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We report on a detailed study of the transport properties of one-dimensional metallic nanoparticle arrays,
which focuses on threshold voltages and on the spatial distribution of potential drops across the array both
below and above thresholds. We study dependences on array parameters and analyze the roles of charge and
resistance disorder. We consider the case in which the interaction between charges is local and the case of
long-ranged interactions separately. We show that some of the differences between the transport properties of
arrays with short and long-range interactions are due to interactions between charges in different nanoparticles,
while others are due to interactions between charges in the islands and those at the electrodes, which produce
a polarization potential drop through the array. Finally we study how strong disorder due to charged impurities
trapped in the substrate is partially screened by redistribution of charges among the nanoparticles and demon-
strate that long-range interactions induce correlations in the screened disorder potentials of neighboring islands.

DOI: 10.1103/PhysRevB.77.245422 PACS number�s�: 73.23.Hk, 73.23.�b, 73.63.�b

I. INTRODUCTION

Arrays made of metallic,1–10 semiconducting,10–16

magnetic17–19 or mixed property20–22 nanoparticles with radii
of �2–7 nm can be now synthesized. The transport proper-
ties of these systems are influenced by the ratios between the
energy level spacing, the charging energy of the nanopar-
ticles, and the temperature. The first two quantities depend
on the material and the size of the nanoparticle. In the case of
metallic nanoparticles, at not too low temperatures, the level
spacing is much smaller than the temperature and does not
play any role in the transport.23 On the contrary, the charging
energy is of the order of 0.1 eV. Strong interactions between
the electric charges and the possibility of tuning interparticle
coupling make nanoparticles arrays an ideal system to study
correlated motion.24–44

Experimentally, these arrays are strongly influenced by
disorder.45–47 Local charging disorder is present in all arrays
due to randomly dispersed charged impurities lodged in the
substrate or in the materials that separate and surround the
nanoparticles. Because of the exponential dependence of the
tunneling resistance, even a small dispersion in the distance
between nanoparticles results in large variations in the tun-
neling resistances of the junctions. Differences in the island
sizes and voids in the lattice can be other sources of
disorder.3

Due to the combination of disorder and charging effects
the current in voltage biased arrays is blocked up to a thresh-
old voltage31,35,45,48–54 VT. For bias voltages larger than VT,
the current is in general nonlinear in voltage with a power-
law dependence45,51,55 close to threshold, a linear depen-
dence recovered at high-voltages, and frequently a steplike
behavior, called a Coulomb staircase, at intermediate volt-
ages.

In spite of the effort done in the last two decades, the
transport properties of these systems are not completely un-
derstood. Most studies have focused on the statistical analy-
sis of the threshold voltage and on the power-law behavior of

the current close to this threshold. This exponent depends on
the dimensionality of the array, but there is controversy be-
tween different theoretical approaches in the one-
dimensional case with both linear31,35,56 and square-root57

predictions. Much experimental work has been concentrated
on two- and three-dimensional arrays, but some quasi-one-
dimensional systems have also been fabricated.4,6,51 Com-
parison between experiments and theory is not yet well
settled.

Theoretical analysis have mainly considered arrays in
which each nanoparticle is capacitively coupled only to its
nearest neighbors,31,35,48,52–54,56 especially the case in which
this coupling is small. The truncation of capacitive coupling
to nearest-neighbor results in an interaction between charges
in different conductors, which decays exponentially with the
distance between them.31,48 This limit is relevant for those
arrays coupled to a gate electrode55 as the mobile charges in
the gate electrodes effectively screen Coulomb interactions.
Self-assembled arrays fabricated nowadays are deposited
onto insulating substrates and generally lack a gate voltage.
In these arrays, the screening of long-range interactions is
less effective, but the proximity of other conductors, both
islands and leads, modifies its value compared to a 1 /r Cou-
lomb law.69,70 The electrodes contribute to the screening of
the interaction. Theoretical analysis including the effect of
long-range interactions is scarce and limited35,49,57 to numeri-
cal results or particular cases.

In this paper, we provide a complete description of the
zero-temperature transport properties of one-dimensional
metallic nanoparticle arrays. We discuss arrays with and
without charge disorder. Although clean arrays are mainly of
academic interest, their analysis will help us to understand
the main features of the experimentally more relevant disor-
dered arrays. The effect of variations in the junction resis-
tances is also analyzed. Disorder in capacitances �nanopar-
ticle size variations� is not considered as it is less important
in present experiments. Nanoparticles synthesized nowadays
are monodispersed in size to a few percent. In any case, the
effect of capacitance disorder58 in most of the properties
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studied here can be deduced from the analytic approxima-
tions provided in the text. Due to the one dimensionality of
the array and the nearest-neighbor tunneling considered, we
assume that there are no nanoparticle voids in the array, as
this would completely prevent current flow. Interactions are
introduced via an inverse capacitance matrix. We consider
both the case in which interactions are restricted to charges
in the same nanoparticle �onsite limit� and the effect of the
long-range character of the interactions. In the last case, the
inverse capacitance matrix is calculated including the effect
of screening.

We have analyzed the threshold voltage, the I-V charac-
teristics, not only close to threshold but also at larger bias
voltages and the potential drop through the array. We identify
an asymmetry external parameter �, which controls the bias
voltage drop. The influence of � has barely been discussed in
previous works. Calculations are performed numerically, but
analytic approximations are given in several limits and com-
pared with numerical results.

The paper is organized as follows: In Sec. II we describe
the system and model under study. This section is divided
into three subsections. In Sec. II A we describe the system
under consideration and define the parameters used. Section
II B introduces the concepts of excitonic energy, potentials
and the islands and junctions, and, in particular, the polariza-
tion potential. These concepts will be used in the discussion
of the transport properties. Section II C describes the Monte
Carlo simulation used in the calculation of the I-V curves.
Section III discusses the threshold, I-V curves, and potential
drop characteristic of arrays with on-site interactions. Sec-
tions IV and V are dedicated to long-range interactions. Sec-
tion IV summarizes the main results obtained for the shape
of the interaction in the long-range case and discusses the
correlations induced in the screened disorder by the long-
range character of the interaction, while in Sec. V we discuss
the transport properties. A summary of the main results is
given in Sec. VI. Readers who are not interested in the tech-
nical details can go directly to Sec. VI. In the Appendix the
methods used to compute the long-range interaction includ-
ing screening are explained.

II. MODEL

A. System under consideration

We consider a one-dimensional array composed of N me-
tallic spheres of radius risl and center to center distance
2risl+d. Throughout lengths are measured in units of risl and
energies in units of Ec

isl=e2 / �2Cisl�, the charging energy of an
isolated nanoparticle having capacitance Cisl. Here and in the
following, the electronic charge e=1. To analyze the trans-
port the array is sandwiched between two large electrodes.
We consider the classical Coulomb blockade regime with �
�KBT�Ec

isl. � is the level spacing and T is the temperature.
We assume that each nanoparticle has a continuum level
spectrum ��=0� and a constant density of states at the Fermi
level but a gap Ec

isl for adding charge.
The nanoparticles are separated by high tunneling barriers

with a resistance much larger than the quantum of resistance.
In these conditions the charge in the islands can be assumed

fixed and quantized. Eventually we allow tunneling pro-
cesses between nearest neighbors and treat the transport at
the sequential tunneling level. A single charge is involved in
the tunneling process. We assume that when a charge hops,
the charge density in the final state of the array immediately
relaxes to the electrostatic equilibrium configuration. The
probability of a tunneling process23 is given by

���E� =
1

R

�E

exp��E/KBT� − 1
�1�

with R as the tunneling resistance of the junction.
Whenever not specified we assume that all the junction

resistances Ri are equal and given by RT. The effect of non-
homogeneous resistances will be studied in two ways. One
of the junction resistances at a given position is larger than
the other ones �given by RT� or resistances, varying in be-
tween two values are randomly assigned to the junctions. To
mimic that disorder in resistances originates in variations in
distances between the islands and the exponential depen-
dence of the junction resistance on the distance between is-
lands, the junction resistance is given by R=R0 exp��dist�,
with R0 and � as the input parameters and dist=1
+random /2. Here random is a random number between 0
and 1. In this paper, we have used R0=1.1825RT and �
=1.526,1.95,2.84. With these values the resistance changes,
respectively, between �5–11�RT, �8–21�RT, and �23–83�RT.

We will restrict the discussion to zero temperature for
which ���E�=−�E /R	�−�E�. �E is the difference between
the energy of the system before and after the tunneling event,
with the sign convention that �E is negative if the energy
decreases. The energy gained by tunneling is assumed to be
dissipated. Only changes in energy with electrostatic origin
are considered.

The energy of the system is given by

F =
1

2 �
�,
=0

N+1

Q�C�

−1Q
 + �

i=1

N

Qi�i
dis. �2�

Labels 0 and N+1 refer to source and drain electrodes and
1, . . . ,N to the islands. Latin capital and lower case letters
are used to denote electrodes and islands, respectively. Greek
indices will be used when the labels refer to both islands and
electrodes. Q� is the charge present in the conductor. Charges
Q0 and QN+1 maintain source and drain electrodes at poten-
tials V0 and VN+1, respectively. The electrostatic interactions
in our system are defined through an inverse capacitance
matrix C−1. All the elements C�,


−1 are positive. The inverse
capacitance matrix is symmetric, C�


−1 =C
�
−1, and has dimen-

sion �N+2�� �N+2�, i.e., it includes both islands and elec-
trodes. The coupling between the islands and the electrodes
is included through Ci,K

−1 and CK,i
−1 .

For the interactions, we consider two cases. In the limit
referred to as short-range or on-site interaction, we restrict
electrostatic interactions to those charges on the same con-
ductor: capacitive coupling between different conductors and
all nondiagonal matrix elements C�,


−1 ���
� vanish and
Cii

−1=Ci
−1=Cisl

−1. In the so-called long-range limit, the interac-
tion potential differs from the 1 /r Coulomb dependence, as
in C�,


−1 we take into account the static screening due to the
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presence of other conductors. For simplicity to describe the
electrodes, we have considered two large spherical leads. To
obtain the screened interaction potential, we have developed
two numerical methods to calculate the inverse capacitance
matrix of an array of spheres. These methods are explained
in the Appendix. The modification of the interaction with
respect to the 1 /r law due to the presence of the other nano-
particles is discussed in Sec. IV. The on-site interaction limit
can be compared with d /risl→ as the particles are so far
apart that the interaction between charges in different con-
ductors can be neglected. As closer are the particles, more
important is the interaction between charges in them. Experi-
mentally, d /risl�0.5.

�i
dis is a random potential at each island due to randomly

dispersed charges within the substrate and within the mate-
rial surrounding the nanoparticles.59 Clean arrays will be
characterized by �i

dis=0 for every i. The random potential is
included only at the islands because a similar term at each
electrode is compensated by the battery and thus has no ef-
fect on transport. In the case of disordered arrays, the disor-
der potentials can, in principle, take values larger than the
charging energy Ec

isl. However, for large values of the disor-
der potential, charges flow to compensate for these large
fluctuations. In the case of short-range interactions, except if
the original disorder potential is very weak, once the screen-
ing of the potential due to the mobile charges is taken into
account, the set of disorder potentials is uniformly distrib-
uted in the interval −Ec

isl��i
dis�Ec

isl.45 The distribution of
the disorder potential in the long-range limit is discussed in
Sec. IV B.

We take into account that the electrodes are not ideal volt-
age sources but have a finite self-capacitance. In equilibrium
and before the tunneling event, the electrodes are held at a
given potential due to the charge provided by a battery. We
assume that the tunneling time, i.e., the time needed by the
electron to cross the tunnel barrier, is smaller than the circuit
characteristic time that determines how quickly the battery
can transfer charge to the leads in order to restore the voltage
at the electrodes. As a consequence, just after the tunneling
process the electrodes will not necessarily be at the same
potential at which they were at before the tunneling event
because the charge, provided by the battery, necessary to
restore their initial potentials has not arrived yet. The voltage
is restored to the nominal value before the next tunneling
event. For finite-range interactions, the potentials on the
leads will thus fluctuate in response to all tunneling events,
even those that do not directly involve the electrodes. In the
short-range case, they will fluctuate only when an electron
jumps into or out of the leads.

In the following we rewrite the potential at the electrodes
as V0=�V and VN+1= ��−1�V. The total potential drop
through the array is V0−VN+1=V. Some measurable proper-
ties depend on the value of �, which characterizes how the
bias voltage is partitioned between source and drain
chemical-potential shifts. In several previous works, the
value of � was chosen either as �=1 /2, correspondingly to a
symmetrically biased array, or as �=0,1, corresponding to
completely asymmetric biasing. �=1 has been also called the
forward bias condition.60 Both values have been used in the
literature, mostly without discussion. In the symmetrically

biased case, the potential drop at both contact junctions is
equally modified by the bias voltage. On the contrary for �
=0�1� only the drain �source� junction is affected by the bias.
Since no physical properties depend on the overall zero of
energy, varying � in our model is entirely equivalent to rig-
idly shifting all impurity potentials by −�V. The dependence
on � discussed below, corresponds in part to a dependence
on the alignment of the equilibrium source and drain chemi-
cal potentials with respect to the addition and removal ener-
gies of the electron. For example, for a single nanoparticle
on whether the chemical-potential shift required to add or
remove an electron is larger. Since in our model all transport
occurs by transfer between adjacent nanoparticles, the evo-
lution of a nanoparticle array as the bias voltage is applied is
sensitive to �. For a given nanoparticle array with a fixed set
of disorder potentials, we believe that the dependence on �
discussed below should in principle be observable.

