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We study theoretically a localized state of an electron in a graphene quantum dot with a sharp boundary. Due
to Klein’s tunneling, the “relativistic” electron in graphene cannot be localized by any confinement potential.
In this case the electronic states in a graphene quantum dot become resonances with finite trapping time. We
consider these resonances as the states with complex energy. To find the energy of these states we solve the
time-independent Schrödinger equation with outgoing boundary conditions at infinity. The imaginary part of
the energy determines the width of the resonances and the trapping time of an electron within quantum dot. We
show that if the parameters of the confinement potential satisfy a special condition, then the electron can be
strongly localized in such quantum dot, i.e., the trapping time is infinitely large. In this case the electron
localization is due to interference effects. We show how the deviation from this condition affects the trapping
time of an electron. We also analyze the energy spectra of an electron in a graphene quantum ring with a sharp
boundary. We show that in this case the condition of constructive interference can be tuned by varying internal
radius of the ring, i.e., parameters of confinement potential.
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I. INTRODUCTION

The recent discovery of elusive two-dimensional form of
carbon called graphene1 has unusual electronic properties
that may be useful in the design of new electronic devices.
Recently there has been great deal of interest in this high
mobility conducting material.2–4 One of the factors which
makes graphene so attractive for research is that the low-
energy dynamics of electrons in graphene. Those electron
can be described by a two-dimensional Dirac-Weyl equation
and electrons in graphene behave as massless chiral
fermions,5 i.e., “relativistic” electrons. Due to this unique
property, the electrons in graphene cannot be localized by
any confinement potential. This effect is called Klein’s
paradox6 and is related to the fact that electrons in graphene
can have both positive and negative energies. Therefore,
when a propagating electron reaches the potential barrier it
penetrates through it and emerges inside of the barrier in the
state with the negative-energy-hole state. This tunneling,
Klein’s tunneling, introduces an efficient escape channel
from any trapping potential.

Therefore, taking into account Klein’s tunneling, we can
conclude that there are no conventional quantum dots in
graphene, i.e., quantum dots,7 which can localize electrons
within finite spatial regions. At the same time for future elec-
tronic applications of graphene it is quite important to realize
the quantum dot trapping potential for relativistic electrons.
A zero dimensionality of quantum dots and possibility of
tuning the confinement potential and the electron-density ex-
ternally result in very broad applications of quantum dots in
conventional semiconductors, ranging from lasers8 and
photodetectors9 to quantum information processing and
quantum computers.10 Recently the quantum dots created in
carbon nanotubes11,12 and graphitic systems13 have also been
reported.

Since the electron in graphene cannot be localized we
need to discuss not the localization but the trapping of an
electron. Here the trapping means that the electron should

stay within finite spatial region for a very long time. The
problem of trapping of electron has been studied in the case
of a one-dimensional wire in zero14–16 and in finite17 mag-
netic fields and for a quantum dot with smooth18 and sharp19

boundaries. It was shown that the trapping potential for rela-
tivistic electron in graphene is produced by transverse
momentum.14,18,20 In the case of a quantum dot the trans-
verse potential is related to an electron angular momentum.18

The larger the angular momentum, the more efficient trap-
ping potential is created. Another factor, which strongly af-
fects the trapping time, is the sharpness of the quantum dot
boundaries, i.e., the sharpness of the confinement potential.
The sharpness of the boundary of a quantum dot determines
the width of the trapping potential. Therefore the most effi-
cient trapping is realized in a smooth confinement potential
and for electronic states with large angular momentum. The
trapping time of an electron in a quantum dot has exponen-
tial dependence on the angular momentum and the slope of
the confinement potential.18 Since the electron with large
trapping time can be considered as almost localized, below
we use both terms trapping and localized to describe electron
states in graphene quantum dot.

Although the most efficient trapping is realized in a
smooth potential, some trapping should be expected in the
confinement potential with sharp boundaries.19 In this case
the trapping time has no exponential dependence but a power
dependence on the parameters of the confinement potential.

