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Intrinsic dissipation in nanomechanical resonators due to phonon tunneling
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State of the art nanomechanical resonators present quality factors Q ~ 10°~10°, which are much lower than
those that can be naively extrapolated from the behavior of micromechanical resonators. We analyze the
dissipation mechanism that arises in nanomechanical beam structures due to the tunneling of mesoscopic
phonons between the beam and its supports (known as clamping losses). We derive the environmental force
spectral density that determines the quantum Brownian motion of a given resonance. Our treatment is valid for
low frequencies and provides the leading contribution in the aspect ratio. This yields fundamental limits for the
Q values, which are described by simple scaling laws and are relevant for state of the art experimental
structures. In this context, for resonant frequencies in the 0.1-1 GHz range, while this dissipation mechanism
can limit flexural resonators, it is found to be negligible for torsional ones. In the case of structureless
three-dimensional supports, the corresponding environmental spectral densities are Ohmic for flexural resona-
tors and super-Ohmic for torsional ones, while for two-dimensional slab supports, they yield 1/f noise.
Furthermore, analogous results are established for the case of suspended semiconducting single-walled carbon
nanotubes. Finally, we provide a general expression for the spectral density that allows us to extend our
treatment to other geometries and illustrate its use by applying it to a microtoroid. Our analysis is relevant for
applications in high precision measurements and for the prospects of probing quantum effects in a macroscopic

mechanical degree of freedom.
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I. INTRODUCTION

Nanomechanical resonators offer a host of novel
applications' in high precision measurements*> and may
provide a new arena for probing fundamental aspects of
quantum physics.® A prominent example of such novel appli-
cations is scaling magnetic resonance force microscopy’
down to the level of single-spin detection. This degree of
sensitivity would allow, for example, three-dimensional im-
aging of individual biomolecules with atomic-scale reso-
lution. In these microscopes, a magnetic particle® mounted
on a cantilever interacts with the nuclear or electron spins in
the sample via the magnetic dipole force. Hence, as in many
other applications, the relevant mechanical resonator has the
beam geometry on which we will mainly focus in this paper.”’
Beyond microscopy, an interesting issue is whether in the
nanoscale regime such a device could be used to probe the
quantum state of a single spin.'®

A single spin 1/2 coupled to a harmonic oscillator,
namely, the Jaynes—Cummings model, constitutes a funda-
mental system in quantum optics.!! Physical realizations of
this system have proved invaluable in probing and under-
standing quantum phenomena.'>!? These investigations have
ranged from studying the quantum-classical interface to
proof-of-principle demonstrations of the basic building
blocks of quantum information processing. These develop-
ments were enabled by the advent of high-Q resonators for
optical and microwave photons and of conservative har-
monic traps for atoms. In these systems, the relevant har-
monic oscillator is furnished, respectively, by a single normal
mode of the electromagnetic field or the atomic motion.'* On
the other hand, state of the art semiconductor nanostructures
can support mechanical resonances with quality factors Q
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~10°-10° and frequencies approaching the gigahertz
regime.3 For some of these structures, measurements of me-
chanical displacements with a sensitivity approaching the
quantum limit have been achieved by exploiting capacitive
coupling to a single electron transistor.!>!¢ These develop-
ments suggest the possibility of realizing a quantum phonon-
ics realm in complete analogy to quantum optics.®!” In this
case, the relevant harmonic oscillator would be furnished
instead by a mechanical resonance and the role of the pseu-
dospin could be played by a capacitively coupled Cooper
pair box'®!° or an excitonic transition of an embedded self-
assembled quantum dot.?° Along these lines, one could en-
visage observing quantum jumps due to the discrete nature of
phonons and realizing quantum state engineering of nonclas-
sical states of motion.?! In addition to semiconductor planar
heterostructure realizations, there are other promising possi-
bilities such as suspended single-walled carbon
nanotubes??2* (SWNT), nanowires,” and single crystal dia-
mond beams with embedded nitrogen vacancy color
centers.?® Another alternative for furnishing the nonlinearity
needed to induce nonclassical behavior in mesoscopic me-
chanical oscillators are optomechanical schemes in which the
resonator couples via radiation pressure to an optical
cavity.?”-?® This venue has recently witnessed significant ex-
perimental progress?® toward achieving ground state cooling,
which is highly desirable to enable quantum effects.’® Fi-
nally, for resonators with sufficiently small effective masses
and high bending rigidity, yet another alternative that has
been considered is to use the Euler instability.>!

The realization of all of the aforementioned applications
of nanomechanical systems hinges on understanding and
controlling the intrinsic dissipation and noise mechanisms??
that limit their coherent dynamics. For centimeter-scale
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semiconductor micromechanical systems Q ~ 10® have been
measured at low temperatures.2 On the other hand, when
these devices are shrunk to the nanometer scale, these values
decrease dramatically to Q ~ 10°—10°. Early work suggested
that the increase in surface-to-volume ratio combined with
surface effects might be invoked as a plausible explanation
of this phenomenon.? Subsequently, it was realized that elas-
tic wave radiation into the supports—the so-called clamping
losses’>—could play an important role leading to nontrivial
scaling laws for the Q values with the aspect ratio that are
intimately related to the low-frequency behavior of the cor-
responding transmission coefficients (cf. Sec. IV and Refs.
33-36).

If we consider the environment of the mechanical resona-
tor responsible for its dissipation, the Q value is determined
by the pole of the ensuing modified propagator for the reso-
nator’s normal coordinate that corresponds to its resonant
frequency wg. If one adopts a Caldeira—Leggett model,’38
i.e., the environment is assumed to consist of a thermal en-
semble of harmonic oscillators, with a linear coupling to the
environment, this propagator can be exactly obtained from
the environmental force spectral density I(w), and the Q
value is found to be temperature independent. Thus, the

quantum Brownian motion of the normal coordinate Xj as-
sociated with a given resonance is characterized by the fol-
lowing generalized equation of motion:

. t .
Xgp(1) + f dt' y(t— 1) Xg(t") + wpXg(t) = &(t), (1)
0
and is completely determined by the function I(w)
=wf” dty(t)e'' /2wy, where (t) is the symmetric dissipa-
tion kernel® [cf. Eq. (21) and Sec. IT] and &(#) corresponds to
the environmental noise. When the standard Markov ap-
proximation is warranted, y(r) ~ &(¢) and the Q value is de-
termined by
1 I(wg)

0 g

Within this approximation, the value I(wg) is the only rel-
evant information about the spectral density, Eq. (1) can be
interpreted as a quantum Langevin equation, and we have the
standard relation

(2)

1 (E)

0 wg(E)

where E is the total energy stored in the resonator’s degree of
freedom. This is normally valid for sufficiently high Q and
low temperature if I(w) is smooth enough, or for high tem-
peratures if /() linearly scales with frequency3*-4° (classical
Langevin). However, in many instances, it is desirable to go
beyond the Markov approximation and more precise knowl-
edge about I(w) is needed. Examples of these are the cases
discussed above in which the resonator interacts with a
single-spin 1/2 system if the coupling is relatively strong
and cases in which the Q is not high enough or the tempera-
ture low enough. Currently, there exists no microscopic deri-
vation of Eq. (1) and of the underlying Caldeira-Leggett

3)
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FIG. 1. (Color online) Schematic diagram of suspended me-
chanical beam structures presenting abrupt junctions with the sup-
ports. Throughout the paper, the z axis corresponds to the beam’s
axis, while the x and y axes are the principal axes of inertia of the
beam’s cross section at the left junction (the origin is set at the
center of mass of the latter).