B. Potential at islands and junctions

The relevant quantity for the transport is the change in
energy due to a tunneling event. The tunneling process can
be seen as the creation of a hole in the conductor � from
which the charge leaves, Q�→Q�−1, and the addition of an
electron in 
 at which the charge arrives, Q
→Q
+1. Here
and thereafter, we let +1�−1� denote the charge of an electron
�hole�. The change in energy can be rewritten as

�E = E�,

e−h + ��
 − ��� . �3�

The first term gives the energy to create an electron-hole pair
�also called in the following excitonic energy� in an un-
charged clean array and is given by

E�,

e−h =

1

2
C��

−1 +
1

2
C



−1 − C�

−1 . �4�

This energy does not depend on the direction of tunneling
�from � to 
 or from 
 to ��, and in the following, it will be
denoted by Ei

e−h with i running from 1 to N+1. The index i,
when used to label a junction, will refer to the one between
conductors i−1 and i. We will use the term contact junction
for those junctions, which connect an island and an elec-
trode, and bulk or inner junction for those ones in between
two nanoparticles. In the short-range case,

E�,

e−h =

1

2
C�

−1 +
1

2
C


−1. �5�

For the contact junctions i=1,N+1, Ei
e−h�Ec

isl as
Ec

source,drain�Ec
isl, while for the bulk junctions i=2 to i=N,

Ei
e−h=2Ec

isl.
The second term in Eq. �3� can be seen as the change in

potential between the conductors involved in the tunneling.
The potential at each site depends on the charge state of the
array prior to the tunneling event, which at the electrodes is
�0=V0=�V, �N+1=VN+1= ��−1�V. At the islands the poten-
tial can be decomposed into three terms �i=�i

dis+�i
pol+�i

ch:
the disorder potential �i

dis due to random charges in the sub-
strate, the polarization potential �i

pol at the island induced by
the electrodes at finite bias, and the potential due to the
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charges in the nanoparticles �i
ch. In the short-range case the

polarization potential �i
pol at the islands vanishes. For long-

range interaction, it is given by

�i
pol = �i

�V , �6�

with

�i
� = Cgen

2 ���Ci0
−1CN+1,N+1

−1 − Ci,N+1
−1 CN+1,0

−1 �

+ �� − 1��CiN+1
−1 C00

−1 − Ci0
−1CN+1,0

−1 �� , �7�

and

Cgen
2 =

1

C00
−1CN+1,N+1

−1 − �CN+1,0
−1 �2 . �8�

In the short-range limit, the charging potential equals

�i
ch =

Qi

Ci
, �9�

while for long-range interactions it is given by

�i
ch = �

j=1

N

QjC̃ij
−1, �10�

with

C̃ij
−1 = Cij

−1 + Cgen
2 �C0,N+1

−1 �CiN+1
−1 Cj0

−1 + Ci0
−1Cj,N+1

−1 �

− C00
−1CN+1,i

−1 Cj,N+1
−1 − CN+1,N+1

−1 Ci0
−1Cj0

−1� , �11�

with Cgen given by Eq. �8�. C̃−1 can be interpreted as a modi-
fication of the interaction between the charges in the islands
due to the proximity of the electrodes at a fixed potential. For
the case i= j in which both charges are on the same island
this modification was already discussed in Ref. 48, as the
interaction of a soliton with a passive edge. Expression �11�
shows that not only when the charges are in the same island
but also when they occupy different islands, their effective
interactions are modified by the presence of the voltage-
biased leads. Two types of terms can be differentiated in the
modification of this interaction. The last two terms in Eq.
�11�, or direct terms, can be viewed as the interaction be-
tween a charge in island i and the image charge at one of the
electrodes induced by the charge in island j. This term is
affected by the presence of the other electrode. On the other
hand, the terms containing C0N+1

−1 , or indirect terms, reflect
the interaction between the image charges in both electrodes.
Direct and indirect terms have opposite sign. The direct term
reduces the effective interaction; the indirect one increases it.

Equations �3�–�11� follow from Eq. �2� after straightfor-
ward and trivial algebra. For further convenience, we have
just defined a few quantities and split the change in energy
�E and potential ��. Analogously we can define the poten-
tial drop at each junction,

�i = �i − �i−1, �12�

with the corresponding polarization, disorder, and charging
terms �i

pol, �i
dis, and �i

ch. At a given junction,

�i
pol = �i

�V = ��i
� − �i−1

� �V . �13�

Here �0
�=� and �N+1

� =�−1. In the short-range case ��i
�=0,

for i=1 to N�, the potential drop at a bulk junction does not
depend on the bias voltage or �, except via a change in the
charge state.

C. Numerical simulation

The current is calculated numerically by means of a
Monte Carlo simulation,48 which depends on the tunneling
rates. The state of the array consists of the set of charges
�Q
� that occupy the array islands and the leads. The charges
in the leads keep the leads at voltages V0 and VN+1.

At each iteration a single tunneling event takes place. The
time involved in this event � depends on the tunneling rates
of all the possible tunneling processes. First, it is computed
the change in energy and the tunneling rate of the 2�N+1�
possible hopping events, corresponding to the tunneling of a
single electron, to the left or to the right, through any of the
�N+1� junctions. The probability of changing the initial con-
figuration varies with time like

Pchange�t� = 1 − Pstay�t� = 1 − e−�tot�t−t0�, �14�

with t0 as the time at which the preceding tunneling process
took place and �tot=�i=1

N+1��i
++�i

−�. �i
+ and �i

− are the tunnel-
ing rates through the i junction to the left or to the right,
respectively, and are calculated from Eq. �1�. To sample the
time interval between two hopping events, we generate ran-
dom numbers between �0,1� to mimic Pchange and obtain �
= t− t0 from Eq. �14�. As the average of −ln Pstay is the unity,
if one is interested only in the average values of the charge or
the current, and not on its fluctuations, the time step � could
be fixed68 to 1 /�tot. This option is numerically faster.

The relative probability of each tunneling event is
�i

� /�tot. To determine the hopping process, which changes
the charge state, the relative probabilities are consecutively
arranged in the interval �0,1�. A second random number in
this interval is generated to select the tunneling process.
Then, the charge configuration is updated. After we modify
the state of the system, we allow the external circuit to return
the leads to their applied bias values prior to the selection of
the next hop. This effect is simulated by resetting the charges
on the source and the drain to the values that restore the
nominal applied bias.

In order to remove all sensitivity to initial conditions be-
fore we track the evolution of �Qi� as a function of time at
any voltage, we perform Neq�104 iterations to equilibrate
the system. Following these iterations, we track the evolution
of the charge state until the net number of electrons that
arrive at the drain, Qdrain, equals a very large number
��105�. The average calculated current is given by

I =
Qdrain

ttot
, �15�

where ttot is the sum of all time intervals between hopping
processes in the evolution runs. If a tunneling event involv-
ing the drain is selected, an amount �q= �1 is added to
Qdrain depending on whether an electron hopped to or from
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the drain. Current conservation ensures that the average cur-
rent is the same through any junction. The minimum num-
bers of equilibration cycles, Neq, and evolution cycles �set by
Qdrain� depend on the voltage. To calculate the average volt-
age drop, we assume that the system is in a given state a time
equal to the interval � until the next tunneling event takes
place.

III. SHORT-RANGE INTERACTION

A. Threshold voltage

The threshold voltage is the minimum bias voltage at
which current can flow through the array. It is controlled by
the changes in energy in tunneling and not affected by the
resistance of the junctions; thus, we do not address the case
of disorder in resistance in this section. A finite current re-
quires that charges are able to be transferred from one elec-
trode to the other one across the entire array. If charge flow
can occur between the leads, the threshold voltage is the
minimum voltage that permits the entrance of an electron or
hole into the array. A finite bias voltage can assist the en-
trance of charge to the array from the leads, as it creates a
potential drop at the contact junction, which can overcome
the excitonic energy. However, it is possible for charge to
become stacked inside the array due to the disorder potential
configuration or due to the lack of potential drops across the
bulk junctions.

At strictly zero temperature, the tunneling rate ���E�
= −1

RT
�E	�−�E� and vanishes when �E is positive or zero. In

the on-site limit, in the case of clean arrays at the inner
junctions �E is independent of the bias voltage and zero or
positive if the two islands differ just by just a single charge.
N−1 junctions, with zero tunneling rate, prevent the flow of
charges. A charge gradient at each bulk junction has to be
created to allow flow of charge. The threshold corresponding
to the clean case is plotted in Fig. 1�a� for the case of sym-
metrically biased arrays ��=1 /2�, antisymmetrically biased
arrays ��=1�, and an intermediate biasing ��=3 /4�. In the
symmetrically biased case, VT shows a steplike dependence
on N and even-odd effect. In this case, increasing the poten-
tial at the electrodes allows positive and negative charges to
enter from the source and the drain respectively. These
charges accumulate on the array and create potential drops
across the bulk junctions. At voltages just below the thresh-
old, the accumulated charges at the first and last islands are
equal in number and opposite in sign. Current starts to flow
at voltages larger than VT=2NEc

isl when N is odd and VT
=2�N−1�Ec

isl when N is even. These values allow for the
build up of ��N−1� /2 and ��N−2� /2 charges at the first
and last islands for odd and even N, respectively, creating a
charge gradient dQi=Qi−Qi−1=−1 across all bulk junctions
for odd N and across all bulk junctions except one for even
N.

The even-odd effect is absent for �=1 and �=0 with a
threshold voltage VT=Ec

isl�2N−1�. For �=0,1, charge can
only enter the array from one lead and the energy barriers
across all N−1 bulk junctions must be overcome by accu-
mulated charges. When �=1 /2 the first and last junctions are

equivalent and charge can enter from both leads so it is pos-
sible in some cases for the energy barrier across one of the
bulk junctions to be overcome by the potential drop due to
two injected charges of opposite sign from the two leads, i.e.,
one of the junctions can be uncharged. The absence of this
possibility is what removes the even-odd effect when �=0
and �=1. An intermediate situation is found for �=3 /4.

For given N the threshold voltage changes in a periodic
way with � �see Fig. 1�b��, with a period dependent on the
number of barriers in the array. Dependence of VT on N and
periodic features in VT with respect to � reflect the number
of charges, which have to accumulate in the first and last
island prior to current flow. Figure 1�b� includes curves cor-
responding to V0 and VN+1 for specific values of Q1 and QN.
With increasing bias asymmetry �increasing 	�−1 /2	�, the
threshold voltage is alternately determined by the cost of
injecting a charge unto the array from the source and the
drain. At all � except for the values that lead to the minimum
VT for a given array length, the difference in the charge
occupying the first and last islands, Q1−QN, equals N−1. At
the minimum values of VT, this charge difference equals
N−2.

The clean case of a related system was studied by Hu and
O’Connell.52 They analyzed a one-dimensional array of N
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FIG. 1. �Color online� �a� Threshold voltage of clean arrays as a
function of the number of islands N for different values of the
asymmetry bias parameter �. A clear even-odd effect is present for
symmetrically biased arrays, �=1 /2, �V0=V /2=−VN+1�. �b�Thresh-
old voltage as a function of �. From top to bottom lines with sym-
bols correspond to clean arrays with six and five islands and to
disordered arrays with six and five islands. For comparison, the thin
solid and dashed lines give, for clean arrays, the bias voltage at
which 2 and −2 charges can be placed at the first and last islands.
�c� Main figure: average threshold voltage for disordered arrays as a
function of the number of islands. The dependence of VT on �
disappears on average and a linear dependence on N is recovered.
Fluctuations in threshold voltage follow �VT�N1/2 as predicted
�Ref. 31�.
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gated junctions with equal junction capacitances CJ and
equal gate capacitances Cg. Due to the finite value of CJ
charges in a given island interact with charges in other is-
lands and with charges in the electrodes. With an applied
bias voltage, the interaction between charges in the elec-
trodes and in the islands results in a bias induced potential
drop at the bulk junctions. Once a charge is injected unto the
array, it will have no difficulty in traveling through it, and the
threshold voltage equals the voltage required for injection of
a charge from the electrodes. As the ratio Cg /CJ increases,
the threshold voltage of a long array tends to an
N-independent value of the order of the charging energy. The
on-site case discussed here corresponds to CJ=0. If one ex-
trapolates the case discussed by Hu and O’Connell52 to
Cg /CJ→0, an N-independent threshold voltage would be ex-
pected for onsite interactions. As shown above, the threshold
voltage of clean arrays does not satisfy this prediction, as at
zero temperature the charges cannot travel freely through the
array, and the threshold voltage increases with the number of
islands.

In the case of disordered arrays, VT depends on the array
configuration of disorder ��dis�. The threshold voltage de-
pends on �, in a way similar to the clean case �see Fig. 1�b��.
As shown in Fig. 1�c�, this dependence on � disappears in
the average value and we recover the prediction of Middle-
ton and Wingreen.31 For the disordered case, Middleton and
Wingreen31 predicted a linear dependence of the threshold
voltage on the array length. Only junctions with upward
steps in the disorder potential �i

dis�0 prevent the flow of
charge. The downward steps �i

dis�0 facilitate it. In average
there are N /2 upward steps. To overcome such steps, a
charge gradient has to be created in those junctions. For on-
site interactions this results in 
VT�=Ec

islN.67 As shown in the
inset of Fig. 1�c�, we also recover the relationship for the
fluctuations in the threshold predicted by Middleton and
Wingreen,31 �VT�N1/2.