In the present paper we show that even in the case of
confinement potential with sharp boundaries, we can realize
the trapping of the relativistic electron for a very long time.
For special parameters of the confinement potential, which
can be achieved by an additional tuning of the potential, the
escape rate from some states of the quantum dot can be even
exactly zero. Therefore, the relativistic electrons in such
states are strongly localized with infinite trapping time. This
localization is achieved not due to a large trapping potential
barrier but due to interference effects within the quantum
dot. It means that the trapping properties of the quantum dot
with sharp boundaries depend on the distribution of the con-
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finement potential within the whole region of quantum dot.
This opens another possibility for tuning of the trapping
properties of an electron in quantum dots. We show below
that by introducing additional holes in the quantum dots, we
can strongly suppress the escape rate of an electron from the
quantum dot. We illustrate this effect by considering the trap-
ping properties of quantum rings with sharp boundaries.

The quantum dot considered in this paper has the same
structure as the one studied in Ref. 19. Matulis and Peeters19

discussed the resonances of the quantum dots, which are re-
vealed as peaks in the scattering cross section.21 From the
width of the peaks the lifetime or escape rate can be ex-
tracted. Our approach to the problem of the trapped states of
the quantum dots is different from Ref. 19. Namely, we con-
sider the resonances as the long-lived states in the decay
process.21 It means that we define the resonances of the
quantum dots as the time-independent solution of the
Schrödinger equation, which is characterized by the outgoing
boundary conditions at infinity and a complex energy. The
imaginary part of the energy determines the width of the
resonances and the trapping time of the electron within quan-
tum dot. Namely, if E is the complex energy of the localized
state, then the trapping time is �=� / Im�E�. Here Im�E� is
imaginary part of the electron energy and � is reduce Planck
constant. This approach allows us to obtain in the closed
form the equation for the complex energy of the trapped
states of the quantum dot. From this equation we can obtain
the condition of strong localization of an electron within
quantum dot and derive some analytical results for the imagi-
nary part of electron energy.

The paper is organized as follows. In Sec. II we introduce
the main system of equations for graphene quantum dot and
derive the energy eigenvalue equation. In Sec. III we provide
the analysis of the energy spectra of the quantum dot and
derive the condition that the quantum dot has a strongly lo-
calized state. In Sec. IV we introduce the main system of
equations for a quantum ring system and derive the corre-
sponding energy eigenvalue equation. In Sec. V we discuss
the possible tuning of the trapping properties of the quasilo-
calized states of the quantum ring by varying the internal
radius of the ring.

II. MAIN EQUATIONS: QUANTUM DOT

To introduce a quantum dot in graphene we consider a
cylindrically symmetric confinement potential, which has the
following form:

V�r� = �0 if r � R

V0 if r � R ,
� �1�

where V0�0 and R is the radius of the quantum dot. This
shape of confinement potential allows us to obtain analytical
expressions for the trapping time of the states of the quantum
dot. The confinement potential in Eq. �1� has sharp bound-
aries and based on the analysis of Ref. 18 we can conclude
that the trapping time of the electron within such a quantum
dot is relatively small. This means that any trapping of the
electron in such potential should be related to the behavior of
the wave functions within the whole region of quantum dot,

i.e., the trapping properties are determined by the interfer-
ence effects within the quantum dot.

The Hamiltonian of a single electron in graphene with
potential, determined by Eq. �1�, is given by an
expression5,22

H =
�

�
��� · p�� + V�r� , �2�

where �� are the Pauli matrices, p� =−i� /�r�, and �
=�3a0�0 /2 is the band parameter. Here a0=0.246 nm is the
lattice constant and �0�3.03 eV is the transfer integral be-
tween the nearest-neighbor carbon atoms.23 In expression �2�
for the Hamiltonian of the system we consider a single valley
only, taking into account the double valley degeneracy of the
energy levels. The potential in Eq. �1� does not introduce any
mixture between the different valleys and does not lift the
valley degeneracy. In addition to the valley degeneracy each
level has double spin degeneracy. Therefore, each energy
level, we discuss below, has a fourfold degeneracy.

The wave function, ��r��, corresponding to Hamiltonian
�2�, is a two-component function. Here the two components
correspond to two different sublattices of graphene honey-
comb lattice. For cylindrically symmetric confinement poten-
tial the two-component wave function has the following
form:

��r,	� = ei�m−1/2�		 
1�r�

2�r�ei	 
 , �3�

where r and 	 are cylindrical coordinates and m
= �1 /2, �3 /2,¯ is orbital angular momentum. With this
form of the wave function the Schrödinger equation corre-
sponding to the Hamiltonian in Eq. �2� becomes

V�r�
1 − i�
d
2

dr
− i�

m + 1/2
r


2 = E
1, �4�

V�r�
2 − i�
d
1

dr
+ i�

m − 1/2
r


1 = E
2. �5�

To find the energy, E, of the level we need to solve the
system of Eqs. �4� and �5� with the following boundary con-
ditions: �i� at r=0 both 
1 and 
2 should be finite and �ii� at
infinity we have outgoing boundary conditions, i.e., 
1 ,
2
�exp�ikr�.