Hamiltonian and corresponding spectral density I(w), for
which customarily an Ohmic dependence is assumed.

For nanometer-sized suspended monocrystalline beam
structures at low temperatures, the relevant phonon mean
free path can become larger than the beam’s length. In the
case of an insulating system, a prominent consequence of the
ballistic regime that results is the quantization of thermal
conductance*! in units of G,,=mk3T/3h, which has been
demonstrated experimentally.*? In this low temperature, low-
frequency regime and for small deflections, anharmonicity
becomes irrelevant for the analysis of dissipative
effects.>*># Thus, in this paper, we analyze the ideal limit
that ensues for the low-lying resonances of an insulating
beam close to equilibrium at low enough temperatures, in
which phonon tunneling between the beam and its supports
is the only source of thermal noise and dissipation. To this
effect, the vibrations of the whole structure are described by
a purely harmonic Hamiltonian. Its normal modes, discussed
in the following section, form a continuum. As will become
clear below, this feature is inherited from the supports that
thus provide thermal phonon reservoirs. When the systems
under consideration deviate from the aforementioned ideal
scenario (e.g., the vacuum is imperfect, the beam’s material
is amorphous, or surface effects are relevant), there will be
other contributions to the mechanical damping that will add
incoherently.3 However, it should be stressed that in all such
cases, our treatment is valid for the contribution to the dissi-
pation arising from the vibrational degrees of freedom and,
thus, our results will provide an upper bound for the Q val-
ues.

Beam nanostructures for which high-Q values have been
measured normally involve abrupt junctions with the sup-
ports. This can be intuitively understood in terms of imped-
ance mismatch for the propagation of elastic waves. We will
mainly focus on this type of structures, as depicted in Fig. 1,
and consider phonon frequencies that correspond to k&
~2m/L<K2m/d, where k is the wave vector along z inside
the beam, L is the beam’s length, and d is the typical dimen-
sion of the cross section (cf. Fig. 1 and Appendix B). It is
clear that for this beam geometry, the reciprocal of the aspect
ratio d/L provides a natural small parameter that will under-
pin our analysis of the nontrivial matching at the abrupt junc-
tions. Given that we are interested in phonons with wave-
lengths much longer than the lattice constant, the continuum
limit constitutes a good approximation. This yields for the
supports three-dimensional (3D) isotropic elasticity,>*>46 if
one further neglects the possible anisotropy—or two-

245418-2



INTRINSIC DISSIPATION IN NANOMECHANICAL...

dimensional (2D) “thin plate elasticity” for slab supports of
thickness much smaller than the phonon wavelength.33% If
we consider the beam, there are basically two scenarios: (i)
all the characteristic dimensions of the cross section are
much larger than the lattice constant (e.g., semiconductor
planar heterostructures) or (ii) there are characteristic dimen-
sions comparable to the lattice constant (e.g., semiconduct-
ing SWNTs and small-radius nanowires). In case (i), one can
start from 3D isotropic elasticity and obtain the effective
theory valid for phonon wavelengths much larger than d
known as “thin rod elasticity”*4¢ (TRE). The latter is com-
pletely determined by the linear mass density u,, the mean
axial moment of inertia (r?)s, and the extensional, torsional,
and bending rigidities and leads to the following dispersion
relations for the four low-frequency branches:

(,Oﬁ(k) = Eﬁkpﬁ,

pc=pt=1’ pv=ph=2~ (4)

Here, B is the branch index: ¢ for compression, ¢ for torsion,
v for vertical bending, and h for horizontal bending [the
prefactors ¢z are given in Appendix B, Eq. (B9)]. Though for
propagation inside the beam this effective theory will suffice,
resort to the underlying 3D “microscopic” theory will allow
for a rigorous treatment of the matching at the junction (cf.
Sec. IV)—an analogous procedure is feasible for a thin plate
geometry>> with the microscopic theory furnished by 2D thin
plate elasticity. In case (ii), it is well understood that the
effective long wavelength theory is formally equivalent to
TRE but the standard “bulk” relations between the rigidities
are no longer warranted.*” Whence, heuristic considerations
allow us to extend our treatment of the nontrivial matching at
the abrupt junctions to this case with suitably redefined
cg—when considering this extension, we will mainly focus
on SWNTs. Thus, our treatment will amount to a derivation
of the leading contribution in the aspect ratio to the environ-
mental spectral densities /(w) associated with phonon tunnel-
ing induced noise starting from the underlying microscopic
lattice Hamiltonian.

The relevance of the ensuing results is twofold: (i) they
furnish a very general understanding of clamping losses de-
termining the corresponding Q values for a wide range of
experimentally relevant structures and (ii) they provide an
instance for which a microscopic derivation of the quantum
dissipative dynamics of a “macroscopic” mechanical degree
of freedom can be given, which exactly reduces to a
Caldeira-Leggett model.*%434° The latter is essentially a
derivation of the basic Hamiltonian for a lossy one-
dimensional (1D) phonon cavity and brings together aspects
of the analogous problem in quantum optics>® and the ballis-
tic transport in a mesoscopic wire.*! In this respect, it should
be noted that the Markov approximation, which is customar-
ily used for the Brownian motion of mechanical resonators,
is not assumed in our derivation but instead its range of
validity emerges from the behavior of the spectral densities
I(w) that we calculate and that allow (if necessary) to go
beyond the Markovian regime—for these aspects, the reader
is referred to the vast literature on quantum dissipation.’?
Thus, the validity (for large aspect ratios) of Eq. (2) that will
be used to determine the Q values is established rather than
postulated.
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We will first present our main results (cf. Sec. I A) and
subsequently give their derivation in the following sections.
For the sake of clarity, we will mainly focus on a specific
model with maximally symmetric 3D structureless supports
and the beam having the aforementioned property (i) [cf.
Sec. IT A] and outline how the treatment can be extended (cf.
Appendix C) by referral to this concrete realization. We will
discuss both the bridge and cantilever geometries (cf. Fig. 1).
Finally, we will also outline how this approach can be gen-
eralized to other geometries and illustrate this further exten-
sion for the experimentally relevant case of a micro-
toroid. 281

A. Environmental force spectral densities and Q values
for each resonance

To study the dissipation induced by the coupling to the
supports, it proves useful to introduce the concept of an “ef-
fective environmental density of states” for each branch
given by pglw). These functions will be defined in Sec. V.
There, we will find that for 3D supports, they bear simple
relations with properties of the decoupled support, i.e., sub-
ject to free boundary conditions, that are closely related to its
density of states (DOS): namely, the displacement and angle
(twist) vacuum spectrum at the junction.”> The cornerstone
of our analysis will be furnished by the following pair of
fundamental relations, each of which completely specifies
the environmental force spectral density for a given reso-
nance to lowest order in the reciprocal of the aspect ratio
d/L,

dw 2p5(w) w
I =56C B _.B_Jé’ 5
n,B(w) n,ﬁ|: dk (wn,ﬁ):| 2L © ( )
dw T5(w) [ w, 5\P8
I =5C ( - ) : 6
R e ©

Here n=0,1,... labels the harmonics for each branch 3 (i.e.,
wR—>wn,B), 0=1,2 is the number of supports,

1 for B=c,t

Cn,ﬁ = (7)