B. Flow of current

For bias voltages larger than threshold the current I can
flow, but it is a strongly nonlinear function of voltage. The
current depends on the charging energy and number of is-
lands, on the presence or not of charge disorder in the array,
on the resistances of the junctions, and on the asymmetry of
the applied bias voltage.

1. Linear dependence close to threshold

There has been some controversy regarding the power law
of the current with �V−VT� through one-dimensional disor-
dered arrays for voltages close to VT, I��V−VT��. Middleton
and Wingreen31 predicted linear behavior for both the long-
and short-range interactions. Reichardt and Reichardt57

found a square-root behavior using a model with a 1 /r inter-
action between the charges in the islands. �=1 /2 is the ex-
ponent corresponding to an sliding charge-density wave.
They argued that the value �=1 obtained by Middleton and
Wingreen31 is a consequence of using voltages, which are not
small enough. Kaplan et al.35 found �=1 in the long-range
limit of an array of dots capacitively coupled to their nearest

neighbors. Jha and Middleton56 argued that the dependence
of the current of disordered arrays in the onsite limit on
�V−VT� for voltages marginally greater than VT is linear with
an slope inversely proportional to the length of the array. In
Fig. 2 we show that the current varies linearly with respect to
V−VT for very small V−VT but that the slope is not inversely
proportional to N.

The current through the array is equal the average time
necessary to transfer a charge through the array, which adds
the time involved in all the processes in the sequence of
tunneling events from the moment in which charge enters the

10
-6

10
-3

10
0

(V-V
T
)/E

c

isl

10
-6

10
-3

10
0

10
3

I(
E

cis
l /R

T
)

N=5
N=50
N=20

10
-6

10
-3

10
0

(V-V
T
)/E

c

isl

10
-6

10
-3

10
0

10
3

I(
E

cis
l /R

T
)

α=1.0
α=0.9
α=0.89
α=0.5

10
-6

10
-3

10
0

(V-V
T
)/E

c

isl

0

0.5

1

dI
/d

V
(R

T

-1
)

10
-6

10
0

(V-V
T
)/E

c

isl

0

0.5

1

dI
/d

V
(R

T

-1
)

10
-6

10
-3

10
0

(V-V
T
)/E

c

isl

0

0.4

0.8

dI
/d

V
(R

T

-1
)

10
-6

10
-3

10
0

(V-V
T
)/E

c

isl

0

0.04

0.08

dI
/d

V
(R

T

-1
)

10
-6

10
-3

10
0

10
3

(V-V
T
)/E

c

isl

10
-6

10
-3

10
0

10
3

I(
E

cis
l /R

T
)

10
-6

10
-3

10
0

10
3

(V-V
T
)/E

c

isl

10
-6

10
-3

10
0

10
3

I(
E

cis
l /R

T
)

α=0.5 Ν=5
α=0.5 Ν=5
α=0.5 Ν=50
α=0.7 Ν=5

Clean
N=5α=0.5

Clean

(a) (b)

(d)(c)

Disordered

Disorder in
Resistances

N=50 α=0.5
clean

FIG. 2. �Color online� Main figures: I-V curves in logarithmic
scales for different array parameters. The insets show the deriva-
tives �in units of 1 /RT� of the curves plotted in the main figures.
The linear dependence of current on voltage �constancy of the de-
rivative� is clearly seen in all the plots but it disappears for V−VT

�10−2Ec
isl, which for the cases shown corresponds to �V−VT� /VT

�10−4. �a�–�c� show I-V curves corresponding to arrays without
charge disorder. All junction resistances are equal in �a� and �b�. As
shown in �a� for clean arrays the slope of the linear dependence
does not depend on the number of islands except for �=0.5, which
shows an even-odd effect with a slope equal to unity and 0.5 for
odd and even number of particles, respectively. �b� The dependence
of slope on � can be nonmonotonous if there is a change in the
contact junction which acts as a bottle-neck. �c� I-V curves for
arrays with junction resistances randomly assigned varying between
�5–11�RT �upper curve�, �8–21�RT �middle curve�, and �23–83�RT

�bottom curve�. The different slopes are due to different resistances
at the bottleneck junction. �d� I-V curves of disordered arrays with
homogeneous contact resistance. The �=0.5,N=5 curves corre-
spond to different realizations of disorder. The even-odd effect
present for �=0.5 in the clean case has disappeared as just one
contact junction acts as bottle-neck.
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array from one electrode until it leaves the array to the other
one. If the time associated to tunneling at a given junction is
much larger than the time involved in the rest of processes,
this junction acts as bottleneck and the time necessary to
transverse the array is approximately equal to the time in-
volved in the tunneling through this junction. On average
this time is equal to the inverse of the tunneling rate given by
Eq. �1�. The current can be approximated by the tunneling
rate across the bottleneck junction.

Charges can enter only through the contact junctions from
the leads. Below threshold, but close to it, the tunneling at
the contact junctions costs finite energy and transport is sup-
pressed. This cost in energy is reduced by the applied bias
voltage until at threshold it is zero at the entrance junction.
With V�VT but very close to VT, the entrance junction acts
as bottleneck for transport. At zero temperature �T=−�E /R.
If VT is determined by the source junction,

I =
1

R1
��V − VT� �16�

as �E for tunneling through this junction is −��V−VT�.
Analogously, if VT is determined by the drain junction, �E
=−�1−���V−VT� and

I =
1

RN+1
�1 − ���V − VT� . �17�

Both source and drain junctions have to be taken into ac-
count in the clean symmetrically biased case when N is odd.

I = � 1

R1
+

1

RN+1
1

2
�V − VT� . �18�

For even N even and �=0.5 current flow requires that charge
enters through both junctions and the current is approxi-
mately equal to

I =
2

R1 + RN+1

1

2
�V − VT� . �19�

The even-odd asymmetry in the slope has the same origin as
the threshold voltage. This behavior is observed in Fig. 2.
The linear behavior is clearly appreciated in both the log-log
scale in which the main figures are plotted as well as in the
constancy of the derivatives in the insets. The dependence of
the slope of the I-V curves is better seen in dI /dV plotted in
the insets. As seen in Fig. 2�a� dI /dV is equal for the �
=0.5, N=50 and N=20 curves, i.e., independent on the array
length. On the contrary, it is doubled for N=5 due to the
even-odd alternancy predicted by Eqs. �18� and �19�. The �
dependence is studied in Fig. 2�b�. From top to bottom, the
change in slope with � is smooth and given by � /R1, as
predicted by Eq. �16�, but turns nonmonotonously if currents
starts being controlled by Eq. �17� with slope �1−�� /RN+1.
As expected from the above discussion, the slope is affected
by disorder in resistances in Fig. 2�c� but not by charge dis-
order in Fig. 2�d�, except in the lose of the even-odd effect
present in the clean case for �=0.5. So far, there are no
experiments available in completely one-dimensional arrays,
but there are a few in quasi-one-dimensional systems. The
approximate power-law measured51 at voltages �V−VT�

�0.01VT is larger than unity, which has been attributed to
the fact that the system is not strictly one dimensional. The
linear behavior in Fig. 2 appears for several orders in mag-
nitude. In spite of this, it disappears for V−VT�10−2 or
�V−VT� /VT�10−4 �much smaller than the values at which
the approximate power law have been measured�. The mag-
nitude of the current is probably too small for this linearity to
be detected experimentally.

2. Intermediate regime

We have found that linearity gives rise to sublinear behav-
ior when the time of the other tunneling processes become
relevant compared to the time spent at the bottleneck. Upon
increasing V the tunneling rates of the different processes
involved in the transport become more homogeneous. To ob-
tain sublinear behavior, it is just necessary that the two slow-
est processes in a sequence have comparable rates. The loss
of linearity can depend on the resistance of the junctions
when a nonbottleneck junction has a resistance much larger
than the bottleneck one. The bottleneck character of the junc-
tion disappears faster for longer arrays as there are more
tunneling processes, which will contribute to the total time.
In the disordered case, the energy gain of some of the tun-
neling processes is smaller than in the clean case and the
contact junctions can stop being the bottleneck earlier, i.e.,
for smaller V−VT. However, in general we have not found
very significative differences for different array parameters
in the value of the bias voltage at which the linearity disap-
pears.

The energy of a tunneling process through an inner junc-
tion does not depend on the applied voltage �except via the
charge accumulated on it�, so when a bulk junction controls
the transport, the current is independent on voltage showing
a characteristic staircase profile. The existence of the Cou-
lomb staircase has been known for a long time.23,61–63 Early
claims reported a Coulomb staircase only in the asymmetri-
cally biased case.23 More recent results in clean capacitively
coupled nanoparticle arrays show that a staircase also
emerges in a symmetric array under symmetric bias60 but
claim that the I-V characteristic for an N-dot array under
forward bias is identical to that for a 2N-dot one under sym-
metric bias. We show here that while the appearance of the
staircase is generic, the last statement is not correct.

The current has kinks at those voltages, which allow new
transport processes, changing the maximum number of
charges that can be accumulated at the first or last island.
These voltage values depend on � and on the existence of
charge disorder in the array but not on resistance disorder. To
allow the addition of an extra charge in the first or last nano-
particle requires an increase in potential drop at the contact
junction equal to 2Ec

isl. In the clean case, when �=1,0 only
one electrode changes its potential and the width of the steps
in bias voltage is 2Ec

isl. On the other hand, when �=1 /2 the
change in potential of a given electrode is just the half of the
change in bias voltage and steps appear in intervals of 4Ec

isl.
With charge disorder and �=0,1 the position of the kinks

in voltage depends on the disorder configuration, but the
width of the voltage intervals between the kinks does not
change, as new charges are added through a single junction.
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If �=1 /2, charges enter from both contact junctions but the
corresponding kinks in the current do not appear at the same
position. While the width of a kink corresponding to a given
contact junction remains equal to 4Ec

isl, in a general case in
the I-V characteristic there will be two kinks in each 4Ec

isl

interval in bias voltage due to the alternative position of the
kinks of both contact junctions. Except in very special cases,
the separation of kinks does not equal 2Ec

isl. If the onsite
interaction case discussed here can be experimentally repro-
duced, the width of the steps in the I-V curve can differenti-
ate � values.

The position of the kinks in the clean and disorder cases
can be observed in Fig. 3. Two main features can be ob-
served. For clean arrays �insets in Figs. 3�a� and 3�b�� at the
onset the current shows a big jump. Once the charge gradient
is created and the charge can transverse the array, it flows

easily. The steps at higher voltages are much smaller but
have the width predicted above. In the main figures corre-
sponding to disordered arrays, the large big jump has disap-
peared and steps are more clearly observed. Two step widths,
which add 4Ec

isl, are seen for �=0.5 and just steps with width
2Ec

isl appear for �=1.
Disorder in the resistances does not modify the voltages at

which kinks in the current appear but it does affect the stair-
case profile. The staircase profile is modified in Fig. 3�c�,
compared to Fig. 3�a� due to the disorder in resistances. A
very large resistance in a bulk junction can sharpen the steps,
as it creates a bottleneck for the current at a junction with an
associated energy for tunneling, which does not directly de-
pend on bias voltage, but the opposite behavior can also take
place if the large resistance if found at any of the contact
junctions. The way in which the I-V curve is affected by
disorder in resistance depends on the particular resistance
and charge-disorder distributions.

3. Linear regime at high voltages

At very high voltages, the charge gradient ensures that all
the tunneling processes to the right decrease the energy. The
corresponding tunneling rates are �i=Ri

−1��i−Ei
e−h� and the

total tunneling rate �tot for no resistance disorder is �i=1
N+1�i.

Having in mind that �i=1
N+1�i=V, �tot=RT

−1�V−�i=1
N+1Ei

e−h�.
This rate is independent of the selected tunneling process. To
transfer a charge from the source to the drain requires in
average �N+1� tunneling events. The average current is

Iasympt �
1

�N + 1�RT
�V − �

i=1

N+1

Ei
e−h . �20�

A linear dependence is recovered. The asymptotic linear I-V
does not extrapolate to zero current at zero voltage but it cuts
the zero current axis at a finite offset voltage. The analytical
prediction �20� is compared in Figs. 4�a� and 4�c� with nu-
merical results. The slope of the current does not depend on
� or the existence of charge disorder but only on the number
of junctions �N+1�. The slope equals the sum of the resis-
tances in series. Asymptotically this curve cuts the I=0 axis
at the offset voltage Voffset=�i=1

N+1Ei
e−h. This value is, in gen-

eral, different from the threshold voltage and independent of
the resistance of the junction and �.