By eliminating 
1 or 
2 in the system �Eqs. �4� and �5��
we can easily obtain that 
1 and 
2 satisfy Bessel’s differen-
tial equations of the order �m−1 /2� for functions 
1 and of
the order �m+1 /2� for function 
2. Then the general solution
of the system of Eqs. �4� and �5� inside the quantum dot,
where V=0, has the form

	
1�r�

2�r� 
 = A	 J�m−1/2��
r/R�

iJ�m+1/2��
r/R� 
 , �6�

where Jn is the Bessel function of the nth order and we
introduced the dimensionless energy 
=RE /�. The energy
and correspondingly the dimensionless energy are complex
in our approach.
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Outside the quantum dot, i.e., at r�R, the solutions of the
corresponding Bessel differential equations should describe
the outgoing waves, �exp�ikr�. Therefore at r�R, the solu-
tions of Eqs. �4� and �5� are Hankel functions of the first
kind. Then the general solution of the system of Eqs. �4� and
�5� at r�R, where V=V0, is

�
1�r�

2�r� 
 = B� H�m−1/2�

�1� ��
 − �0�r/R�

iH�m+1/2�
�1� ��
 − �0�r/R� � , �7�

where Hn
�1� is the Hankel function of the first kind and of the

nth order and we introduced the dimensionless confinement
potential �0=RV0 /�.

At the boundary of the quantum dot, i.e., at r=R, the
two-component wave function should be continuous. From
this condition we can find the energy eigenvalue equation,
which takes the form

H�m−1/2�
�1� �
 − �0�

H�m+1/2�
�1� �
 − �0�

=
J�m−1/2��
�

J�m+1/2��
�
. �8�

The solution of the eigenvalue equation �Eq. �8�� determines
the complex energy spectrum of the quantum dot. The imagi-
nary part of the energy characterizes the electron trapping
time at the corresponding state of the dot.

We can see that Eq. �8� is symmetric with respect to the
change of the sign of the angular momentum, m→−m. It
means that the energy spectra of an electron with positive
and negative angular momenta are identical. Therefore below
we consider only positive values of m, m=1 /2,3 /2,¯.

III. STRONGLY LOCALIZED STATES IN QUANTUM
DOTS

For a given angular momentum, m, we solve the eigen-
value equation �Eq. �8�� numerically. We show the results of
calculations in Fig. 1 for a few lowest values of m. The
results are shown in the complex energy plane. As we can
see from these data the typical imaginary part of the energy
is of the order of 1 �in dimensionless units�. This is valid for
all values of m. These results are consistent with the main
conclusion of Ref. 18, where it was shown that the strong
trapping can be achieved only in smooth confinement poten-
tial, in which the trapping time is exponentially large.

Based on the data shown in Fig. 1 we can estimate the
typical trapping time of the electron within quantum dot. In
the real units the imaginary part of the energy is of the order
of � /R. Then the trapping time ���R /�. For a quantum dot
of size R=50 nm we obtain ��10−13 s. This is a relatively
small time and we should consider the electron in such a
quantum dot as weakly trapped.

Although an electron in the confinement potential as in
Eq. �1� is only weakly localized �the typical imaginary part
of the energy is large� we can see in Fig. 1 that there is a
region of energies, where the imaginary part of the energy
becomes small. Within this region the real part of the energy
is close to the trapping potential, �0. This observation has
already been reported in Ref. 19. In addition to a strong
electron trapping at 
��0, we can have the exact localiza-

tion of an electron in the quantum dot if the potential, �0,
satisfies a special condition. Namely, we can see from Eq. �8�
that if the potential strength, �0, is the root of the Bessel
function of the order �m−1 /2�, i.e., Jm−1/2��0�=0, then there
is a solution of eigenvalue equation, 
=�0, with zero imagi-
nary part, and the electron at this level is strongly localized.
Therefore, the strongly localized state of the electron in the
quantum dot exists only if the potential satisfies the condition