(-1)"
(tanh2 "T/hL) for B=v,h,

and the bare resonant wave vectors k,, g= w;'(w,,’ p) are de-
termined by the TRE solutions for clamped-clamped
(clamped-free) boundary conditions in the case of the bridge
(cantilever) geometry.>® The first relation expresses the spec-
tral density in terms of ﬁﬁ(w). The second relation involves
the transmission coefficient Tﬂ(w) from a semi-infinite beam
into the support at a single junction, which can be interpreted
as the probability for an incident phonon with frequency w to
tunnel into the support. As will be discussed further in the
next section and rigorously derived in Sec. IV A, for phonon
frequencies w— 0, the beam and the supports become decou-
pled so that the junction plays a role analogous to a tunnel
barrier. Whence relation (6) allows to interpret the losses to
the supports in terms of phonon tunneling. More precisely, it
provides a rigorous footing for the heuristic formula to de-
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TABLE 1. First and second columns: general formulas for the environmental force spectral densities /,(w) and the Q values Q,
corresponding to the different resonances of a beam suspended from structureless 3D support(s)—n=0,1,... labels the harmonics for each
of the four branches. These general formulas are specialized for two cases: (third column) a monolithic structure with rectangular beam cross
section of thickness t and width w and (fifth column) a suspended semiconducting SWNT of radius R. The nanotube is modeled as a
cylindrical shell of effective thickness /# and Poisson ratio (Ref. 54) 03,=0.19. All formulas are valid for both the cantilever (6=1) and bridge
(6=2) geometries. The dispersion-relation prefactors ¢ are given in Eq. (B9), w, is the linear mass density of the beam (for the nanotube
up=2mR0o g, where o is the surface density of graphene), p, and ¢, are, respectively, the mass density and transverse speed of sound for the
supports’ material, and (r2>EIZ/ S is the beam’s mean axial moment of inertia. In the case of torsion (second row), for the monolithic
structure (third and fourth columns), we specialize for t<w so that )/g ~ 1 and the torsional rigidity (Ref. 45) reads C~ E,wt3/6(1+0) [for
a cylindrical shell, we have instead C=E,mhR3/(1+0,)]—E, [E,] is Young’s modulus for the material of the beam [support(s)]. The
dimensionless displacements and angles i, given in Sec. IV C (cf Fig. 3), take the following values for o,=1/3 [a=(1-20,)/2(1-0,)
=1/4]): u.(1/4)=0.13, u,1/4, ‘)/1)21/127T+0.019‘y§, and i,,,(1/4)=0.12, where y,=([,—1,)/I, and we have defined #(a, 'yz)zﬁﬁA)
+12§S)(a)y§. The resulting typical values for the Q,, (fourth and sixth columns) correspond to the lowest lying resonances of bridge geometries
[wave vectors (for the cantilever geometry, these would be instead kg .,= /2L and kg, = 0.607/L) ko o;;=/L and kg ;,~ 1.517/L] with
a different length for each branch (LB) chosen so that the comparison is made for equal frequencies [for monolithic case (nanotube): L,
=23u (23w), L=47p (1.5p), L,=098u (0.11x), and L,=2.4u (0.11u)]: 150 MHz for the monolithic structure (parameters: W
=100 nm and t=20 nm) and 1 GHz for the nanotube [parameters: 1=0.66 A (cf. Ref. 54), 05=7.7X 1077 kg/m?2, E,=1 TPa (cf. Ref. 22),
and R=1 nm; we assume Si supports: p,=2.3 X 10> kg/m> and E,=112 GPal.

General relations (3D) Monolithic structure (o= %) Semiconducting SWNT (O'S=%)
Typical Typical
value for value for
1,(w) 0, 0,(L,w,1) 150 MHz 0,(L,R) 1 GHz
3 2
Compression - — — 32x10% B B e [ 1.5%10°
P o 20, i (a)k, 7o Wtn+(5/2) 76 Vhp \E,] hRn+(82)
3 5 274
[0} psc;L 4.1 w°L 1 23 o\ EN 4 1
Torsion 3 —— 32T o 1.6X10°0 ==L /[ZE) (=) =——— 13x10!
0,0, 20m(P)E i, vk, T 0 [n+(8/2)] 76 V\hp,) \E,] hR[n+(52)T

3
@ 5 L 39 (37 \* i 4
Vertical bending P % S — =T 9.6X10° 0.043 Jog(E\" L [ 3m 4.2 % 106
Qn  48C,mc, i (@k,  7*8C, wt'\ 2k, L 75C, N hp,\E,) hR*\2k,L

3
w psc; L 39 L 37 \* 33 4
Horizontal bending ——— = —4< 77) 39x108 Q03 oG (B )L (3T Ty 5500
0, 46C, uy i)k 7t 5C, tw*\ 2k, L 7*6C, N hp,\E,) hR*\2k,L

scribe this dissipation mechanism set forth by Cross and Lif- The general relation between the transmission coefficient
shitz in Ref. 33 based on Eq. (3), namely, at a single junction and the effective environmental DOS
concomitant to the pair of relations (5) and (6) will be proved
in Sec. IV, where expressions for the functions Tﬁ(w) and

1 k
— ~ id—wé(kn)m = %M, (8)  pglw) are explicitly derived for 3D supports [cf. Egs.
0 2L dk wglk,) 2 kL (58)—(63)]. The latter together with Egs. (5) and (2) allow us

to obtain formulas for the Q values of all the low-frequency

where the implicit dimensionless prefactor is expected to be ~ resonances that are given in the second column of Table I.
of order unity and have the latter as its limit for  The first column gives the resulting expression for the envi-
n— %—henceforth, we drop the branch index of k,, w,. ronmental force spectral density, which turns out to be
The above approximation emerges from considering a ~ Ohmic in all cases except for the torsional resonances. The
phonon wave packet that bounces back and forth between third and fifth columns give examples of particular experi-
both ends of the beam. Naturally, it should be adequate for =~ mental relevance, namely, a monolithic structure with rect-
large n and provides a simple intuitive description of this angular cross section for the beam of width w and thickness
dissipation mechanism in terms of phonon tunneling at the  t and a semiconducting suspended SWNT of radius R—for
junctions. Here, we have added a factor of 6/2, where & is the nanotube, we use constants ¢z that correspond to the
the number of supports, to account for both the bridge and ~ “continuum” shell approximation for the rigidities.>*> The
cantilever geometries. Equation (8) can be obtained from validity of these results, which are adequate for low frequen-
Eqgs. (2) and (6), which allow us in addition to determine that cies, will be borne out in full detail in the following sections,
the corresponding dimensionless prefactor is given by C, 5, as we derive Egs. (5) and (6). While the latter will hold in all
i.e., for the nondispersive branches it is exactly unity for all instances where any characteristic dimension of the supports
n, and only deviates from unity for the low-lying bending is either much larger than L or at most of order d,=<d, Table
resonances. I focuses on the case in which the limit d;— 0 yields a 3D
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support with no characteristic dimension (e.g., an elastic
half-space). Within this context, the second column is gen-
eral with an appropriate definition of the dimensionless dis-
placements and angles # that only depend on the supports’
material Poisson ratio (cf. Sec. IV and Appendix C). On the
other hand, the specific # used in the examples—which will
be calculated in Sec. [V—correspond to the maximally sym-
metric case of the half-space.