Previous derivation is valid even if there is inhomogeneity
in the value of island capacitances but relies on the homoge-
neity of the junction resistances through the array. If this is
not the case the total tunneling rate of each step in a se-
quence is �tot=�i=1

N+1Ri
−1��i−Ei

e−h�. We assume that, on aver-
age, the charge gradient would be such that it ensures a uni-
form tunneling rate �uni through all the junctions. The
potential drop, which gives such a tunneling rate, is �i

=Ri�
uni+Ei

e−h and �uni= �V−�i=1
N+1Ei

e−h� /Rsum with Rsum
=�i=1

N+1Ri. There are �N+1� possible tunneling events at each
step in a sequence and �N+1� steps. Both �N+1� factors
cancel out. The resulting average current is
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FIG. 3. �Color online� I-V curves for N=50 and different array
parameters at intermediate bias voltages showing the Coulomb
staircase. Insets in �a� and �b� correspond to an array without charge
or resistance disorder and respectively �=0.5 and �=1. The current
shows a big jump at threshold and very weak small steps at higher
voltages. The width of the steps is 4Ec

isl in �a� and 2Ec
isl in �b�. Main

figures in �a� and �b� show I-V curves for arrays with charge disor-
der but homogeneous resistances. �=0.5 in �a� and �=1 in �b�. The
first step height is reduced and the staircase structure is more pro-
nounced than in the clean case because tunneling processes in the
bulk can have small energy gain and become the bottleneck more
easily. The width of the steps in �b� remains equal to 2Ec

isl as in the
clean case. In �a� there are two different step lengths which alternate
and sum to 4Ec, corresponding to the entrance of charge through
both electrodes. The I-V curves in �c� correspond to arrays with
resistance disorder and �=0.5 without charge disorder in the inset,
and with charge disorder in the main figure.
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Iasympt �
1

Rsum
�V − �

i=1

N+1

Ei
e−h . �21�

The slope in the current corresponds to the addition in series
of all the resistances. This equation reduces to Eq. �20� when
all resistances are equal. The predicted asymptotic high-
voltage behavior is observed in Fig. 4 for arrays with differ-
ent parameters. Good agreement with Eq. �21� justifies the
uniform tunneling rate assumption. The voltage Vlinear at
which the linear behavior is reached is estimated in Fig. 4�d�.
As longer is the array larger voltages have to be applied to

reach Vlinear. It is approximately three times the offset voltage
and slightly larger in the presence of charge disorder. In long
arrays Vlinear can become very large and the linear behavior
will not be easily reached experimentally.

C. Potential drop through the array

The potential through the array can nowadays be
measured,66 but to our knowledge, it has not been studied
theoretically. In conventional Ohmic systems with a linear
current-voltage relation V= IR, the potential drops homoge-
neously through the array if the resistivity of the system is
homogeneous. When the proportionality constant between
voltage and current is given by the sum of the resistances in
series, but these resistances are not all equal, the voltage drop
at each point is proportional to the local resistance. The
nanoparticle array I-V characteristics are highly nonlinear
and in general it is not obvious how the potential drops
through it. At the islands the potential is the sum of the
disorder and charge terms, while at the electrodes the poten-
tial is controlled by the applied bias. In this section we study
the potential drop through the array at low, intermediate, and
high voltages and show that in none of these regimes the
potential drop at a given junction is strictly proportional to
its resistance.

1. High-voltage regime

We start with the high-voltage linear regime, as it is the
easiest to understand. Figure 5 shows the average potential
drop in a clean and a disordered array for a given bias volt-
age in the high-voltage linear regime. All the junction resis-
tances are equal in the top figures. The average voltage drop
is equal in both the clean and disordered case, and at first
sight it seems linear. A linear potential drop through the array

implies a homogeneous average junction potential drop �̄i.

However, at the contact junctions, �̄i is approximately Ec
isl

times smaller than at the bulk junctions. The voltage drop at
each junction is not equal to the current divided by the junc-
tion resistance either, as could be naively expected. The ori-
gin of this effect is the different values of the excitonic en-
ergy �3�.

At high voltages the I-V curve is linear but the total volt-
age drop through the array does not equal RsumI due to the
offset voltage Voffset=�i=1

N+1Ei
e−h. The excitonic energy Ei

e−h is
2Ec

isl at the bulk junctions and approximately Ec
isl at the con-

tact ones. Only the extra potential drop �̄i−Ei
e−h at each

junction gives a finite contribution to current through it. On
average,

I =
1

Rsum
��̄i − Ei

e−h� . �22�

From current conservation at high voltages, the average po-
tential drop through the array

�̄i = Ei
e−h +

Ri

Rsum
�V − Voffset� . �23�

It is not affected by the presence of charge disorder in the
array �but it would change if capacitances are not homoge-
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FIG. 4. �Color online� �a� I-V curves calculated up to high volt-
ages for N=50,�=0.5 for clean and charge-disordered arrays. Both
curves approach the same asymptotic curve at high voltages, even if
the threshold voltage is quite different. Theoretical prediction is
included for comparison. �b� Computed I-V curves for charge-
disordered arrays with different junction resistances �solid lines�
with their theoretical asymptotic predictions �dashed lines�. From
top to bottom, a curve corresponding to an array with all-equal
junction resistances, an array with randomly assigned resistances,
and an array with all-equal random resistances, except the first one
which is ten times RT. The slope differs but all the curves have
equal offset voltage. �c� Slope �main figure� and offset voltage �in-
set�, which give better fitting to the numerically computed current at
high-voltages as a function of the number of islands in the array for
several array parameters, all of them with homogeneous junction
resistances. For comparison the theoretical prediction �dashed-line�
is included. The offset voltage equals �i=1

N+1Ei
e−h, and the slope is

inversely proportional to the sum of the junction resistances added
in series. Independence on the value of � and the presence or ab-
sence of charge disorder is observed. �d� Voltage at which the high-
voltage asymptotic behavior is reached, estimated as the value at
which I− Iasympt / I is smaller than a given value, 1% and 5% in the
figures. It is slightly larger for disordered arrays, it increases lin-
early with the number of islands, and it is approximately 3 and 2.5
times the offset voltage.
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neous via Ei
e−h�. As observed in Fig. 5, Eq. �23� gives a good

estimate of the potential drop. The validity of Eq. �23� is

better seen when �̄i−Ee−h is plotted. It is proportional to the
resistance of the junction and equal in every junction if all
resistances are the same. This statement is valid indepen-
dently of the position of the resistance, as shown in the bot-
tom figure of Fig. 5 and its inset and on the asymmetry � of

the applied voltage �not shown�. The dependence of �̄i on
the junction resistance is easily understood. The tunneling
probability through a junction is inversely proportional to its
resistance. When the resistance is very large, the charge has a
lesser tendency to jump from an island to its neighbor and it
will spend more time in the island producing a dependence
of the time-averaged potential drop on the junction resistance
distribution.

As seen above, in this high-voltage linear regime the cur-
rent can be obtained from the average tunneling rate and
correspondingly from the average potential drop. Deviations
of the average value ��i, i.e., the root mean square �rms�, are
shown in the inset in Fig. 5 in the form of error bars. They
are slightly smaller at the contact junctions as the potential at
the electrodes is restored to its nominal value via a battery
prior to any tunneling event and larger at junctions with a

larger resistance. Fluctuations in the local voltage drop �i
increase with applied bias voltage as the number of possible
charge states and the width of the distribution of hopping
energies do. Fluctuations are larger at those junctions with a

larger resistance but ��i /�̄i is smaller.

2. Low-voltage regime

Close to threshold the current depends linearly on V−VT.
The average potential drop mainly reflects the charge state of
the array at threshold. This charge state depends on the
asymmetry of the voltage drop � and disorder and in a sym-
metrically biased clean array on the even or odd number of
islands. For �=1, charges enter from the source and �N−1�
bulk junctions prevent charge motion. If an electron reaches
the last nanoparticle, it can freely jump onto the drain at zero
potential. There is no charge gradient at the drain junction.
Consequently, the potential drop at this junction vanishes at
threshold. On the contrary, at the �N−1� bulk junctions there
is a charge gradient equal to unity, with the corresponding
potential drop 2Ec

isl. To allow current V0−�1 equals the ex-
citonic energy of the first junction, approximately equal to
Ec

isl. Close to threshold, as the bottleneck for the current is
the entrance of electrons from the source the charge state of
the array is most of the time equal to the one at threshold and
only perturbed by the fast passage of charges. The average
potential drop, plotted in Fig. 6�a� for a clean array with all
junction resistances equal, is almost the same as the static
potential drop at threshold.

For �=1 /2 and odd number of particles, at threshold the
charge gradient and charge potential drop in a clean array
are, respectively, one and 2Ec

isl at the bulk junctions. At the
contact junctions the potential drop is Ec

isl. As in the �=1
case discussed above, the average potential drop in the linear
regime close to threshold is very close to the one found at
threshold, which equals the excitonic energy at each junc-

tion, �̄i−Ei
e−h�0, what can be seen in the main figure in Fig.

6�b�. When the number of particles is even, the charge gra-
dient at one of the junctions vanishes. As shown in the inset

of Fig. 6�b�, �̄i−Ei
e−h in the bottleneck regime is positive and

equal for all the junctions. This reflects that every junction is
uncharged with equal probability. In the disordered case,
only those junctions with upward steps in the disorder poten-
tial are charged, and this is reflected in the average potential
drop, in Fig. 6�c� which adds disorder, charge, and bias po-
tential. It fluctuates between −2Ec

isl and 0, instead between
−Ec

isl and Ec
isl as the disorder potential does.

The threshold voltage does not depend on the resistance
of the junctions, but the flow of charge does. This appears on
the average potential drop on such a small scale that even if
the threshold voltage potential drop is subtracted at each
junction and for reasonably large changes in resistance it is
not visible �see main figure in Fig. 6�d��. This differs from
the dependence observed in the high-voltage regime. For ex-
tremely large values of the resistance disorder, a weak effect
on the average voltage at bias close to threshold can be seen
�not shown�. In this case, the potential drop at a junction with
a larger resistance is slightly larger than at the rest. At the
adjacent junctions, it is slightly smaller, which reflects the
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FIG. 5. �Color online� Top: main figure shows the average po-
tential at the islands �̄i as a function of position for a disordered
array with N=50, �=0.5, and all junction resistances equal. As

shown in the inset the average potential drop at the junctions �̄i is
homogeneous only once the excitonic energy is subtracted. The

value subtracted is smaller at the contact junctions where �̄ is
smaller. The error bars give an estimation of the fluctuations of the
potential drop. Bottom: main figure �inset� show the average poten-
tial drop, with error bars giving its root mean square at the junctions
with the excitonic energy subtracted corresponding to a clean array

with the first �middle� junction ten times larger than the rest. �̄i

−Ei
e−h is proportional to the junction resistance. This proportionality

holds only once the excitonic energy is subtracted.
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average charge state of the nanoparticles joined by the large
resistance. A special case is a N-even clean �=0.5 array with
the first resistance larger than the other ones, shown in the
inset in Fig. 6�d�. The average potential drop differs consid-
erably with respect to the one found in the inset in Fig. 6�b�.
The presence of the larger resistance at a contact junction
modifies the average charging of the array and selects the
opposite contact junction as the one which lacks charge gra-
dient.

The rms of the junction potential drop at low bias voltages
are very small in some of the cases analyzed, of order of
10−3Ec

isl in the main figures in Figs. 6�a� and 6�b�. The error
bars are small because most of the time the array is at the
threshold charge state. This is not the case in the inset in Fig.
6�b� where fluctuations are or the order of 0.3Ec

isl, or in the
inset in Fig. 6�d� where they are small everywhere except at
the last two junctions where they are of order Ec

isl. Disorder
also increases the fluctuations in the average voltages to val-
ues of the order of the charging energy.

3. Intermediate voltage regime

The most interesting regime to analyze the voltage drop is
at intermediate voltages where the I-V curve show the Cou-
lomb staircase. For the case of a clean array with capaci-
tively coupled nanoparticles, Stopa60 argued that the steps in
the I-V characteristic correspond to alternation of the charge
density between distinct Wigner crystalline phases. The pos-
sibility of a state with charges periodically ordered to mini-
mize their repulsion, if present, should lead to oscillations in
the potential drop along the array. Such an observation would
be a clear evidence of correlated motion.

The average potential drop �with the excitonic energy
subtracted� through the array for several voltages corre-
sponding to clean N=50 nanoparticle arrays is shown in Fig.
7. Clear oscillations are seen. The number of maxima and/or
minima in the potential drop does not change in a given step
in the Coulomb staircase. For symmetrically biased arrays,
they increase in pairs from a step to the next one. For odd
and/or even number of particles, there is always a minimum
and/or maximum at the center of the array. The other
maxima and minima tend to be as equally spaced as possible.
Incommensurability between the period of the oscillations
and the lattice can distort equal displacement. When new
maxima or minima appear, they are closer to the source and
drain electrodes and move inward, producing a movement of
the other maxima and minima, with increasing voltage. This
can be taken as a finite-size effect of the crystal state. As
the number of charges in the array increases with increasing
bias voltage, the amplitude and period of the oscillations
decreases, approaching the high-voltage regime for which

�̄i−Ei
e−h is homogeneous.
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FIG. 6. �Color online� Average potential drop through the array
at bias voltages very close to threshold. Fluctuations are smaller
than the symbols. �a� Clean N=50 array with �=1. The potential
drop vanishes at the last junction, as the source is at zero potential
and there is no charge gradient at this junction. At the first junction
is equal to the excitonic energy, which at a contact junction is ap-
proximately Ec

isl. �b� Average potential drop for a symmetrically
biased N=49 array in main figure �N=50 in the inset� with the
excitonic energy subtracted. Once the excitonic energy, associated
to the charge gradient at threshold has been subtracted the average
potential drop almost vanishes for N=49. The homogeneous and
positive value for N=50 reflects that every junction is uncharged

with equal probability. �c� Average potential drop at the junctions �̄i

corresponding to a disordered array with N=50 islands and �

=1 /2. �d� Main figure �inset�: �̄−Ee−h corresponding to a N=50
clean array with the middle �first� junction resistance 10.8 larger
than the other ones.
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FIG. 7. �Color online� Average potential drop, with the excitonic

energy subtracted �̄i−Ei
e−h at the junctions as a function of position

at several values of the bias voltage, for which the current is in the
Coulomb staircase regime, corresponding to a clean N=50 array
and �=1 /2. From top to bottom V=102,104,106,108,
110,112Ec

isl. Curves have been vertically displaced to avoid over-
lap. The potential drop show almost regular oscillations which re-
flect a stationary �but not static� charge ordering. The number of
maxima and minima does not change within a step and increases in
two �for �=1 /2� from one steps to the next one. The position of
maxima is slightly adjusted within a step. They start appearing close
to the electrodes and reflect the entrance of charge from them.
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For �=0,1 the step width is the half compared to �
=1 /2. Charges enter through just one of the contact junc-
tions. The different in number of maxima and/or minima
between two adjacent steps is one �not shown� and the po-
tential drop at the central junction alternates between being a
maximum and a minimum. The even-odd effect disappears.