�0 = �n,i, �9�

where �n,i is the ith root of the Bessel function of the order
n=0,1 ,2 ,¯ and n is related to the angular momentum: n
=m−1 /2. We can rewrite expression �9� in the original units.
Taking into account that the unit of the energy is � /R, we
obtain

V0 =
�

R
�n,i. �10�

For example, for R=50 nm and �=645 meV nm we have

V0 = 12.9�n,i �meV� . �11�

Then for each n we can find the set of the heights of the
confinement potential, at which an electron can be strongly
localized. In Table I we show these heights for a few lowest
values of n and i.

Any violation of the condition �0=�n,i introduces an es-
cape of electron from the quantum dot. In this relation we
need to address the following question: How large is the
trapping time of an electron in the quantum dot if the condi-
tion of localization is weakly violated, i.e., ����0−�m−1/2,i
is small and nonzero. We expect that in this case the escape
rate from the quantum dot and correspondingly the imagi-
nary part of the energy is small. To find the imaginary part of
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FIG. 1. The energy spectra of an electron in the graphene quan-
tum dot are shown for different angular momenta m �as indicated�
in the complex energy plane. For all the panels �0=20.
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the energy 
��0��m−1/2,i of the almost localized state we
consider ��=�0−�m−1/2,i as a small parameter and then from
Eq. �8� obtain the first nonzero corrections to Im�
�. The
details of calculations are presented in Appendix. The final
results are the following.

If the energy of the state is close to �0��m−1/2,i, then the
imaginary part of the energy has the form

Im�
� =
�

�2m�m − 1/2�!�2�1 −
1

2m

2m+1

��
2m �12�

for m�1 /2 and

Im�
� =
�

2
	 ��

ln ��

 �13�

for m=1 /2. We can see from Eq. �12� that the imaginary part
of the energy has exponential dependence on m of the
quasilocalized state: Im�
��exp�−2m�ln ����. Therefore, the
states with large angular momentum can be trapped for a
longer time than the states with small values of m. At the
same time the imaginary part of the energy has a weak
power-law dependence on ��. Another interesting fact about
expressions �12� and �13� is that the coefficients in these
expressions depend only on the angular momentum, m, but
not on the value of �m−1/2,i.

Since �0=RV0 /�, the condition of strong localization can
be expressed in terms of the original parameters of the con-
finement potential, i.e., the strength of the potential, V0, and
R,

RV0 = ��n,i, �14�

where n=0,1 ,2 ,¯ and i=1,2 ,¯. From Eqs. �12�–�14� we
can estimate the trapping time of the quasilocalized states for
the quantum dots with spatially fluctuating parameters. For
example, if the radius of the quantum dot varies within the
range �R, then from Eq. �12� we can find that the escape rate,
i.e., imaginary part of the energy, from quasilocalized state
of the dot is proportional to ��R /R�2m.

One of the manifestations of the strongly trapped state in
the quantum dot is a sharp peak in the electron density of
states, which can be measured in the resonant tunneling ex-
periments or in the resonant scattering experiments. The den-
sity of states can be expressed through the real part of the

energy and the imaginary part of the energy, which now be-
comes the width of the resonance, by the following
equation:24

g�
� =
1

�
�

j

Im�
 j�
�
 − Re�
 j��2 + �Im�
 j��2 , �15�

where the density is expressed in the dimensionless units.
The density of states for �0=20 and m=3 /2 is shown in Fig.
2. We can clearly see the sharp maximum at the energy close
to �0. This maximum corresponds to the highly trapped state
of electron within quantum dot.

The existence of a highly trapped state of electron in the
quantum dot, i.e., the state with small imaginary part of the
energy, is due to interference effect. It means that the imagi-
nary part of the energy of such state is very sensitive to the
exact profile of the confinement potential. The deviation
from the boxlike shape of the confinement potential of quan-
tum dot �see Eq. �1�� can increase or decrease the escape rate
from the quantum dot, i.e., increase or decrease the imagi-
nary part of the energy. To illustrate this behavior we con-
sider quantum dot with an additional hole at the center of the
dot, i.e., quantum ring. We show below that by varying the
size of the hole we can tune the trapping time of the quasilo-
calized state of an electron in the quantum dot.