In the context of the applications already discussed, one
focuses on a specific resonance and it can be argued that a
sound figure of merit is afforded by the quantity kg7/%wgQ.
Therefore, we compare the different types of resonances (for
different lengths L) for the same resonant frequency wg
(fourth and sixth columns). It is clear that for specified ma-
terials, these results for the Q values only depend on the
ratios between the beam’s dimensions. Thus, for semicon-
ductor heterostructure realizations, the corresponding formu-
las (second and third columns) hold all the way from the
nanoscale to the macroscopic regime and are also applicable
to micromechanical resonators. However, while for fabri-
cated flexural resonators with submicron transverse dimen-
sions aspect ratios L/d~ 10 are not uncommon,’ for typical
micromechanical resonators used in MEMS, L/d =100 ren-
dering the above results an upper bound that would be hard
to reach—note for comparison that the last two entries of the
fourth column correspond, respectively, to L/t=49 and
L/w=24. Finally, we note that for given 3D supports, the
above results are “universal” in the specific sense that their
only dependence on properties of the beam is through u,,
(r*)s, and the prefactor of the TRE dispersion relations [Eq.
(4)], which are the quantities that specify its low-frequency
effective theory. In particular, the scaling laws with the
beam’s length are completely general. Furthermore, for a
monolithic structure, the dependence on the material’s Pois-
son ratio in the relevant range 1/5<0=<1/3 is so weak (cf.
Sec. IV) that the Q value of a given resonance can be effec-
tively regarded as a geometric property.

The other instance of interest to which Egs. (5) and (6)
apply and that also yield simple scalings is the case of slab
2D supports of thickness d;=t equal to the thickness of the
beam. The results we will obtain [cf. Sec. IV, Eq. (64)] for
the frequency dependence of the pj(w) together with Egs. (5)
and (2) imply the following:

2
w, w

In,ﬁ#v = Q_n’ I 5 (9)

no = >
n 0,0

which correspond to 1/f noise.’®>’ We note that the finite
size of the slab provides a natural infrared cutoff. The corre-
sponding Q values (which with the exception of horizontal
bending scale as the aspect ratio L/w) have already been
derived in Ref. 33 up to the prefactor C, discussed above.
Standard fabrication procedures® normally result in an un-
dercut of the support of size d; at least comparable to the
width of the beam. Our analysis of the abrupt junction(s)
with the support(s) given in Sec. IV and Appendix C implies
that it is quantitatively correct to use the 3D model for the
support(s) when d;;=<d, and the 2D model discussed above
when dy;> L. In addition, based on heuristic considerations,
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FIG. 2. (Color online) Schematic diagram of a microtoroid
structure with largest diameter D and membrane thickness & (the
origin is set at the center of the contact area S with the pedestal).

the 3D results for the Q values given in Table I are expected
to be qualitatively correct for’® d;;<L.

Finally, it should be noted that a substantial part of our
derivation of the spectral density for an isolated resonance>
is independent of the geometry. More precisely, Egs. (5) and
(6) can be viewed as a specific instance of the following
more general relation:

(w) = 2p§sz L Js dr(ity - oy~ ity o) - i
X dw-wlg)], (10)

where it,(7) and o (7) are the displacement and stress fields
associated with scattering eigenmodes for the whole struc-
ture, labeled by ¢ [eigenfrequencies w(g)], and k(7)) and
o(r) are the analogous fields for the resonator mode (cf.
Sec. II). Here, S is the contact surface between the resonator
and its support(s) and p, is the mass density of the latter. As
will become clear in Sec. V B, the small parameter associ-
ated with the above approximation is |A,(wg)|/2wg, where
A(wg)/2 is the support-induced shift of the resonant fre-
quency (cf. Appendix F).

In all natural scenarios, |A,(wg)|/2wg<<1 arises due to the
abrupt nature of the junction(s) with the support(s) and the
condition VSkyp<<1—where ky is the typical wave vector as-
sociated with the resonator mode. The behavior as §—0
leads to two possibilities: (i) the limit is singular or (ii) it
defines a well-behaved resonator geometry that can be de-
scribed by 3D elasticity. The beam geometry falls into case
(i) for which ug(7) is specified by clamped boundary condi-
tions at S (cf. Sec. II B). In turn, in case (ii), i#gx(7) should
satisfy free boundary conditions at the contact surface. An
experimentally relevant example of the latter is afforded by
microtoroids®™-" (cf. Fig. 2). For such structures, a heuristic
treatment of the pedestal as a beam with adiabatically vary-
ing cross section allows us to obtain from Eq. (10) the fol-
lowing:

2

Vp,E
I(w) ~ ~——Siiy (0w, (11)

MRWR
for any axially symmetric isolated resonance. Here, the reso-
nator mode is normalized so that the normal coordinate cor-
responds to the elongation of the toroid’s external radius, and

mpg and iig(7) are, respectively, the corresponding effective
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mass and mode profile (cf. Appendix D). Equation (2) then
yields for the corresponding Q value,
Mrw
Q~ ———. (12)
Al psEsSuR,Z(O)

Typical values for the radial breathing mode of state of the
art structures are®' wgp=27X50 MHz, mp=10"""kg, S
=m/4X(0.51)% and itg(0)=1/2, which (for_an Si sub-
strate) result in Q=~4X 103, In addition to VSkg<<1, the
above approximation assumes that there is a perfect imped-
ance match between the pedestal and the substrate and that
VS=<h—here, h is the smallest characteristic dimension of
the resonator. It can be argued that for pedestals with lengths
at least comparable to 27/ kg, deviations from this adiabatic
scenario will only increase the Q value provided that wg does
not coincide with a resonance of the pedestal. The derivation
of Egs. (10) and (11) is given in Appendix D.

I1. BASIC MODEL AND OUTLINE

A. Normal modes of the supports, the beam, and the
whole structure

We will make two simplifying assumptions: (i) the sup-
ports have typical dimensions that are much larger than the
beam’s length L and for a bridge both of them are identical,
and (ii) both the supports and the beam present reflection
symmetries with respect to the xz and yz planes (cf. Fig. 1).
The first assumption is adequate to describe a wide range of
realistic structures.%’ The second assumption is a theoretical
simplification and has no impact on our main results [Egs.
(5) and (6) and the first two columns of Table I], as will be
borne out in Appendix C. These assumptions allow us to
model the supports as elastic half-spaces.

Thus, the whole structure presents reflection symmetries
with respect to the x and y axes that are associated, respec-
tively, with the operators I%x and é,v acting on the space of
solutions of the elastic wave equations. This allows us to find
normal modes of the whole structure that are eigenvectors of
Iéx and Iéy. For a given normal mode |u), one can generate
modes |u,,), |u,_), lu_,), and |u__) with the desired reflection
properties by the following symmetrization procedure:

A 1 ~ A~ PN
|u,uv> = S/w|u> = E(|M> + ,LLRX|M> + VRy|u> + /‘LVRXR_\’|M>)9

(13)
with w,v==, which guarantees
Iéx|uw,) = puluy,), I%y|u,w> =vlu,,). (14)
We note that
1
== 2 [ug). (15)
2y,1/:t

Furthermore, as in any standard scattering problem,®! we
can choose for these modes {|u)}, incoming scattering states
that present simple asymptotic behavior for t— —o corre-
sponding to the different modes that can propagate in the
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support(s), i.e., the free modes of an elastic half-space.*>4¢

Thus, for each type of mode with well defined reflection
properties, there will be four types of asymptotic behavior,
namely, longitudinal bulk waves (I), transverse bulk waves
polarized along the plane of incidence (SV waves), trans-
verse bulk waves polarized perpendicular to the plane of in-
cidence (SH waves), and Rayleigh surface waves (s)—also
known as SAWs. In all four cases, the corresponding unsym-
metrized solutions for a free elastic half-space can be written
in the form

1 . -
—(0) (= _ B k= G A = idF
ué”m_(zqr)d,/z[soe"’ +AEE N+ Age ], (16)

where g, >0 (cf. Fig. 1) and y=1, SV, SH, s labels the type of
mode. The first term corresponds to the incident wave and
the last two to the reflected longitudinal () and transverse (r)
waves. The dimensionality dy, polarizations &, wave vectors
qy» and amplitudes A;, (which depend on g and vy) corre-
sponding to each of these types of modes are given in Ap-
pendix A. In addition for the bridge geometry, there will be
right and left movers and, therefore, eight types of modes.
Thus, each mode ﬁg?;(?) of the support on the left with
4x>qy-q.>0 will generate four incoming “right-moving”
symmetrized normal modes of the whole structure
i7 5, u,»,r(F)—Wwith analogous relations and definitions for the
left movers and in the case of a cantilever. In the following,
to simplify the notation, we will absorb the discrete indices
in the ¢ [i.e., @5, , g (F) — it,(F)] unless otherwise stated.
Of course, for the bridge geometry, we can exploit the reflec-
tion symmetry with respect to the x—y plane through the
midpoint of the beam to obtain the left movers from the right
movers so that only the latter need to be calculated.