The anomalous potential drop can be also seen in the
potential drop at a given junction as a function of the bias
voltage, shown in Figs. 8�a� and 8�b� for junctions 1 and 25
for a clean symmetrically biased 50-islands array. At the first
junction the potential drop show clear oscillations as a func-
tion of the bias voltage, which reflect that new charges state
at the first island are allowed. The potential drop increases
until an extra charge can be accumulated at the first nanopar-
ticle; for larger voltages the average occupation of first island
increases and the voltage decreases smoothly until a new
value at which it increases again as the increase in occupa-
tion of first island cannot compensate the increase in the
electrode potential. Oscillations, but less regular and less
pronounced due to the movement of maxima and minima
discussed above, are also observed at intermediate junctions.
The potential drop is much more homogeneous at the middle
of the array, where there is always a minimum �or a maxi-
mum� in the potential drop.

Charge or resistance disorder alters the charge motion and
frustrates the formation of this crystal-like state, as seen in
Figs. 8�c� and 8�d�. This is the opposite behavior that would

be naively expected if one just associates the appearance of
plateaus with the oscillations in voltage drop and emphasizes
that the step profile is just a consequence of the dependence
on the bias voltage of the tunneling rate of the processes,
which control the current. The rms of the junction potential
drop �not shown� is larger than at low voltages and smaller
than at high voltages. It is of the order of the excitonic en-
ergy and reflects the variation in occupation of the island. It
slowly increases with voltage.

IV. LONG-RANGE INTERACTIONS: SCREENING AND
CORRELATIONS

A. Interaction potential of an array of spheres

In Sec. III we assumed that the charges in different con-
ductors did not interact. In free space two pointlike charges
interact via Coulomb law with an 1 /r dependence, being r
the distance between them. The same dependence applies for
charges in two conductors if they are far apart. When two
conductors become closer together the mobile charges in
their surfaces screen the interaction between the charges in
them, which then differs from the 1 /r Coulomb law. Other
metallic systems in the surrounding environment contribute
also to this screening. Here we describe the resulting inter-
action C�


−1 , measured in units of Cisl
−1 and calculated as de-

scribed in the Appendix.
In Fig. 9�a� we show how Cii

−1 and Ci,i+1
−1 and the excitonic

energy Ei
e−h depend on the distance between the particles

d /risl for the case of an array with N=100 equal-sized is-
lands at the center of the array. The effects of screening start
to be relevant for d /risl�1−2. At this value Cii

−1 deviates
from unity and when d /risl→0, approximately at d /risl

=0.002 it saturates at about 0.68. Ci,i+1
−1 increases following a

1 /r law as d /r is reduced until d /risl�1–2. Then it deviates
from this law and finally it saturates at about d /risl=0.1. For
large d /risl, Ei

e−h decreases when d /risl is reduced following
the 1 /r increase in Ci,i+1

−1 . For d /risl�2, its value is affected
both by the increase in Ci,i+1

−1 and by the decrease in Cii
−1 and

at small distance is controlled by this last effect. Finally it
saturates.

The dependence of Ci,i+j
−1 on j that we have obtained for

the experimentally relevant case of an array of spherical par-
ticles is plotted in Fig. 9�b�. Compared with a 1 /r law, at
short distance the screened interaction potential decreases
and at large distances it increases. When the particles are
very close, there is a bump in the renormalized interaction.
The potential approaches the 1 /r law from above. Only
when two charges are in the same particle or at the nearest-
neighbor one the interaction between them decreases. Some
discussion on the origin of this bump is given in the Appen-
dix.

Compared to other one-dimensional array geometries pre-
viously studied, in the case of spherical nanoparticles studied
here, screening is less important than in the case of cubic
islands69 but larger than for the thin disks.70 For the case of
thin circular disks �with disk axis perpendicular to the array
axis�, Whan et al.70 found that a 1 /r law describes well the
dependence of the nondiagonal inverse capacitance matrix
elements on distance and that the diagonal elements are re-
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FIG. 8. �Color online� �a� and �b� show the average potential
drop at the first and 25th junctions as a function of bias voltage for
a clean array with N=50 islands, �=1 /2, and no resistance disorder
at intermediate voltages. The average potential drop at the contact
junction oscillates as a function of the bias. The potential drop at the
center of the array depends monotonously on V. �c� and �d� show
�i−Ei

e−h for charge and resistance disordered 49-island arrays, re-
spectively, and �=1 /2. The Coulomb staircase is much more pro-
nounced in the presence of disorder. However, as shown here, the
oscillatory potential drop structure found in Fig. 7 and characteristic
of crystal like physics is destroyed.
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duced. On the other hand, Likharev and Matsuoka69 analyzed
the cases of an array of cubic islands and a continuum model
in which the discrete periodic structure is replaced by a con-
tinuous dielectric medium. They found that the interaction
potential could by approximated by the expression

U�m� =
e2

a
� �

m0
exp�− �m

m0
 +

1

m
�1 − exp�− �m

m0
� .

�24�

In this expression, m is the distance in units of the array
period a, m0=r0 /a, with r0=S� /� as a characteristic decay
length of the interaction. � is the interisland dielectric con-
stant, S is the junction surface, and � is a fitting parameter
with value very close to 1 and related to � by

� =
2

�
−

�

2
. �25�

Equation �24� shows a bump in the 1 /r dependence similar
to ours. We have tried to fit our results with Eq. �24� but have
not been able.

The interaction that we have obtained differs considerably
from the one resulting from capacitive coupling only to near-
est neighbors, which has been extensively used in the litera-
ture. In such a model only Cii=C0+2C and Ci,i�1=−C are
finite. For an infinite array its inverse

Cij
−1 =

1

Ce−	i−j	/�, �26�

with C=2Csh��−1�= �C0
2+4CC0�1/2. � increases with C /C0

and can be viewed as the decay length of the interaction.
Interactions on the same island are given by Cii

−1=1 /C. In
an array of finite length N, this value is approached, from
below, as N increases. The onsite case is recovered when C
=0 and long-range interactions appear in the opposite limit
C0 /C→0. In the later limit the interaction potential decays
linearly with distance

Cij
−1 =

1

2C
�N

2
− 	i − j	 . �27�

The energy to create an electron-hole pair Ei
e−h=1 /2Cii

−1

+1 /2Ci�1,i�1
−1 −Ci,i�1

−1 remains bound and equal to 1 / �2C�.
On the contrary, the diagonal element Cii

−1= 1
4CN diverges

with the array size. There is not such a divergence in Cii
−1

with the array size in our model. Cii
−1 is finite as shown in

Fig. 9�a�.
To analyze the transport properties the array is sand-

wiched between two electrodes, much larger than each of the
nanoparticles. To this end we consider a one-dimensional
array of N nanoparticles placed in between two large
spheres, with radius R, which play the role of the leads. The
large size ensures large screening and that C00

−1 and CN+1,N+1
−1

are much smaller than the islands Cii
−1. The spherical shape

greatly simplifies the calculations of the inverse capacitance
matrix. For the size of the electrodes used in the text, R
�50–100risl, the inverse capacitance of the islands close to
the electrodes is slightly reduced compared to those at the
center, except for very small d /risl. For small d /risl the in-
verse capacitance of islands at the center of the array is al-
most insensitive to the presence of the electrodes. If the elec-
trodes are much larger the dependence of the inverse
capacitance matrix elements with the size of the electrodes
can become nonmonotonous. This behavior, like the one
found for small d /risl is probably associated to the spherical
shape chosen to model the electrodes.

The interaction between the charges at the islands and
those at the electrodes and the inverse capacitance elements
of the electrodes determine �i

� and �i
�, which control the

polarization voltage drop through the array and to a large
extent the current flow at small voltages. From Eq. �7� we
see that �i

� depends both on the geometry of the electrodes
and the array and on �. For most capacitance matrices, in
particular, for the capacitance matrices discussed here, the
polarization potential is not linear in the island label i and the
potential drops are larger at the junctions close to the biasing
leads. A linear drop of the polarization potential �i

pol= ��
− i

N+1 �V, requires �i
�=1 / �N+1� for all junctions and inde-

pendence on �. In the onsite case, �i
��onsite� is finite only at

junctions 1 and N+1 and given by �1
��onsite�=� and
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FIG. 9. �Color online� �a� Island inverse capacitance Cii
−1,

nearest-neighbor interaction Ci,i+1
−1 , and excitonic energy, all in units

of �Cisl�−1, at the center of a 50 nanoparticle array �without elec-
trodes� as a function of the interisland separation. The solid lines
give the value obtained with a 1 /r interaction between charges. The
effect of screening is evident for d /risl�1–2. All the plotted quan-
tities saturate to a finite value as d /risl vanishes. �b� Decay of the
interaction potential from the center of a 50 nanoparticle array
�without electrodes� as a function of island position for different
values of d /risl. Inverse capacitances are given in units of �Cisl�−1.
The solid lines correspond to an unscreened 1 /r law. For large
distances the 1 /r law is approached from above. The bump is
clearly observed only for very small d /risl. The effect of screening
is negligible for d /r�3. In �a� and �b� the dashed and dotted lines
are included as a guide to the eye.
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�N+1
��onsite�=�−1. In general, as the range of the interactions

between charges increases, �i
� is more homogeneous

In previous models31 C−1 had dimension N�N, including
only the nanoparticles. The inverse self-capacitances of the
electrodes, C00

−1 and CN+1,N+1
−1 , the inverse mutual capacitances

between them, C0,N+1
−1 =CN+1,0

−1 , and the indirect term in Eq.
�11� were neglected. In our model dimension of C−1 is �N
+2�� �N+2�. For the large electrodes used here CK,L

−1 are
small quantities, which do not influence the transport. On the
other hand, the matrix element between the electrodes and
the islands CK,j

−1 appear in the definition of the polarization
potential that plays an important role in the discussion of the
transport. An expression for �pol analogous to Eq. �6� can be
defined in previous models. For example, in the model used
by Middleton and Wingreen,31 the interaction between an
island and an electrode is given by the interaction of the
charge of the island with charges induced by the electrode in
the islands immediately adjacent to the electrode. This inter-
action results in a polarization potential,

�i
MW,� = Ci−el��C1i

−1 − �� − 1�CNi
−1� . �28�

Here Ci−el is the capacitance between the source or drain
electrode and its adjacent island. In this model, except in the
extreme long-range case C0 /C→0, the polarization potential
does not decay linearly with distance and depends on the
asymmetry of the bias potential. Other authors, within differ-
ent models, have imposed a uniform polarization drop
through the array.57

B. Screening of disorder potential

If interactions between the charges are short range, �Cij
−1

=�ij�, the set of disorder potentials ��i
dis�, once the screening

of the potential due to the mobile charges is taken into ac-
count, is uniformly distributed in the interval −Ec

isl��i
dis

�Ec
isl. The probability associated with each pair, ��i

dis ,�i−1
dis �,

is a constant �see Fig. 10� and the distribution of the prob-
abilities of the potential drops due to disorder across the
array junctions, �i

dis=�i
dis−�i−1

dis , has the form45

P��dis� =
1

�MAX
dis �1 −

	�dis	
�MAX

dis  �29�

and �MAX
dis =2Ec

isl. In the presence of long-range interactions,
the charges, which flow to compensate the large fluctuations
of the disorder potential, modify potential at neighboring is-
lands and the screened disorder is correlated.45 The probabil-
ity of each pair ��i

dis ,�i−1
dis � is no longer a constant. P��dis�

depends on the inverse capacitance matrix C−1. To analyze
these correlations and obtain the proper disorder potential
distribution, we assign the potentials by first randomly as-
signing potentials to the islands �i

dis-bare in the interval −W
��i

dis-bare�W with W larger than the charging energy. We
then find the equilibrium configuration of charges �Qj

sc� that
occupy the array with island disorder potentials ��i

dis-bare� and
grounded leads �V0=VN+1=0� and redefine the potentials at
each site using the expression

�i
dis = �

j=1

N

C̃ij
−1Qj

sc + �i
dis-bare. �30�

The effect of the screening charges �Qj
sc� is included in the

redefined potentials ��i
dis� so we then reset the number of

charges at each site to zero to avoid double counting the
charge when we calculate the total electrostatic energy of our
system.

Following the redefinition of the disorder potentials, we
find that on average the distribution of the disorder potentials
and the disorder potential drops ��i

dis� between adjacent is-
lands are independent of W.