IV. MAIN EQUATIONS: QUANTUM RING

The quantum ring is shown schematically in Fig. 3�a� and
is described by the following confinement potential:

TABLE I. The heights of the confinement potential V0, at which the electron that can be strongly localized
is shown for a few lowest values of n and i. The potential satisfies Eq. �11�. The potential strength is in units
of meV. The radius of the quantum dot is R=50 nm.

i /n 1 2 3 4 5 6 7

0 31 71 112 152 193 233 274

1 50 91 131 172 213 253 294

2 66 109 150 191 232 272 313

3 82 126 168 209 250 291 332

4 98 143 185 227 269 310 351

5 113 159 203 245 287 328 369

1

2

3

4

5

10 403020

g(�)

�

FIG. 2. The density of states, g�
� as a function of 
 �for panel
�b� in Fig. 1�, where �0=20 and m=3 /2.
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V�r� = �V0 if r � a

0 if a � r � R

V0 if r � R ,
� �16�

where R is the external radius of the ring and a is the internal
radius of the ring. The quantum ring can also be considered
as a quantum dot of radius R with an additional hole of
radius a at the center of the dot.

Now we have three different regions, within which the
confinement potential is constant and the functions 
1 or 
2
satisfy the corresponding Bessel equations. Similar to the
quantum dot system we consider only the positive values of
angular momentum, m=1 /2,3 /2,¯. Then the general solu-
tion of the system of Eqs. �4� and �5� has the following form:

	
1�r�

2�r�


 = A	 Jm−1/2��
 − �0�r/R�
iJm+1/2��
 − �0�r/R�


 �17�

for r�a,

	
1�r�

2�r� 
 = B	Hm−1/2

�1� �
r/R�
iHm+1/2

�1� �
r/R�

 + C	Hm−1/2

�2� �
r/R�
iHm+1/2

�2� �
r/R�



�18�

for a�r�R, and

	
1�r�

2�r� 
 = D	Hm−1/2

�1� ��
 − �0�r/R�
iHm+1/2

�1� ��
 − �0�r/R�

 �19�

for r�R. Here Hn
�2� is the Hankel function of the second

kind. In these expressions we took into account that the wave
function should be finite at r=0 and outside the quantum ring
we have outgoing waves.

From the continuity of the wave functions at r=a and r
=R we obtain the energy eigenvalue equation

�1Hm+1/2
�1� ��
� − Hm−1/2

�1� ��
�
�1Hm+1/2

�2� ��
� − Hm−1/2
�2� ��
�

=
�2Hm+1/2

�1� �
� − Hm−1/2
�1� �
�

�2Hm+1/2
�2� �
� − Hm−1/2

�2� �
�
,

�20�

where we introduced the following notations: �=a /R and

�1 =
Jm−1/2���
 − ���
Jm+1/2���
 − ���

, �2 =
Hm−1/2

�1� �
 − ��
Hm+1/2

�1� �
 − ��
. �21�

In the limit of small �, �→0, Eq. �20� transforms into Eq.
�8� for an ideal quantum dot.

V. QUANTUM RING: FINE TUNING OF THE TRAPPING
TIME

In the case of the quantum ring, we are interested in the
effect of an additional structure, i.e., a hole, in the quantum
dot on the electron escape rate from the highly trapped state
of the quantum dot. From Sec. III we know that for an ideal
quantum dot the energy of highly trapped state is close to the
confinement potential strength, 
��0. When the condition of
localization �see Eq. �14�� is satisfied then the energy of lo-
calized state is exactly equal to �0 and the imaginary part of
the energy is zero. When condition �14� is violated then the
imaginary part of the energy is nonzero. Now we consider
the effect of additional hole at the center of the quantum dot
on the magnitude of the imaginary part of the energy of the
highly trapped quasilocalized state. Therefore we study the
dependence of the imaginary part of the energy on the pa-
rameter �=a /R of the ring. This dependence can be found
from Eq. �20�.