On the other hand, the beam can be viewed essentially as
a phonon waveguide. Thus, it presents a series of branches
associated with the size quantization of the transverse wave
vector. An ubiquitous feature of these systems is that there
are four branches that lack an infrared cutoff: two bending
branches (vertical and horizontal) with quadratic dispersion
relations and a torsional and a compression branch with lin-
ear dispersion relations.**® Each of these branches corre-
sponds to a given type of symmetrized modes |u,,,) [|u,,) for
compression (c), |u,_) for vertical bending (v), |u_,) for hori-
zontal bending (h), and |u__) for torsion (#)]. As we are in-
terested only in low-frequency phonons, these are the only
modes that can propagate inside the beam. Henceforth, we
will identify the discrete indices w,v of the normal modes
it,(r) with the corresponding branch inside the beam by in-
troducing a suitable branch index B=c,r,v,h (ie., {u,v}
— B). As already discussed, to describe these branches at low
frequencies, one can resort to TRE® that consists of an ap-
proximation in which the small parameter is kd. More pre-
cisely, it corresponds to taking the lowest order terms in an
expansion in kd of the transverse profile of the mode. The
associated displacements are given in Appendix B. For a
finite length beam, in addition to these propagating solutions,
it is necessary to also consider the role of exponentially de-
caying evanescent solutions. These are of two types: end
corrections that decay over a length scale of order d and
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solutions associated with the bending branches with a decay
length 1/k—the latter can also be treated within TRE.

As we are interested in properties of the beam’s motion,
our main task will be to determine i, (7) inside the beam (and
a distance >d away from the junctions). This problem is
analogous to the one of finding the electromagnetic field in-
side a Fabry—Pérot interferometer. Thus, it can be ap-
proached by considering how the elastic waves that can
propagate inside the beam are reflected at the abrupt junc-
tions (and at the free end for the cantilever) and then adding
the infinite reflections. In the cases of the bending branches
for k=1/L, it is clear that the real exponentials are not sim-
ply end corrections and have to be taken into account in this
resummation process. Hence, there are two ways of propa-
gating for the bending modes. This reduction of the problem
to the reflection at a single junction is presented in Sec. III.
In addition, one needs to consider how a wave incident from
the support is transmitted into the beam. These problems of
reflection and transmission at a single junction are tackled in
Sec. IV.

Heuristically, for very long wavelengths, the abrupt junc-
tion is seen from the inside of the beam as a clamped bound-
ary condition, and from the outside (i.e., from the support) as
a free boundary condition. Let us consider, for example, the
problem of reflection from the inside. If one adopts as an
approximation for the displacements inside the beam the so-
Iution that corresponds to a clamped boundary condition
u,(7), it can be proved that the associated relative error is at
most of order kd (cf. Sec. IV A). An analogous treatment can
be done for the problem of transmission into the beam from
the outside. It will be proven in Sec. IV B that the associated
transmission amplitudes can be exactly related by a reciproc-
ity argument to the total transmission coefficient into the
support {w) associated with reflection from the inside of the
beam. This and the aforementioned approximation by free
boundary conditions (cf. Sec. IV A) will allow us to establish
simple expressions for the functions p(w) and {w) valid to
lowest order in kd.

Finally, in Sec. V, we will relate the environmental spec-
tral density /(w) for each resonance with the normal modes
it,(r) and establish the fundamental relations (5) and (6) be-
tween the functions I(w) and p(w), H(w). As will be dis-
cussed in Sec. II B, their derivation involves the use of a
canonical transformation that relates a closed quantum sys-
tem ‘“‘scattering representation” for the “mechanical Fabry—
Pérot” (furnished by the supported beam) with an open quan-
tum system “resonator-bath representation” that singles out
one of its resonances.

B. Closed system versus open system

To each normal mode iz, (7) with frequency w(g), we can
associate a bosonic annihilation operator b(g). Thus, the nor-
mal ordered Hamiltonian operator for the whole structure
considered as a closed quantum mechanical system adopts
the simple form

H= f fa(g)b'(g)b(q). (17)
q

Here, [, denotes [ 0dq,dq,dg, and summation over the ap-
propriate discrete indices detailed in Sec. I A. In this diag-
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onal representation, the resonances will emerge as poles of
the propagator for the displacement field,

A h +
u(r) = L mﬁq(ﬂb' (9) +Hec., (18)

and in this sense may be regarded as “derived objects.” It is
important to note that when the beam is characterized by a
different density p, # p,, the above eigenmodes of the whole
structure are orthonormal in a nontrivial metric, which de-
fines the scalar product that will be used in general (except in
Sec. IV and Appendixes B and C):

(luy = J D55 (). (19)
s

On the other hand, in the context of the applications al-
ready discussed (cf. Sec. I), where the system is driven out of
equilibrium, it is normally convenient to explicitly isolate the
relevant degrees of freedom of the nanoresonator and treat
them as an open quantum system. In the simplest scenario,
there is one resonance of interest so that the goal is to find a
resonator-bath representation in which the Hamiltonian
adopts the form

H =tiwgb by + 1i(bj+ by J [Z(g)b' (g) + H.c.]
q

+ f haw(q)b'"(q)b(q), (20)
q

with off-diagonal couplings {(g) that are sufficiently weak so
that the renormalization of the bare frequency wp is smaller
than the characteristic spacing between the resonances, i.e.,
the free spectral range of the mechanical Fabry—Pérot. In
such a representation, the relevant resonance will correspond
to the degree of freedom described by the operators bp,
by'—which annihilate or create a quanta in the resonator
mode #p(F)—and in this sense can be viewed as a “funda-
mental object.” The discrete mode irgx(7) should be real, lo-
calized in the beam, have finite averaged elastic energy den-
sity per unit amplitude given by pswlze/ 2, and satisfy the
elastic wave equation inside the beam. In turn, the b’ (g) will
be annihilation operators for a continuum of modes iz, () (the
environment) that have support in the whole structure and
are labeled after the ﬁq(F) with which they are in a one to one
correspondence.%> More precisely, the classical state ﬁ;(?),
evolved with the Hamiltonian density that corresponds to
setting {(¢)=0 in Eq. (20), and the classical state i,(7),
evolved with the elastic wave equation for the whole struc-
ture, will share the same “free” asymptotic behavior for ¢
— —. The form of the off-diagonal term in which the envi-
ronment only couples to the canonical coordinate of the reso-

nator X r reflects the fact that the underlying phonon Hamil-
tonian is diagonal in the momenta. This, after integrating out
the resulting equations of motion for the b’(g) allows us to
obtain the well known equation® (1).