The values of ��i
dis� and ��i

dis� are bound by �Cii
−1 /2 and

�Ei
e−h, respectively. When in this state, adding an additional

charge to any island in the array increases the energy of the
system. The energy of adding an additional charge to an
island from a large electrode outside the system with negli-
gible self-inverse capacitance is given by Ei

add

= �1 /2�Cii
−1��i

dis, where the top �bottom� sign refers to the
change in energy of the system as a result of adding a posi-
tive �negative� charge to island i. Since Ei

add�0 when the
array is in equilibrium, the disorder potential values ��i

dis�
must lie between ��1 /2�Cii

−1. Additionally when the array is
in equilibrium state, the energy to hop between all pairs of
adjacent sites must be greater than zero. From Eq. �3�, the
disorder potential differences �i

dis are restricted between
�Ei

e−h.
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FIG. 10. �Color online� Probability distributions of disorder po-
tentials �dis in �a� and disorder potential differences �dis in �b� for
50 island in between two grounded leads with purely onsite inter-
actions and with long-range interactions at two spacings: d /risl

=0.5 and 10. The onsite �dis distribution is described by Eq. �29�
with ��MAX

dis =Ei,i−1
e−h,onsite=2Ec

isl, where Ec
isl=1 / �2Cisl�. For all the

cases, P��dis� �P��dis�� is finite valued for �dis ��dis� between
�0.5Cii

−1 ��Ei
e−h�, which decreases with decreasing spacing. As the

spacing decreases, the probability of having �dis and �dis values
close to zero increases. The vertical lines are included as guidelines
to emphasize the edges of the distributions. The histograms average
the values of the potentials of all islands and the values of the
potential drops between all adjacent islands over many realizations
of disorder �O��104��.
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Figures 10�a� and 10�b� compare P��i
dis� and P��i

dis� for
arrays with purely on-site interactions �Ci�j

−1 =0� with arrays
with long-range interactions �Ci�j

−1 �0� at two spacings,
d /risl=0.5 and d /risl=10. In Fig. 10�a�, P��i

dis� is a constant
between �Ec

isl for the on-site case. As the range of interac-
tions increases �decreasing d /risl�, the width of P��i

dis� de-
creases because the disorder potential values are bound by
�0.5Cii

−1. Increasing Coulomb interactions also increases
�decreases� the probability of small �large� values of 	�i

dis	. In
Fig. 10�b�, the on-site P��i

dis� distribution is given by Eq.
�29�. Similar to the trends in Fig. 10�a�, as the range of
Coulomb interactions increases, the width of the distribution
decreases and the probability of small �large� 	�i

dis	 values
increases �decreases�. The increased probabilities of small
	�i

dis	 are due to Coulomb correlations that make it more
likely for the disorder potentials of neighboring islands to
have similar values �see Fig. 11�. Increasing the range of
Coulomb interactions leads to a greater relative reduction in
the width of P��i

dis� than P��i
dis� because the former are

bound by �Ei
e−h, whereas the latter are bound by �0.5Cii

−1.
In the onsite case, Ei

e−h equals 2Ec
isl for all junctions between

two islands and increasing Coulomb interactions can reduce
Ei

e−h significantly due to an decrease �increase� in Cii
−1

�Ci,i�1
−1 � �see Eq. �4��.
Our results for P��i

dis� differ to some extent from those by
Elteto and co-workers,45 calculated with an inverse capaci-
tance matrix Cij

−1 that is finite only for nearest neighbors and
charge disorder modeled by a set of stationary quenched
charges. The distributions of Elteto and co-workers45 are
bound by �Cii

−1 instead of Ei
e−h due to the lack of correla-

tions in their quenched disorder model. We permit the inter-
actions among the screening charges to determine whether or
not the disorder potentials are correlated.

In Fig. 11, we plot 
�i
dis�k

dis� to show how interactions
among charges affect the correlations among disorder poten-

tials. In the onsite case, correlations are finite only if i= j. In
this case, the disorder potentials of different islands are un-
correlated. In the case of long-range interactions with d /risl

=0.5, correlations are maximal when i= j, but they do not
vanish for i� j. 
�i

dis�k
dis� is finite for at least 	i−k	�3−4.

The correlation of disorder decays faster than the interac-
tions, as shown in the figure. The correlations between �i

dis

and its nearest neighbors �i�1
dis make it more likely for the

disorder potential differences �i
dis to have small magnitudes.

V. LONG-RANGE INTERACTIONS: TRANSPORT

A. Threshold

When the interaction strength between charges at the
nanoparticle and those at the electrodes does not vanish for
any particle the polarization potential drop at every junction
is finite. In a clean array, the potential gradient created by
this polarization potential drop allows current once an
electron-hole pair is created and the threshold voltage equals
the minimum voltage, which allows the creation of an
electron-hole pair. This differs from what was found in the
purely on-site case.

The cost in energy to create an electron-hole pair in junc-
tion i in an uncharged array is �E=Ei

e−h−�i
�V. We can de-

fine a junction dependent threshold voltage for creating an
electron-hole pair Vi

TH,�=Ei
e−h /�i

�. In the onsite limit Vi
TH,�

is finite only at one or both contact junctions and infinite at
the bulk but with long-range interactions Vi

TH,� is finite at
every junction. Due to the smaller value of the excitonic
energy and the larger potential drop Vi

TH is smallest at the
contact junctions.

Figures 12�a� and 12�b� show the dependence of the
threshold voltage VT of clean, symmetrically biased arrays
with long-range interactions on N and on the spacing be-
tween array sites, d /risl. The threshold voltage is determined
by �1

� and �N+1
� , which give the polarization potential drops

at the contact junctions. VT increases sublinearly with in-
creasing N and eventually saturates. As the spacing between
the leads increases, the polarization potential drop at each
contact junction decreases until eventually it reaches a mini-
mum value at which the polarization of each contact is only
due to the interaction of each contact with the lead closest to
it. For N and d /risl large enough that the polarization poten-
tial drop across the contacts is not strongly influenced by
interactions with the opposite lead, decreasing the nanopar-
ticle spacing decreases the polarization potential drop across
the contact junctions and the threshold increases. For N and
d /risl small enough that both leads strongly influence the
polarization of both contact junctions, decreasing d /risl in-
creases the polarization potential drop at the contact junc-
tions and the threshold decreases. The potential drops and
threshold can be estimated by using an unscreened r−1 model
for the inverse capacitance elements associated with the
leads, Ci,0

−1 and Ci,N+1
−1 . These estimates are included as the

dashed lines in Figs. 12�a� and 12�b�.
As shown in the inset of Fig. 12�b� VT changes smoothly

with �, contrary to the peak-valley structure found in the
onsite interaction case. The threshold voltage is less depen-
dent on � as N increases and as d /risl decreases because the
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FIG. 11. �Color online� Comparison of 
�25
dis�k

dis� normalized by
	�25

dis	2 for 50-island arrays with onsite �top plot� versus long-range
�bottom plot� Coulomb interactions. In the presence of long-range
interactions between the charges, the values of the disordered po-
tentials are also correlated. Ck,25

−1 normalized by C25,25
−1 is included in

the long-range case to show that correlations in the disorder poten-
tials are related to, but decay faster than the C−1 elements.
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applied voltage drops more homogeneously across the array
junctions. This dependence disappears completely if the po-
larization potential drops linearly. In this last case the thresh-
old voltage of clean arrays would be VT= �N+1�Ec

isl.
In the charge disordered onsite case every up step in the

disorder potential prevents current flow and has to be com-
pensated by a charge gradient. In the long-range case up
steps in the disorder potential drop can localize the charge
only if its value is larger than the polarization potential drop
at the same junction. Due to the polarization voltage drop at
the bulk, the threshold junction can be other than the contact
ones. In some cases with a finite polarization drop at a junc-
tion, which is slightly smaller than the energy cost for tun-
neling a small increase in the voltage in the electrodes per-
mits the tunneling. Increasing the voltage above the

minimum bias voltage, which permits the generation of
electron-hole pairs, will in the cases with small disorder po-
tential at the junction result in a negative potential drop at the
given junction and allows the flow of charges. However,
quite often, the entrance of more charges and the creation of
a charging potential gradient is required as in the onsite case.
The interaction between charges in different islands de-
creases the energy for the entrance of charges with opposite
sign and increases the one for the entrance of charges with
the same sign. This effect was attributed to an attraction �re-
pulsion� between the injected soliton and an antisoliton �soli-
ton� on the array by Bakhalov et al.48 Accumulation of
charges in the array increases the threshold voltage. On the
other hand, a value of �i

dis at the contact islands favorable for
the entrance of charge unto the array can decrease it, as the
polarization potential drop to allow entrance of charge is
smaller. Both mechanisms compete to determine VT. For
large d /risl the accumulation of charges is more important as
the voltage drop at the bulk junctions is small and on average
VT of large arrays will increase compared to the clean array
threshold voltage. On the contrary the second effect can be
more important for small d /risl.

Numerically we have found a linear dependence of the
threshold voltage on the number of particles in the array �see
Fig. 12�c��. Decreasing the array spacing decreases the aver-
age thresholds below the threshold values of the arrays in the
on-site limit. Only at the largest array spacing �d /risl=10�
studied we recover the dependence of the fluctuations of the
threshold voltage on array length predicted by Middleton and
Wingreen31 �see inset of Fig. 12�c��.

B. Flow of Current

1. Voltages close to threshold

In the onsite interaction case the linearity of current close
to threshold is due to the bottleneck character of one of the
junctions and the linear dependence of the energy for tunnel-
ing of the bottleneck process on the bias voltage. These two
assumptions remain valid for long-range interactions and a
linear �V−VT� dependence is also found. In the case of clean
arrays, the threshold and low-voltage bottleneck for current
are found at the contact junctions and

I �
�1,N+1

�

R1,N+1
�V − VT� . �31�

This equation can be obtained equating the current to the
tunneling rate at the contact junction, which acts as a bottle-
neck, as discussed in Sec. III B. For �=1 /2, for which
�1

1/2 /R1 and �N+1
1/2 /RN+1 have to be added in the expression

for the slope. Dependence on N, d /risl, and � via the depen-
dence of �1,N+1

� on these parameters is found as seen in Figs.
13�a� and 13�b�. The value of �i

�, which appears in the ex-
pression of VT, is the same that controls the linearity of the
IV curves very close to threshold. The behavior of the slope
of I vs �V−VT� with �, N, and d /risl is opposite to the one of
VT. For ��1 /2, increasing N and decreasing d /risl decreases
the slope because these changes reduce the contact junctions
polarization drop. For the same reason, biasing the array in a
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FIG. 12. �Color online� �a� and main figure in �b�: With symbols
it is respectively plotted the threshold voltage VT of symmetrically
biased arrays �=0.5, with no disorder as a function of number of
islands N and of array spacing d /risl for the inverse capacitances
calculated as described in the Appendix. The threshold voltage of
clean arrays is controlled by the value �i

� at the contact junctions.
The dashed lines are estimates for VT that use a r−1 interaction to
approximate the polarization potential drops across the contact
junctions �1

� and �N+1
� . Inset in �b�: Threshold voltage of clean

arrays for several array parameters as a function of � normalized to
the value for a symmetrically biased array. From top to bottom
d /risl=0.5,N=50, d /risl=0.5,N=20, and d /risl=10,N=50. �c�
Main figure: Average threshold voltage of disordered arrays versus
the array length at three different array spacings. The solid line
shows the dependence of the average threshold on array length in
the limit of onsite interactions. The inset shows the root-mean-
square deviation of the threshold voltage distribution. For small
d /risl it deviates from the N1/2 dependence found in the onsite case
�solid line�. In inset and main figure dashed-dot lines are a guide to
the eye and same legend as in �a� applies
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more asymmetric way �increasing �	�−1 /2	�� changes the
slope. The slope also depends on the junction resistances, as
in the case with on-site interactions �see Fig. 13�c��.

In Fig. 13�d�, we plot the current and its derivative with
respect to voltage for several configurations of disorder cor-
responding to the same value of d /risl, N, and � and the same
junction resistances. Contrary to the onsite case, the slope
depends on the charge-disorder configuration. With long-
range interactions, the above-threshold bottleneck �and
below-threshold current blocking� junction is not necessarily
either of the contact junctions but depends on the particular

disorder configuration. The slope of the linear dependence
can then be controlled by �i

� with i�1,N+1. The slope is
generally larger �smaller� when the bottleneck junction lies
closer to the edge �middle� of the array. Changing � also
modifies the slope of the disordered case, not shown. This
modification can be due to the change of �i

� with or without
a change in the bottleneck junction.

2. Intermediate voltage regime

As in the on-site case, the linearity of the current disap-
pears when the bottleneck description stops being valid. This
happens at very small values of �V−VT��10−2Ec

isl. To show
how this situation leads to sublinear behavior let us assume
that the transport happens through a sequence of N+1 tun-
neling processes and consider a bottleneck process with rate

�i=Ri
−1�i

�Ṽ with Ṽ=V−VT and another process in the se-

quence with rate � j =Rj
−1�Ej

T+� j
�Ṽ�. Here Ej

T is the gain in
energy of the second process at V=VT. If these two processes
have rates much smaller than the rest of processes in the
sequence, the current can be approximated by

I �
1

�i + � j
=

Ri
−1�i

�Ṽ

1 +
Ri

−1�i
�Ṽ

Rj
−1�Ej

T + � j
�Ṽ�

� Ri
−1�i

�Ṽ�1 −
Ri

−1�i
�Ṽ

Rj
−1Ej

T  .