The results of numerical solution of Eq. �20� are shown in
Fig. 3, where the imaginary part of the energy of the quasilo-
calized state is shown as a function of �. We can clearly see
that by increasing the inner radius of the ring we can strongly
decrease the imaginary part of the energy of the quasilocal-
ized state. This is valid for all values of m. Therefore the
additional internal structure of the quantum dot can produce
“constructive interference,” which suppresses the electron
escape rate from the highly trapped state of the quantum dot.
In Fig. 3 we used different values for the heights of the
confinement potential. The reason for this is that we need to
choose the confinement potential height close to the value
determined by the condition of strong localization �Eq. �9��.
Therefore in Fig. 3�b� we have �0=12 and ��0−�0,4�=0.2, in
Fig. 3�c� we have �0=20 and ��0−�1,6�=0.4, and in Fig. 3�d�
we have �0=20 and ��0−�4,5�=0.6. We can also see another
property of confinement potential, which has already been
discussed in Sec. III. Namely, with increasing the angular
momentum, m, the imaginary part decreases.

We can also see from Fig. 3 that there is a general ten-
dency in the dependence of the imaginary part on the inner
radius of the quantum ring. Namely, the sensitivity of the
imaginary part of the energy to the inner radius of the ring
decreases with increasing the angular momentum of the
state. We can see that the imaginary part of the energy re-
mains constant at small values of � and we can see the
changes in the imaginary part of the energy only at �
�0.02 for m=1 /2, at ��0.03 for m=3 /2, and at ��0.15

0.05 0.15
0 0

0.1

0.2
0.08

0.04

0.1 0.3 0.5

Im [��

�

� � ���� � � ��

(c)

Im [��

�

� � 	��� � � ��

(d)

R

a

(a)

0
0

0.015 0.045

Im [��

�

� � 
��� � � 
�

(b)

0

0.1

0.2

0

FIG. 3. The imaginary part of the energy, Im�
�, of the quasilo-
calized state as a function of ���=a /R� for a graphene quantum
ring for different values of angular momentum, m, and different
strength of confinement potential, �0 �as indicated�. Panel �a� shows
the geometry of the graphene ring with the outer radius R and the
inner radius a.
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for m=9 /2. This behavior can be understood from the fact
that with increasing the electron angular momentum, the cor-
responding wave function becomes more localized near the
outer radius of the ring. In this case the energy of such wave
function becomes less sensitive to the inner radius of the
ring.

It happens that the dependence, shown in Fig. 3, can be
observed only if the confinement potential, �0, is greater than
the value corresponding to the condition of strong localiza-
tion. It means that only if �0��m,i ��0−�m,i�1� then the
additional hole in the quantum dot suppresses the escape rate
of an electron from the quantum dot. To illustrate this effect
we show in Figs. 4�a� and 4�b� the dependence of Im�
� on
the parameter � for different values of �0. In Fig. 4�a� the
data are shown for m=1 /2. In this case the condition of
strong localization is satisfied at �0�11.5. We can see from
Fig. 4�a� that if �0�11.5 then the function Im�
���� has a
minimum, while if �0�11.5 then the function Im�
���� in-
creases with increasing the inner radius of the ring, a. Simi-
lar behavior, which is shown in Fig. 4�b�, is observed for
m=3 /2. Now the condition of strong localization for the
quantum dot is satisfied at �0�19.5.

We can understand this behavior from the analysis of the
energy eigenequation �20�. Similar to the quantum dot sys-
tem we are looking for the real solution of this equation in
the form 
=�0. Under this condition we can easily obtain
�1→� and �2→0. Then Eq. �20� becomes

Hm+1/2
�1� ���0�

Hm+1/2
�2� ���0�

=
Hm−1/2

�1� ��0�
Hm−1/2

�2� ��0�
. �22�

At a real argument the Hankel function of the second kind is
complex conjugated to the Hankel function of the first kind.
Then Eq. �22� becomes

Jm+1/2���0�
Ym+1/2���0�

=
Jm−1/2��0�
Ym−1/2��0�

, �23�

where Yn is the Neumann function of the order n. From Eq.
�23�, at fixed value of potential strength, �0, we can find the
� at which we have strongly localized state within the quan-
tum ring, i.e., imaginary part of the energy of this state is
zero. If the potential strength, �0, satisfies condition �9� then
the solution of Eq. �23� is �=0.