The Hamiltonian (20) is just an instance of the thoroughly
studied problem of a single harmonic oscillator linearly
coupled to a field.?* The dynamics of the resonator mode is
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completely determined by the following environmental spec-
tral density:

H(w) = 27Tf |{@)P oo - w(g)]. 21)
q

This problem is integrable given that H can be diagonalized
by a linear canonical transformation*®%* that would allow us
to determine the iz, (7) given ﬁ;(?), p(7), wg, and {(g). We
are simply faced with the inverse problem: the derivation of
Hamiltonian (20), with i,(7) and {{(¢)} satisfying the afore-
mentioned properties, from Hamiltonian (17) given the nor-
mal modes {i1,(7)}. The solution is not unique™ but quantities
of physical interest, e.g., the resonator’s frequency dressed
by the environment, its Q value, and its relative oscillator
strength in physical spectra, will remain invariant under dif-
ferent choices.

Our analysis of the long wavelength behavior of the
propagation of elastic waves inside the resonator (cf. Sec.
IV A) and the fact that the resonances of interest have low
frequencies that correspond to wavelengths much larger than
d prompts us to choose for it,z(F) an eigenmode of the elastic
wave equation satisfying clamped-clamped (clamped-free)
boundary conditions for the bridge (cantilever) geometries. It
is straightforward to prove, using the expression of the elas-
tic energy density in terms of the displacement field,*>% that
for this choice, wp will be given by the corresponding
eigenvalue.® On the other hand, the diagonal representation
afforded by the normal modes i,() directly yields

o= [ it )
q

The required canonical transformation from the diagonal
representation [Eq. (17)] to the resonator-bath representation
of choice is specified by

mm——[ wlg) ,

g
Rene
|

ﬁ

}<Mq| #Pr

éy

}(w lu0b'(q")

NI»—*

]
J

ﬁﬁ

\/T

and the analogous relation implied for the 5'(g), with the
spatial overlap (uq|ué,) given by
(uglu)y=8q-q')
(uglug)uglug) 1

" Afw(g)] - iSTwlg")] @X(q) - wX(q') - i€
(24)

l\)l>—‘

}(u |M b'(q"),

(23)

Here, we have defined, for any smooth function f(w),
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1 * 20’
Af(w)E;PfO dw’wz_—“’w,zf(w'), (25)

and introduced the function

s = [ (g do-oi@). G0
q

We note that this definition remains invariant if we replace
the iz,(7) by any other basis of normal modes of the whole
structure, so that the function S(w) is a property of the reso-
nator mode. In fact, it corresponds for w>0 to the spectral
density of the resonator mode’s canonical coordinate at zero
temperature. The choice of —ie in Eq. (24) yields the desired
asymptotic condition for — —o0, already discussed. The nor-
malization of the resonator mode and Eq. (22) imply two
sum rules

J wS(w)dw = and f
0 0

respectively, which will prove useful below. Here, we have
used that for any smooth function f(w),

o’S(w)dw =

o1y

, (27
2wR()

f [uglu)*flo(q)] = f dwz—wS(w)f(w). (28)
q 0 T

On the other hand, the overlap (uq|u',*> (u |u ) can be
expressed in terms of (uq lu,) and the overlap [Eq (24)]

inserting 1=/ |u )(uq| In turn, as complex conjugation cor-
responds to time inversion, (u |u ) is just the S matrix for

the corresponding elastic wave classical scattering
problem.®! The fact that the S matrix only mixes states with
the same frequency and that the resonator mode ity (7) is real
can then be used to establish

[/wm /wm } )
{ /M_ /M}
w(q') w(q)

<” |”R><”R|“ ) 1
As[w(q )] +iS[w(g")] w*(q) - w*(q’) + i€’

(29)

To proceed, one can first prove that the inverse transforma-
tion has the analogous form given by

, 1 I9) o) | , ,
%zﬁi{vm;f'Vai}%W”““
1 ) lolg") |, | x4,
+ fq, 5|: w(qR,) - wg :|<MR|uqr>b (q )9
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(1] e /w(q’)} , ,
b (q)—L 2{ o) Vo) (uglugb(q")

1| Jolg w(q’)] NENRT

*er{ NVatg) ™ Vg |Halty @)

(30)

We have done this by showing that substitution of Eq. (23)
and its counterpart for b'(g) into the right-hand side (RHS)
of Eq. (30) yields the identity, which reduces to a straight-
forward calculation with the help of Egs. (24)—(29). Subse-
quently, in an analogous fashion, one can use Eq. (30) to
prove that b'(g), b'7(g) also satisfy canonical commutation
relations. Then, substitution of Eq. (23) and its counterpart
for b'(g) into the diagonal Hamiltonian (17) leads to the
desired resonator-bath form embodied in Eq. (20) with off-
diagonal couplings given by

~ (uglu,) 1
{D) = el M) - iSla@]

Finally, substitution of this result into the definition [Eq.
(21)] for I(w) allows us to obtain

L S
l(w)= wp A (o) + SX(w)’

for @>0. This together with Eq. (26) reduces the derivation
of the environmental spectral density to the calculation of the
overlaps (ul'g|uq) and implies that it is entirely determined by
the choice for the resonator mode. We note that both the
it,(7) that diagonalize the Hamiltonian (20) and the ﬁé(?) that
solve the inverse problem for a given iry(7) are fixed once
their asymptotic behavior is specified.

It is worth noting that within the above exact treatment,
the {{,} describe the coupling to an environment that—
barring selection rules arising from the symmetries—
includes the other high-Q resonances {w,} of the beam
coupled to the supports. Thus, the naive expectation that /(w)
be smooth on the frequency scale wy will fail in a neighbor-
hood of w=w, # wgz where the environment is structured and
I(w) may exhibit interference effects. This issue and the
natural ultraviolet cutoff for I(w), which is set by the trans-
verse dimension d, will be discussed further in Sec. V and
Appendix F.

(31)

(32)

III. REDUCTION TO A SINGLE JUNCTION

It is clear from the analysis in Sec. II that we will even-
tually need an expression for the overlaps (ug|u,). As ity(F)
only has support inside the beam, knowledge of the normal
mode i,(7) is only needed in that region. Furthermore, it is
straightforward to realize that the end corrections (cf. Appen-
dix B) will only yield contributions to {u|u,) that are higher
order in d/L so that we may focus on the four branches that
can propagate at low frequencies. As already discussed in
Sec. IT A, our system can then be regarded as a Fabry—Pérot
interferometer for elastic waves and for the bridge we may
concentrate on right movers. It proves useful to explicitly
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separate the transmission amplitude 7, for propagation inside
the beam that would ensue for the corresponding problem of
a single junction (cf. Sec. IV); since, given our model of the
supports (cf. Sec. IT A), in the limit d/L— 0, the combination
u,(r)/t, for ¥ inside the beam only depends on ¢ via w, and
the branch index B. For each branch, the latter frequency will
correspond to a wave vector k(q) for propagation inside the
beam® and, as described in Appendix B, the mode profile
b_tq(?)/tq can be expressed in terms of an effective one-
dimensional field ¢y, s(z) [cf. Eq. (B8)]—henceforth, in
this section, we will omit the ¢ dependence and the index S3.

In the cases of compression and torsion, only traveling-
wave solutions intervene (cf. Appendix B). Therefore,

i(2) = A (K)e™ + A_(k)e™™, (33)

where we take 0 <z <L, and A..(k) are the amplitudes of the
right- and left-moving components of ¢, (cf. Fig. 1). In order
to determine the above amplitudes, we use the usual proce-
dure for Fabry—Pérot interference, i.e., we derive the ampli-
tudes from the infinite sum of contributions generated by
consecutive reflections at the ends. We find that they obey
the following linear system of self-consistent equations:

-1 MDV\(A) (-1
AR —1\a_) "\ o ) (34)

where we have defined ") as the amplitudes for reflection
at the right (left) ends of the beam, and the first entry on the
RHS corresponds to the displacements generated by the in-
coming wave from the support. This system of equations is
valid for both the bridge and the cantilever. For the bridge
geometry, we can use the reflection symmetry with respect to
the x-y plane through the midpoint of the beam to prove that
the reflection amplitudes are related by r® =D Fur-
thermore, given our choice of origin, dimensional analysis
implies that for a specific support material and type of beam,
the reflection amplitude ) is just a function of kd (analo-
gous considerations will apply below to rst,g, with 6,7
=A,B, and to the ratio b).