�32�

The slope of the current and the lost of linearity depend
on the resistance of the junctions, as discussed in the on-site
case. In the clean long-range case, comparing the values of
�i

� the linear behavior lasts longer in shorter arrays, smaller
d /risl and smaller �, as in these cases the values of �i

� are
more homogenous throughout the array. The disordered
long-range case is more complex. Due to the nonhomoge-
neous increase in polarization voltage drop a junction, which
has a small energy gain can increase this gain more than
other junctions when the applied voltage increases and the
dependence of the slope with the array parameters is not so
easily predicted.

Above the linear regime there is a region of smoothed
steps in the I-V curve. Decreasing d /risl smooths the steps,
and for small d /risl, they are hardly distinguishable. This
behavior is seen in Fig. 14�a�, which compares the onset of
current at voltages not extremely close to threshold for sev-
eral array parameters. For clarity the curves have been plot-
ted as a function of �V−VT�. The staircase profile differs in
all these cases. The top curve corresponds to an N=50 array
with onsite interactions. In this case to allow current flow a
charge gradient at each bulk junction has to be created but
once charge can enter the array it flows easily through it
producing sharp onset of the current close to threshold. The
steps at higher voltages are just barely visible at this scale.
For long-range interactions, the polarization voltage at each
junction is finite and it is not necessary to create a charge
gradient at the inner junctions and the steps’ shape is modi-
fied. The three bottom curves correspond to d /risl=10. Sev-
eral features can be appreciated in these curves. The step
shape is clearly seen. As the potential drop at the inner junc-
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FIG. 13. �Color online� I-V curves of ordered arrays with long-
range interaction at voltages very close to threshold. The insets
show the derivatives of the I-V curves. As in the case with onsite
interactions very close to threshold the I-V is linear. The linear
regime ends at voltages V−VT�10−2Ec

isl, much lower than the val-
ues used in experiments to check the power-law dependence close
to threshold. �a� shows how varying the length and spacing of sym-
metrically biased arrays modifies the slopes of the linear regimes
due to the change in the polarization potential drop factors �i

� and
correspondingly the fraction of potential, which drops in the junc-
tion which acts as bottle-neck. �b� In a similar way, the slope de-
pends on how symmetrically the array is biased. �c� plots the I-V
curves and derivatives corresponding to clean arrays with equal
length d /risl and � but different junction resistances. Resistances in
these plots vary randomly in between �5–11�RT, �8–21�RT, and
23–83RT in top, middle, and lower curves. �d� I-V curves corre-
sponding to three different realizations of charge-disordered arrays
with all junction resistances equal N=50 and �=0.5. Contrary to
what was found for onsite interactions the slope of the low-voltage
linear current can be different for arrays with the same nominal
parameters if there is charge disorder. This reflects that the bottle-
neck is not necessarily a contact junction but can be a junction in
the bulk.
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tion is small, bulk junctions control the flow of current at
each plateau and their slope is small. The slope is larger for
shorter arrays. The step width depends on the value of �, as
also found for on-site interactions. Contrary to the short-
range case, the step width is not a constant throughout the
curve as the presence of charges in the array influences the
energy cost to add charges from the electrodes to the first or

last island. For small d /risl the polarization potential drop at
the inner junction is larger and the charges flow more easily.
In Fig. 14�b� we can see the different I-V curves in clean and
disordered arrays. Especially interesting is the disordered
d /risl=0.5 I-V characteristic. It looks superlinear, similar to
what would be found if a power-law larger than unity is
present at these voltages. We have observed that this ap-
proximate superlinear-type dependence is common in disor-
dered arrays with small d /risl. If experimentally the power-
law behavior expected close to threshold is measured at these
voltages �larger than those at which the linear behavior is
predicted�, the exponent of the power-law could be errone-
ously assigned a value larger than one.

3. Linear behavior at high voltages

Expression �21� is not restricted to on-site interactions and
applies also in the long-range limit. The slope of the current
does not depend on the range of the interaction or the pres-
ence of charge disorder but the offset voltage at which the
asymptotic expression cuts the zero current axis does64,65 via
the value of Ei

e−h. In Figs. 14�c� and 14�d� numerical results
are compared with the asymptotic behavior predicted by Eq.
�21�. In Fig. 14�c� I-V’s for symmetrically biased arrays with
N=50 nanoparticles and different interaction range are plot-
ted. At high voltages slopes are equal but the offset voltages
to which they extrapolate are not. Note the difference be-
tween the value of threshold and the one of the offset. In
particular, the d /risl=10 curve has a smaller threshold and
larger offset than the d /risl=0.5. In Fig. 14�d� the influence
of the number of junctions and their resistance in the high-
voltage current are reported and shown to be in good agree-
ment with the approximate prediction.

C. Voltage drop

With long-range interactions in a clean array, VT is given
by the minimum bias voltage, which allows the creation of
an electron-hole pair. Very close to VT the voltage drop re-
flects the polarization drop �i

�V at each junction. The poten-
tial drop distribution depends on the length of the array N,
the bias asymmetry �, and on the range of the interactions
d /risl. This dependence is confirmed in Figs. 15�a� and 15�b�
where the potential drop is plotted for different array param-
eters. The value of �i

� is included for comparison in Fig.
15�b�. The voltage drop is very different from the one found
in the onsite case �included in the inset of Fig. 15�a��, where
in the bulk it is due to charge accumulation at the islands.
The dependence on the value of the resistance is extremely
weak even once the polarization potential drop is subtracted
�not shown� and not observable, except if the difference in
the value of resistances is very large. In the disordered case
with long-range interaction in some cases once charge is al-
lowed to enter the array it can flow. Then the average poten-
tial drop is approximately the sum of the disorder potential
and the polarization potential. In general, when this happens
the threshold voltage is smaller than the one in the clean case
as the disorder potential reduces the polarization potential
drop necessary in at least one of the contact junctions. For
large d /risl it is more probable that one or more charges
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FIG. 14. �Color online� In �a� and �b� the I-V characteristics
show the Coulomb staircase and correspond to arrays with homo-
geneous resistances. �a� From top to bottom, the first four curves
correspond to �=0.5 and respectively to N=50 with onsite interac-
tion; N=50 with d /risl=0.5; N=30 with d /risl=10; N=50 with
d /risl=10. The lowest curve corresponds to a N=50 and �=1 and
d /risl=10. The threshold voltage has been subtracted. VT equals 98,
43, 14, 16, and 9.7, respectively. In the onsite case it is necessary to
create a charge gradient at every junction to allow current, but once
charge can reach the opposite electrode it flows easily and the I-V
shows a large jump close to threshold. For d /risl=10 a charge gra-
dient is not created and bulk junctions slow the current flow pro-
ducing the staircase structure. The step width is smaller for forward
bias �=1 than for symmetric bias, but contrary to the behavior
found in the Coulomb staircase for onsite interactions with long-
range interactions the step width is not fixed. The steps are washed
out for d /risl=0.5 due to a more homogeneous polarization poten-
tial drop through the array. �b� I-V curves for disordered arrays with
d /risl=0.5,10. The clean case is included for comparison. �c� I-V in
a large voltage scale for clean arrays with homogeneous resistances;
from top to bottom the solid lines correspond to d /risl=0.5, d /risl

=10 and on-site interactions. The dashed lines give the asymptotic
predictions for d /risl=0.5 and 10. At high voltages all the curves
have the same slope given by Rsum

−1 . The offset voltages differ as the
excitonic energies do. �d� I-V curves in a large voltage scale corre-
sponding to d /risl=0.5 symmetrically biased arrays. From top to
bottom N=30 and N=50 disordered arrays with homogeneous re-
sistances and a N=50 clean array with the first resistance ten times
larger than the other ones. The dashed lines give the asymptotic
predictions. The slopes of both N=50 curves differ, but their offset
voltages are the same.
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remain stacked in the array, similar to the case with on-site
interactions and the charge potential due to these stacked
charges has to be added.

At intermediate voltages, in the Coulomb staircase re-
gime, a similar behavior to the one found in the onsite case is
observed in Fig. 16�a� corresponding to a clean array and
d /risl=10. In Fig. 16�b� corresponding to d /risl=0.5 for all
the voltages plotted, the number of maxima is 2, and their
amplitude decreases until at the largest voltage oscillations
cannot be discerned. Comparing with Fig. 14 one realizes
that the step number has not changed. The I-V curve reaches
the high-voltage regime without showing stepwise behavior.

At high voltages, the potential drop is qualitatively similar
to the one found in the on-site case. The voltage drops lin-
early only after subtracting from each junction the excitonic
energy. Some examples of this behavior are shown in Fig.
16. In Fig. 16�c� we can see that as expected, in the absence
of resistance disorder, once the excitonic energy is subtracted
the potential drops homogeneously through the array even if
there is charge disorder, while it is proportional to the resis-
tance value when resistances are not homogeneous, as in Fig.
16�d�.

VI. SUMMARY OF RESULTS

In summary, we have studied the electronic transport at
zero temperature through an array of N metallic islands with
quantized charges placed in between two large electrodes,
the source and the drain, respectively, at voltages V0 and
VN+1 with V0−VN+1=V and V0=�V. The nanoparticle level
spacing was assumed negligible and the transport treated at
the sequential tunneling level. The interactions between the
conductors are given by an inverse capacitance matrix C−1.
We have considered both short �restricted to charges placed
in the same island� and long-ranged interactions. For the case
of long-range interactions C−1 includes the screening pro-
duced by the proximity of the other conductors. To determine

this screening, we have developed two methods, which allow
us to calculate the inverse capacitance matrix of the system
under study �see Appendix�.

Screening and disorder for long-range interactions. As
shown in Fig. 9�a�, the effect of screening starts to be rel-
evant when d /risl�1–2, there is no divergence in the value
of Cii

−1 at small d /risl values, but capacitance values and their
inverses saturate at finite values. As discussed previously by
Matsuoka and Likharev69 for the case of cylindrical nanopar-
ticles, the interaction between charges is reduced, with re-
spect to the 1 /r-law, only when the nanoparticles are very
close, at larger distances the interaction increases and ap-
proaches the 1 /r law from above, resulting in a bump in the
interaction potential when compared to Coulomb law �see
Fig. 9�b��. In the Appendix, we relate this antiscreening ef-
fect to the dipolar charges induced in the conductors.

Long-range interactions screen the disorder potential and
induce correlations between the values of �i

dis on different
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FIG. 15. �Color online� Average voltage drop close to threshold
for N=50 clean arrays with different parameters. Main figures are
for �=0.5 and long-range interaction. The average potential drop
essentially equals the polarization potential for each value of d /risl,
which is plotted as filled small dots in �b� for comparison. This
behavior contrasts with the potential due to the charge gradient,
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As shown by comparing main figure in �a� with the inset in �b�, a
change in the value of � modifies the potential drop through the
array.
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FIG. 16. �Color online� Average potential drop at the array junc-
tions at intermediate �upper figures� and high voltages �lower fig-
ures� for �=0.5 and N=50. Upper figures correspond to clean ar-
rays. Curves in �a� are for d /risl=10 and �from top to bottom� V
=20,32,44,56Ec

isl. The oscillations in average potential found in
the on-site case at intermediate bias voltages are still present, and
the number of maxima increases in two when going to a higher
step. In �b� d /risl=0.5 and V=46,60,70,80,90Ec

isl. The number of
maxima has not increased in this range of voltages but oscillations
are smoothed with increasing bias voltage. In spite of the large
value of the voltage the current is still in the first step of the Cou-
lomb staircase �see Fig. 5�a��. The potential drop at V=90Ec

isl re-
sembles the one at high voltages, homogeneous except by the exci-
tonic term responsible of the offset. In �c� and �d� the excitonic
energy has been subtracted from the average potential drop at high
voltages. Once this term is subtracted the average potential drop is
completely homogeneous through the array in �c� where there is
charge disorder, and all resistances are equal but not in �d�, which
corresponds to a clean array but with resistances which vary ran-
domly between �5–11�RT.
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islands. The distribution of the island and junction potentials
is modified in comparison to the one found for on-site inter-
actions. The maximum and minimum values of ��i

dis� and
��i

dis� are given by �Cii
−1 /2 and Ei

e−h. These effects are
shown in Figs. 10 and 11.

Threshold. In the purely onsite interaction limit for clean
symmetrically biased arrays the threshold voltage VT equals
2NEc

isl for odd N and 2Ec
isl�N−1� for even N. The even-odd

effect disappears for forward biasing ��=1,0� and VT
=Ec

isl�2N−1� �see Fig. 1�a��. The dependence on the number
of nanoparticles differs qualitatively of the dependence pre-
dicted for weakly coupled islands52 because in the purely
onsite case a charge cannot flow freely through an empty and
clean array and a charge gradient at the junctions has to be
created to allow the flow of current. The threshold voltage is
not affected by disorder in the junction resistances but it
depends on the selected disorder configuration if charge dis-
order is present. With charge disorder, the average threshold
voltage is independent of � and we recover previously pre-
dicted values VT=Ec

islN �see Fig. 1�b��.
With long-range interactions, the polarization potential

drop across the array creates a potential gradient which fa-
cilitates charge flow. In clean arrays, VT is the minimum
voltage that allows the creation of an electron-hole pair �see
Figs. 12�a� and 12�b��. In the disordered case, two effects
compete that can increase or decrease the threshold voltage
compared to the clean case. Charge accumulation can be
induced by up-steps in the disorder potential, increasing VT,
and the disorder potential distribution can reduce the energy
to create an electron-hole pair decreasing it. The latest effect
dominates for small d /risl �see Fig. 12�c��.