Now we assume that there is a small violation of condi-
tion �9�, i.e., ��=�0−�m,i is small, but it can be positive or
negative. In this case, if the solution of Eq. �23� exists, then
the corresponding value of � is small, i.e., ��0�1. Then for
small � the left-hand side of Eq. �23� becomes

−
����0/2�2�m+1/2�

�m + 1/2� ! �m − 1/2�!
=

Jm−1/2��0�
Ym−1/2��0�

. �24�

Since ��=�0−�m,i is small, we can rewrite the right-hand
side of Eq. �24� in the following form:

−
����m,i/2�2�m+1/2�

�m + 1/2� ! �m − 1/2�!
=

Jm−1/2� ��m,i�
Ym−1/2��m,i�

��, �25�

where we take into account that Jm−1/2��m,i�=0. Then from
Eq. �25� we can find �,

� = �m,i	−
Jm−1/2� ��m,i�
Ym−1/2��m,i�

��
1/2�m+1/2�

, �26�

where we introduced the following notation:

�m,i =
2

�m,i
	 �m + 1/2� ! �m − 1/2�!

�

1/2�m+1/2�

. �27�

The solution of Eq. �26� exists only if

−
Jm−1/2� ��m,i�
Ym−1/2��m,i�

�� � 0. �28�

The typical behavior of the functions Jn and Yn is shown
in Fig. 4�c�. Taking into account that �m,i are zeros of the
Bessel function Jm−1/2 we can conclude that for all values of
�m,i the ratio Jm−1/2� ��m,i� /Ym−1/2��m,i� is negative. Then the
solution of Eq. �26� and correspondingly the solution of Eq.
�20� exist only for positive ��, i.e., only if �0��m,i. There-
fore only for �0��m,i an additional hole at the center of the
quantum dot can suppress the escape rate from the quasilo-
calized state of the dot.

VI. CONCLUSION

There are two different mechanisms of trapping of an
electron in graphene quantum dot. The first one is due to
generation of the trapping barrier, which is induced by the
transverse momentum, i.e., by the angular momentum for
cylindrically symmetric quantum dots. In this case the trap-
ping time is determined by electron tunneling through the
trapping barrier. The width of the trapping barrier depends on
the slope of the confinement potential. Therefore the most
efficient trapping of the electron is achieved for a smooth
confinement potential.18 Since the electron angular momen-
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FIG. 4. The imaginary part of the energy, Im�
�, as a function of
� for different values of �0 �as indicated�. The angular momentum
is m=1 /2 for panel �a� and m=3 /2 for panel �b�. �c� The Bessel
function, J1, and the Neumann function, Y1, of the first order.
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tum determines the height of the trapping barrier, then the
trapping time has also strong exponential dependence on the
magnitude of the angular momentum. For such mechanism
of trapping the electron escape rate from the quantum dot is
robust with respect to variations of the parameters of the
confinement potential.

In this paper we discussed another mechanism of trap-
ping. This mechanism occurs in a quantum dot with sharp
boundary. In this case the width of the trapping barrier is
very small, and the trapping is realized not only due to elec-
tron tunneling but also due to interference effects. Since the
interference is very sensitive to the parameters of the con-
finement potential, then for a given electron angular momen-
tum, m, a strong electron localization can occur only at one
energy level. The energy of this level is equal to the strength
of the confinement potential, �0. Therefore, the imaginary
part of the energy of this level is zero and the electron trap-
ping time at this level is infinitely large. In addition the po-
tential should satisfy a special condition �Eq. �14��. As a
result, only a discrete but infinite set of values of the height
of the confinement potential can produce a strongly localized
electronic state.

Although it is more easier to create experimentally a con-
finement potential with smooth boundary, the quantum dots
with sharp boundary are also important. As we have shown
in the present paper, for the quantum dots with sharp bound-
aries there is a completely different mechanism of trapping.
This trapping is due to interference effect and as a result, it
can be observed for all values of angular momentum, even
for a small m. For smooth boundary the trapping is due to a
tunneling and can be achieved only for large values of angu-
lar momentum.18 This shows the advantage of sharp bound-
aries of the quantum dots. Namely, if we choose the param-
eters of the confinement potential with sharp boundaries
correctly, then the electrons with small values of m can be
strongly localized. The finite width �say w� of the boundary
of the quantum dot introduces an additional escape from the
quantum dot due to violation of condition �14�. Then the
escape rate from such quantum dot can be estimated as
�w /R�2m.

