for regular graphene in the visible.

FIG. 8. �Color online� Refractive index at low frequencies vs
energy gap for different antidot lattices. The dashed line is a power-
law fit to the data.
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Note added in proof. Recently, a relevant paper by Nair
et al.25 has been published. These authors find additional
support for an optical conductivity of e2 /4� in monolayer
graphene. Moreover, for multilayer graphene the transmit-
tance decreases in direct proportion to the number of carbon
layers.

APPENDIX: IMPROVED TRIANGLE METHOD

The triangle method24 of approximating two-dimensional
integrals of resonant functions is similar to the well-known
three-dimensional �3D� tetrahedron method. The key to the
method is a linearization of k-dependent energies inside
small triangular sections of the Brillouin zone. We demon-
strate in this appendix that it is possible to include
k-dependent matrix elements and, thereby, increase the accu-
racy of response function calculations. We consider an inte-
gral of the form

S��� =� F�k����Ecv�k�� − ���d2k

= �
�
�

�

F�k����Ecv�k�� − ���d2k . �A1�

Here, “�” denotes a triangle and the sum is over a triangular
mesh covering the �irreducible� Brillouin zone. The integral
can be reduced to a line integral along the curve l��� on
which Ecv�k��=�� according to

S��� = �
�
�

l���

F�k��

��kEcv�k���
dl � �

�

1

��kEcv��l���
F�k��dl ,

�A2�

where the linear approximation for Ecv�k�� has been assumed.
This approximation means further that l��� becomes a
straight line, as illustrated in Fig. 9.

We now invoke the linear approximation for F�k�� as well.
Hence, the remaining task is reduced to integrating a linearly
varying function along a straight line. We introduce the com-
pact notation Ei	Ecv�k�i� and take the transition energies in
the three corners to be ordered according to E0E1E2.

Provided E0���E1, start �k�a� and end �k�b� points of the
line l��� are located at �cf. Fig. 9�

k�a = k�0 + �k�1 − k�0�
�� − E0

E10
, k�b = k�0 + �k�2 − k�0�

�� − E0

E20
,

�A3�

with Eij 	Ei−Ej. A slightly different expression for k�a is
found for the case E1���E2. Hence, the integral in Eq.
�A2� becomes

S��� � �
�

l���
2��kEcv�

�F�k�a� + F�k�b�� . �A4�

Using simple algebra, all quantities may be expressed in
terms of values in the three corners and the triangle area A�

and we can finally write S������S���� with

S���� = 2A��
�� − E0

E10E20
�F0 +

�� − E0

2
�F10

E10
+

F20

E20
� ,

E0  �� � E1

E2 − ��

E21E20
�F2 +

�� − E2

2
�F21

E21
+

F20

E20
� ,

E1  �� � E2.

�
�A5�

This expression allows us to evaluate resonant integrals us-
ing relatively few k points and retaining great accuracy.
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