Current power-law dependence close to threshold. At
voltages very close to threshold, current depends linearly on
�V−VT�. This dependence has been obtained both numeri-
cally and analytically and resolves previous controversy on
the power-law close to threshold. The linear behavior occurs
because the junction through which charges enter into the
array acts as a bottle neck. The range of voltages at which
this linear dependence holds is probably too small to be ob-
served experimentally. Linearity is lost when the tunneling
rate through the contact junctions is comparable to the tun-
neling rate of other processes. In the short-range case, Fig. 2,
the slope is independent of the number of nanoparticles N
but depends on the resistance of the contact junctions and on
the bias parameter �. With long-range interactions, Fig. 13,
the slope depends on the resistance of the bottle-neck junc-
tion, which is not necessarily at the contacts. Since the slope
also influenced by the way in which the polarization voltage
drops through the array it depends on � and the number of
particles.

Current in the Coulomb staircase regime. The linear re-
gime is followed by a Coulomb staircase at intermediate
voltages. The staircase profile depends on the junction resis-
tances values. For onsite interactions, see Fig. 3, the width of
the steps depends on � and on the presence of charge disor-
der. For clean arrays the bias voltage step width is 2Ec

isl for
forward bias and 4Ec

isl for symmetric bias. The step width
changes if disorder is present but still depends on the value
of �. With long-range interactions, the steps are smoother
than in the onsite case �see Figs. 14�a� and 14�b��. Contrary

to the onsite case, due to the interaction between the charges
in different islands, the width of the steps is not fixed.

Linear regime at high voltages. At high voltages the cur-
rent depends linearly on the bias voltage. The asymptotic I-V
characteristic is given by Eq. �21� and cuts the zero current
axis at a finite offset voltage �see Figs. 4 and 14�. The high-
voltage linear behavior is reached for bias voltages Vlinear
approximately three times larger than the offset. Vlinear can be
very large in long arrays. The slope of the asymptotic linear
I-V is given by the inverse of the sum of the junction resis-
tances in series. The offset voltage is given by the sum of the
excitonic energies of all the junctions and its value depends
on the range of the interaction.

Potential drop. In the bottleneck regime in the short-range
case, the potential drop reflects the charge accumulation at
the islands, necessary to create the potential gradient through
the array which allows the flow of charge �see Fig. 6�. The
effect of disorder in resistances is extremely weak, except for
the case of symmetrically biased arrays with even number of
particles. On the contrary for long-range interactions, the
voltage drop through the array close to threshold reflects the
polarization contribution �i

� due to the electrodes, as shown
in Fig. 15.

In the on-site case in the Coulomb staircase regime, the
potential drop at the junctions shows almost periodic oscil-
lations in disorder-free arrays, which reflect the correlated
motion �see Fig. 7�. Such periodicity is destroyed by charge
or resistance disorder in Fig. 8. With long-range interactions,
as shown in Fig. 16 at intermediate voltages an oscillatory
voltage drop through the array, similar to the one found for
short-range interactions is found for large values of d /risl.
For small d /risl there is some remanence of this behavior but
the amplitude of the oscillations can vanish while still being
in the weakly defined first step of the Coulomb staircase.

At large voltages, the potential drop is similar for short
and long-range interactions. Proportionality between the po-
tential drop and the junction resistance is only recovered if
the excitonic energy is subtracted, as seen in Eq. �23� and
Figs. 5 and 16. The mean value of the potential drop serves
to compute the I-V characteristic in this regime.

In this work we consider transport at the sequential tun-
neling level. Cotunneling processes in which more than one
electron can tunnel simultaneously, are expected to influence
the transport at voltages of the order of this threshold or
smaller. In the presence of cotunneling current will not van-
ish at zero temperature and finite voltages, but it can be very
small in long arrays. The influence of cotunneling processes
will be larger in arrays with smaller junction resistances.
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APPENDIX: METHODS TO COMPUTE THE
CAPACITANCE MATRIX

In this appendix, we discuss the two methods that we
have used to calculate the interaction strength C�


−1. The first
method is an iterative and a priori can be used to determine
the capacitance matrix C�
 for any geometric configuration
of spheres. Although the algorithm for generating images is
straightforward, the number of images required to calculate
C�
 makes the numerical implementation of this technique
nontrivial. While computer memory problems can be solved,
the computation time is too large to tackle those cases with
very large arrays and electrodes and small distance between
conductors. On the other hand, small errors in C�
 can be
enhanced in C�


−1. The second method is specially useful and
fast for systems with azimuthal symmetry as the one consid-
ered here. The interaction matrix C�


−1 is calculated directly
taking into account the symmetry of the system and the prop-
erties of spherical harmonics. Results obtained with both
methods are in extremely good agreement.

1. Image charges method

The method of images71 is the placement of imaginary
charges inside the spheres at positions that make the poten-
tial everywhere on the surface of the conductor equal a con-
stant. The charge Q� induced on a conductor in the presence
of K equipotentials at potentials V
 is given by the capaci-
tance matrix C�
,

Q� = �

=1

K

C�
V
. �A1�

The inverse capacitance matrix which enters the free energy
�2� is the inverse of the capacitance matrix C�
.

To determine the positions of the image charges, we ex-
ploit two properties of spheres. The surface of an sphere of
radius R can be set to a potential V by placing an image at
the center of the sphere of charge q=VR. Second, if a charge
qR is located at the outside point, at a distance dc from the
center, an image charge qI placed at the inside a distance
R2 /dc from the center in the radial line, with charge

qI = − qR
R

dc
�A2�

will set the potential to zero everywhere on the surface of the
sphere. We determine the �N+2�� �N+2� capacitance ma-
trix, column by column, by determining the set of image
charges that sets the potentials of the spheres to V�=��
. The
capacitance matrix elements C�
 are given by the sum of all
the charges in sphere �. To set the potential of the 
 sphere,
with radius R
 to one, we place a charge with magnitude R


at the center of this sphere x
. The remaining spheres are
grounded by placing images inside each sphere with charges

q� = −
R�qold

	xqold
− x�	

�A3�

at positions

xq�
= x� +

R�
2

xqold
− x�

. �A4�

Here qold and xqold
are the value and the position of the charge

which creates the inhomogeneous potential that we want to
compensate and R� and x� are the radius and position of the
center of the sphere to which we add the image charge q�.
These image charges are added to all the spheres except the
one in which qold is placed. The charges that have been added
generate new inhomogeneous potentials at the rest of the
spheres and have to be compensated following the same
method. This process repeats iteratively for all the charges
added to all the spheres. During each iteration n, the number
of new images required to compensate the potential of the
other spheres approximately equals �N+1�n. We eliminate
some of the images by discarding images with a magnitude
that is smaller than a suitable cutoff value, qcutoff. We re-
quired qcutoff to be small enough that the relative differences
between the matrix elements generated with the cutoff value
qcutoff and by a larger cutoff value qcutoff� =10qcutoff are less
than one percent.

2. High-order multipoles method

Following Wehrli et al.,72 the energy of the system, given
by Eq. �2� can be rewritten in terms of the higher-order mul-
tipolar charges induced by the charges on the conductors as

F =
1

2 �
�,
,l,m,l�,m�

Ql,m
�,�Gl,m,l�,m�

�
 Ql�m�

 . �A5�

Here the Greek indices denote the conductors, l and l� denote
the order of the multipole, and m=−l , . . . , l and m�
=−l� , . . . , l denote the azimuthal number. This matrix G is
Hermitian with respect to the exchange of � , l ,m and

 , l� ,m�. Using the linear-response form for the induced
multipoles, the higher-order multipolar charges, Ql,m

� , can be
expressed in terms of the �monopolar� charges on the con-
ductors Q�=Q00

� as

Ql,m
� = �

�

�l,m
��Q�. �A6�

Substituting Eq. �A6� into Eq. �A5� and comparing it with
Eq. �2�, the inverse capacitance matrix can be expressed as

C��
−1 = �

l,m,l�,m�,�,


Gl,m,l,m�
�


�l,m
����l�,m�


� . �A7�

The order of approximation in this method is the number of
the highest multipoles l , l� included. The multipolar charge
induced is the one which minimizes the energy. Separating
the monopolar contribution �l ,m=0� in the expression of the
free energy and minimizing the latter with respect to Ql,m

� , we
obtain
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QA = − ĜAB
−1 ĜB0Q0. �A8�

Here A= l ,m and l�0, correspondingly B, and the equation

is written in vectorial and matrix notation. In terms of the Ĝ
matrices,

Ĉ−1 = Ĝ00 − Ĝ0AĜAB
−1 ĜB0. �A9�

Matrix Ĝ00 has dimension Ns�Ns with Ns the total number

of conductors. Matrices Ĝ0A and ĜB0 are Ns� �NsNtotalmulti�
and �NsNtotalmulti��Ns, respectively, and matrix ĜAB has di-
mension �NsNtotalmulti�� �NsNtotalmulti�. Ntotalmulti is the maxi-
mum number of multipolar terms considered. Formally it is

Ntotalmulti = �
l=1,lmax

�2l + 1� , �A10�

with lmax the order of the maximum multipole included in the
approximation. However, the symmetries of the problem can

help us to reduce it as the ĜAB elements corresponding to
certain ml can be seen to vanish by symmetry. Depending on
the geometry of the conductors it can be convenient to use
different number of lmax for different conductors. In particu-
lar, in the case of an array of small islands sandwiched by
two large electrodes, it is better to use a larger number of
multipoles at the electrodes. The expression for Glm

�
 follows
from the decomposition of 1 / 	a−b−R	, with a, b, and R as
the three points in space and depends on the geometry of the
conductors. For ��


Gl1m1l2m2

�
 = � �l1 + l2 − m1 − m2� ! �l1 + l2 − m1 + m2�!
�l1 + m1� ! �l1 − m1� ! �l2 + m2� ! �l2 − m2�!�1/2

��− 1�l2+m2Il1+l2+m1−m2
�x
 − x�� , �A11�

with Il,m the irregular solid spherical harmonics,

Ilm�r� =
1

rl+1� 4�

2l + 1
Y lm��� . �A12�

The sign of Gl1m1l2m2

�
 depends not only on l2 and m2 but also
on the order �
 or 
� through the dependence of
Il1+l2+m1−m2

�x
−x��.
For the case of an sphere � with radius R�, Gl1,m1,l2m2

�� ,

Gl1m1l2m2

�� = �m1m2
�l1l2

1

R�

2l1+1. �A13�

The case of spheres on a row is especially simple. There is
azimuthal symmetry and all terms with m�0 vanish. Thus at
order lmax, Ntotalmulti= lmax. This simplification allows us to go
to reasonably high orders. Most of the cases presented here
are done with lmax�8. We can eliminate the indexes m1 ,m2
from the matrix G. Together with the diagonal terms G��

calculated above and using that

Yl0 =� 4�

2l + 1
Pl�cos �� , �A14�

and Pl�1�=1 and Pl�−1�= �−1�l the equations are greatly sim-
plified. Thus

Gl1,l2
�
 =

�l1 + l2�!
l1 ! l2!

�− 1�l1
1

r�

l1+l2+1 ,ifx
 � x�,

Gl1,l2
�
 =

�l1 + l2�!
l1 ! l2!

�− 1�l2
1

r�

l1+l2+1 ,ifx
 � x� �A15�

for ��
. Here r�
 is the distance between the centers of the
spheres � and 
. The diagonal of G0A and GA0 is zero and
G0A

�
=GA0

�. Note that

G00
�� =

1

R�

, �A16�

G00
�
 =

1

r�


. �A17�

The zero-order approximation recovers our expectation for
the case of far-apart spheres. The correction to the inverse
capacitance due to the higher-order multipoles is given by

−Ĝ0AĜAB
−1 GB0. As spheres come closer, higher-order terms be-

come more and more important. This is reasonable taking
into account that the interaction between two multipolar
charges Ql1m1

� and Ql2m2


 decays as r�

l1+l2+1.

From the decomposition of the induced screening charge
in high-order multipoles, it is possible to get some insight on
how does the bump discussed in Sec. IV appear. Let �C−1 be
the correction to the inverse capacitance due to screening and
consider �C�


−1 , with 0���
�N, calculated to dipolar or-
der. The sign of correction terms coming from the charge
induced in conductors from 1 to �−1 and from 
+1 to Ns is
opposite to the one coming from conductors �+1 to 
−1
contribute to �C�

−1 with different sign. As further are these
conductors to � and 
, the correction will be smaller. Indi-
vidual contributions from each conductor � will be larger
when ����
. The contribution of the interaction term,
which comes from the dipoles generated in conductors be-
tween � and 
, increases C�


−1 . Only when the contribution of
the terms, which decrease the inverse capacitance matrix el-
ement, is able to compensate the contribution of those ones
which increase it, the total change will be negative. As closer
are � and 
 the number of terms increasing the interaction
decreases. C�


−1 is expected to be smaller than the bare value,
only if � and 
 are very close, which results in the appear-
ance of the bump and the antiscreening effect at intermediate
and large distances.
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