When the electron trapping is due to interference effects
any variation of the profile of the confinement potential
strongly affects the trapping time. This opens a possibility of
efficient tuning of the trapping properties of an electron in
quantum dots by introducing an internal structure in the
quantum dot and by varying the parameters of this structure.
We illustrated this behavior for quantum rings, where the
internal radius of the ring affects the trapping properties of
the ring.
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APPENDIX

We introduce the following notations �
�
−�0 and con-
sider �
 and ��=�0−�m,i as small parameters. Then


 = �m,i + �
 + �� �A1�

and the right-hand side of Eq. �8� can be rewritten in the
following form:

Jm−1/2�
�
Jm+1/2�
�

=
Jm−1/2��m,i + �
 + ���
Jm+1/2��m,i + �
 + ���

. �A2�

The left-hand side of Eq. �8� in these notations becomes

Hm−1/2
�1� �
 − �0�

Hm+1/2
�1� �
 − �0�

=
Hm−1/2

�1� ��
�
Hm+1/2

�1� ��
�
. �A3�

Then the eigenvalue equation �Eq. �8�� takes the form

Jm−1/2��m,i + �
 + ���
Jm+1/2��m,i + �
 + ���

=
Hm−1/2

�1� ��
�
Hm+1/2

�1� ��
�
. �A4�

The next step is to find the small-�
 and small-�� expansions
of the right- and left-hand sides of Eq. �A4�. Since we are
looking for the imaginary part of the energy then we need to
find both the real and imaginary terms in Eq. �A4�. The left-
hand side of Eq. �A4� contains only the Bessel functions. For
a real argument the expansion of the Bessel function is al-
ways real. Therefore the left-hand side of Eq. �A4� gives
contribution only to the real terms in Eq. �A4�. Keeping only
the lowest-order corrections in the right-hand side of Eq.
�A4�, we obtain

��
 + ���
Jm−1/2� ��m,i�
Jm+1/2��m,i�

=
Hm−1/2

�1� ��
�
Hm+1/2

�1� ��
�
. �A5�

The left-hand side of Eq. �A5� contains the Hankel func-
tions. Even for the real argument the expansion of the Han-
kel function contains both the real and imaginary terms. Fi-
nally, the imaginary terms will determine the imaginary part
of the energy. The small argument expansion of the Hankel
function depends on its order, i.e., on the value of m. There-
fore we need to consider two cases: �i� m�1 /2 and �ii� m
=1 /2.

Case �i�: m�1 /2. For m�1 /2 the order of the Hankel
function is greater then 0, then the small-�
 expansion of the
right-hand side of Eq. �A5� is

Hm−1/2
�1� ��
�

Hm+1/2
�1� ��
�

=
�


2m − 1
+ i

��

2m

22m��m − 1/2�!�2 , �A6�

where we took into account both the real and imaginary
terms. Combining Eqs. �A5� and �A6�, we obtain the follow-
ing equation for the correction, �
, to the energy of the elec-
tronic state in the quantum dot:

2m

2m − 1
�
 = − �� − i

�

22m��m − 1/2�!�2�

2m, �A7�

where we used the relation Jm−1/2� ��m,i�=−Jm+1/2��m,i�. From
this equation we can find both the real and imaginary parts of
�
,
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�
 = − 	1 −
1

2m

�� − i

�

�2m�m − 1/2�!�2�1 −
1

2m

2m+1

��
2m.

�A8�

Since Im 
=Im �
 then from Eq. �A8� we obtain Eq. �12�.
Case �ii�: m=1 /2. Now in Eq. �A5� we have Hankel func-

tions of the zeroth order. Then the small-�
 expansion of the
Hankel function contains the logarithm and the right-hand
side of Eq. �A5� becomes

H0
�1���
�

H1
�1���
�

= − �
 ln �
 + i
�

2
�
. �A9�

Taking into account that m in Eq. �A5� is equal to 1/2, we
obtain the following equation for �
:

��
 + ���
J0���0,i�
J1��0,i�

= − �
 ln �
 + i
�

2
�
. �A10�

Since �
 ln �
��
 then in the real part of Eq. �A10� we need
to keep only �
 ln �
 term. Taking into account that J0���0,i�
=−J1��0,i�, we obtain the final equation for �
,

�
 ln �
 = �� + i
�

2
�
. �A11�

We can solve this equation and find the imaginary part of the
energy

�
 =
��

ln ��

+ i
�

2
	 ��

ln ��

 . �A12�

Finally, we obtain Eq. �13� if we take into account that
Im 
=Im �
.
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