On the other hand, as discussed in Sec. II A and Appendix
B, in the cases of the two bending branches, one needs to
also consider evanescent solutions that decay over a length
scale of order 1/k. In order to include these in our analysis,
we generalize the above procedure. The functions ¢, corre-
sponding to the bending modes will have four contributions
with respective amplitudes: A. (k) for propagation to the
right (left) and B~ (k) for decay to the left (right). Hence, we
write

di(2) = A, (k)™ + A_(k)e ™ + B, (k)e* + B_(k)e ™.
(35)

In formal terms, the resummation of the successive “reflec-
tions” can be viewed as an iterative procedure in which the
nth contribution when added to the (n—1)th matches the
boundary conditions at the right (left) ends for odd (even) n
(here, n=1,2,... with n=0 corresponding to the solution for
a single junction). Thus, reflection at one end of the beam
will generate both types of contributions, i.e., there are now

eight reflection amplitudes. We can define, for example, rﬁf,;
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as the amplitude for a propagating mode to be reflected at the
left junction into a decaying mode and similarly for the other
amplitudes. Hence, the system of self-consistent equations
obeyed by the amplitudes which specify ¢;(z) generalizes to

S I A PR
o —1 A le | |-
® (R = ’ (36)
Taan Tgi —1 0 A_ 0
A Ay o —1/\s/ \o

where b corresponds to the decaying contribution generated
by the incoming wave from the supports. More precisely, it
is defined as the ratio of the decaying contribution’s ampli-
tude to 7, for the corresponding problem of transmission
from the support into the beam at a single junction (see
Sec. IV). For the bridge geometry, we can reduce the eight
reflection amplitudes to four by using again the correspond-

ing reflection symmetry. This yields rR=pEe2kL,
rgg — rE,LB) e~ (1=DkL rg;) — r%LA) e~U=DkL and r(R) - r%LB) ~2KL

Finally, we note that if one allows the ratio b to depend on
g, the results of this section for the modes i,(7) inside the
beam (and a distance >d away from the junctions) are ap-
plicable to the extent that contributions of order exp[—L/d]
arising from the end corrections are negligible so that Egs.
(33)—(36) are completely general for k(g)d<<1.

IV. TRANSMISSION THROUGH A THREE-
DIMENSIONAL-ONE-DIMENSIONAL JUNCTION

A. Approximation by clamped and free boundary conditions

We now turn to the analysis of the small kd behavior of
the transmlssmn amplitudes 7, bt, and reflection amplitudes
A L U/h sy (With 8, 7=A,B) that characterlze a single 3D-1D
abrupt elastic junction (cf. Sec. IT A). To this effect, we con-
sider incoming eigenstates that present simple asymptotic be-
havior for r— —. In the case when the incoming wave is
incident from the support, these eigenstates |u ) will corre-
spond to the different free modes of an elastlc half-space
_(0)(r) already discussed in Sec. I A. Alternatively, for inci-
dence from the beam, they will correspond to the left movers
of an infinite beam. Once again, we consider modes with
well defined reflection symmetries. This implies for the
eigenmodes incident from the support the same labels ¢, v, B
as for the modes of the whole structure, while the modes
incident from the beam are specified by k, .

We focus on a specific eigenmode u#(7) and for simplicity
omit its labels. Inside the beam [i.e., for z=0 and (x,y) in a
beam’s cross section], we decompose i(F) into

i(r) = A, () + i1,(7), (37)

where i, (7) is an approximation to the displacement field
specified by taking at z=0: (i) clamped boundary conditions
when the incoming wave incides from the beam or (ii) dis-
placements specified by the corresponding solution for the
free elastic half-space [i.e., ﬁ*(x,y,O)zﬁﬁ(O)(x,y,O)] for in-
cidence from the support [cf. Eq. (13) and Appendix A]. The
problem of finding i#(7) inside the beam can then be formu-
lated as an integral equation for Aiz,(7),
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A, () = f dr'*G(r-7, o) - F - [Ai,(F) + i, (7],
N
(38)

where S is the beam’s cross section at the origin, 7
=(x,y,0) €S, and z'=0. Here, F and G are second rank
tensors. The former is given by the linear differential opera-
tor that maps u(r) onto Z- o(7), where o(F) is the induced
stress tensor, and the latter by the retarded Green’s function
of the free elastic half-space harmonically forced at its
boundary.*® More precisely, G;/(7,w) is defined as the ith
component of the outgoing dlsplacement field generated at
point 7 by the harmonic stress source [frequency w(k)] with
amplitude specified at z'=0 by o.(x",y",0)=6x")8(y’'),
0.(x",y",0)=0 for [ #. In order to establish that Eq. (38)
specifies the solution for z>0, we just need to show that
expression (37) satisfies the continuity of the displacement
and the stress with a solution in the half-space (z<<0) having
the appropriate asymptotic boundary conditions. We define
Au_(7) as the extension of the RHS of Eq. (38) for z<<0 and
arbitrary x, y. In case (i), this function directly gives the
required solution in the support, while in case (ii), the latter

is afforded by 3‘17(0)(7)+A17_(ﬂ. In both cases, the continuity
of the stress follows trivially by construction, whereas Eq.
(38) enforces the continuity of the displacement. It is under-
stood that both Az, (7) and iz, (F) are linear superpositions of
the low-frequency harmonic solutions |v(’")(k)> of a semi-
infinite elastic beam (cf. Appendix B) w1th frequency w(k)
[specified by k(g) for incidence from the support]. Thus, i(7)
satisfies the elastic wave equation for z>0 and the only trav-
eling wave contributing to Aiz,(7) is the right mover corre-
sponding to k, B. This yields

Ait, (7 k,d) = 2 ¢ gk, d)A g, (x,,d, kg, )e<onkDz

it,, p(F.k,d) = iy, 5.k, d) + E cn(k.d)

X‘Kﬁm(x’)’, d, Kﬁm)e_KBm(k»d)Z. (39)

Here, we have reintroduced the “symmetry index” S and
eliminated the frequency in favor of k. The amplitudes in the
different harmonic solutions are given by cg,,(k,d) and

(*) ) (k.d), while Ag,[x,y.d,Kg,(k.d)] and Kg,(k,d) are,
respectlvely, the corresponding transverse profiles and com-
plex wave vectors of the latter. The displacement field inci-
dent from the beam ir, 4(7,k,d) vanishes for case (ii),
whereas for case (i), it is given by K,;,O[x,y,d,ik]e‘”‘Z for
propagating modes and A, \[x,y,d,~k,; Je"vn1* for the
large decay length exponentials associated with the bending
branches (decaying modes). This “incident displacement”
and the terms with m=0 and with B=v/h, m=1 yield the
TRE part of the solution, while 8=c, t with m>0 and B
=v, h with m>1 correspond to the end corrections. These
are characterized by R[ g, (k,d)]=1/d, whereas

245418-10



INTRINSIC DISSIPATION IN NANOMECHANICAL...

kpolk,d) = —ik, Ky (k,d)=k(1+O[kd]). (40)

To extract the small kd behavior of the transmission and
reflection amplitudes we first prove that

27,7
(7))
For this analysis, we eliminate k and z in favor of kd and kz,
respectively, which are then treated as independent variables
(henceforth, we omit the resulting d dependence of nondi-

mensionless amplitudes). If one substitutes Eq. (37) into
|Aiz, (7) | /|i(7)|, one can deduce that

A (7))

|iz,. (7))

< O[kd] for z>d. (41)

|Aiz, (7]
=< O|kd — = Olkd], 42
[kd] = 70| [kd] (42)

so that it suffices to prove the left-hand side (LHS) of Egq.
(42). Furthermore, for z>d, the contributions of the end cor-
rections are exponentially suppressed so that it suffices to
analyze the TRE amplitudes [cf. Eq. (39)]. In fact, it can be
proved that the latter satisfy

Olkd] for case (ii) and B=1¢
() -
e ’m(kd)| - {(’)[1] otherwise, (“43)
O[(kd)*] for case (i) and B=1
|CB m(kd)| = {O[kd] otherwise, “44)

which then directly imply the LHS of Eq. (42).

First, we establish the behavior [Eq. (43)] of the starred
amplitudes, which amounts to a rigorous derivation of the
recipes used in TRE to specify the boundary conditions for
the effective one-dimensional field ¢(z). To this effect, we
substitute Eq. (39) into

0 for case (i)

A 45
Sﬁb_téo)(x,y,O) for case (ii) (“5)

ﬁ*,ﬁ(x’y’(),k,d) =

and take on both sides the spatial averages (- +-)g and (- * ),
that correspond, respectively, to the displacement of the cen-

ter of mass and the spatially averaged angle 6 [as defined in
Appendix B, Egs. (B11) and (B13)] for the cross section S
(henceforth we omit the latter label). If we separately con-
sider each component, we have six equations that are linear
in the amplitudes c(;r)n (kd) with inhomogeneous terms arising
from —iz;, g(x,y,0,k,d) in case (i) and S'ﬁﬁfio)(x,y,O) in case
(ii). The reflection symmetries imply that in the cases of
compression and torsion, respectively, only the equation cor-
responding to (u,) and to 6, does not trivially vanish, while
for vertical (horizontal) bending the same applies to the two
equations provided by (u,) ({(u,)) and 6, (6,). In each of
these equations, we solve for the TRE amplitudes in terms of
the end corrections and the inhomogeneous terms. The small
kd behavior of the resulting expressions can be extracted by
using the following properties of the modes’ transverse pro-
files:
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1

— form=0
<Az,cm> =~ VZWS
O[(kd)*] otherwise,
! f 0,1
— or m=0,
Ay pimm =\ N27S
O[(kd)*] otherwise,
1
— for m=0
0. im = N2,

O[(kd)*] otherwise,

N (i)m+l
0} /x,v/hm ~ - d\’/z_'n'S for m= 0, 1
kd 5 '
O[(kd)’]  otherwise,

‘ <f dr'*G(r—7',w[k]) - F - {Aﬁ,m[x’,y’,d, Kpgm(k,d)]
s

X o~ kpmlk d)z’} O[(kd)"#] ~ for B,m € TRE
o | OLkd)*#] otherwise,

‘< f dr*G(r-7,wlk]) - F -{Ap,[x",y".d, kp,,(k,d)]
N

% e—Kﬁ’m(k,d)Z’}>
ang

which imply that the contributions of the end corrections
scale at most as the inertia (i.e., as »?). Equations (46) di-
rectly follow from the universal properties of the end correc-
tions discussed in Appendix B 2 and the small kd behavior of
the TRE solutions®’ (cf. Appendix B 1). Thus, with the help

of the Taylor expansion of $ ﬁﬁgo)(x, v,0) at the origin, Eq.

(13), and Eq. (B12), we obtain for compression and torsion,

(0) = { 1

2\"277Su£f’q)(0) for case(ii),

| Olkays]  for p.m e TRE
- O[(kd)*"8] otherwise,

(46)

for case(i)

-1 (i)
Clkd) =~ —
o (kd) {quﬂz[z VX aP(0) + 2y (0)] (i),

(47)

where y,=(I,~1,)/1, and u;; is the strain tensor. In the case
of the bending branches for case (i), we get
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) 0(0) = {

() (0= {1+ for propagating iy
Con,1 —i for decaying i, g,

for propagating i;, g
(1-1i) for decaying it;, s,

(48)

while for case (ii), we obtain

{1. | ][ MO(O)} [2\,277Su§3;q(0)]’ o)
+i F1 u/hl(o) 0

where the first equation corresponds to the average displace-
ment (u,;,) and the second one to the angle 6,,,. The fact that
the latter does not contribute to lowest order in this case is a
consequence of the linear versus quadratic dispersion rela-
tions that characterize the propagation of the relevant modes
(B=v,h) in the support and the beam, respectively. Equation
(49) yields

(o)
c$ho(0) = \2aS(1 = ul)) (0), ik
U/hO(O)

An analogous procedure can be followed to derive Eq.
(44). We substitute instead the decompositions [Eq. (39)]
into Eq. (38) and now the averages (---)s and ()
yield linear equations for the unstarred amplitudes with in-
homogeneous terms arising from the starred ones. Then, Eq.
(44) follows from Egs. (46)—(50) completing our derivation
of Eq. (41). Furnished with the latter, it is clear that the
lowest order contributions in kd to the transmission ampli-

tudes 1,(kd), b(kd)t,(kd) and reflection amplitudes r'")(kd),

clt
1(51)1 sy(kd) can just be extracted from i, (7). Thus, from Eq.

(47), we obtain for both compression and torsion, r(0)
=—1. In turn, Egs. (48) and (50) yield for the two bending
branches, b(O)—l rE©0)=i, rB0)=—(1+i), rE0)=-(1
—i), and rBB(O)——z The lowest order contribution t(q) to
each of the transmission amplitudes 7, is provided by the
correspondmg approximation for the starred amplitude
(; (kd) [cf. Egs. (47) and (50)]. The needed values at the
origin of _fzo)(‘) and its derivatives are straightforward to
obtain from the expressions given in Appendix A. We note
that the symmetries of the half-space imply ugoqg‘Py(O)

(50)

x q 0,7/2—¢, 7(0)
Flnally, for the cantilever geometry, a procedure analo-

gous to the above derivation of the starred amplitudes for
case (i) yields the standard TRE recipes for the reflection
at the free end. The latter, given our choice of coordinate
origin, lead to r®(0)=¢* for both compression and

torsion, and rR0)=ie? L, AR(0)=(1+i)e=DE, AR)(0)
=(1—i)el=DAL, and r(R( 0)=-— ze‘ZkL for the two bending
branches.

B. Reciprocity relations

Reciprocity is simply the relation (v, |u_y=(u"|v?) for a
standard scattering problem in a time reversal invariant
theory.®%® Here, v € V and u € U label freely propagating
asymptotic states belonging to the sets of interest V and U,
“="and “+” denote, respectively, incoming and outgoing
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scattering states, and “*» denotes the time reversal operation.

The inner product “(|)” is assumed to be preserved by the
time evolution, i.e., the underlying theory is “unitary.” How-
ever, this preserved inner product need not necessarily be the
usual overlap as in quantum mechanics where the unitarity
corresponds to the preservation of probability. In particular,
in our case of elasticity theory, it is defined so that (w|w)
corresponds to the energy carried by the solution w and the
unitarity corresponds to energy conservation.%! This relation
is quite general but proves to be especially powerful when
V~U, in the sense that aside from possible discrete indices,
the available free eigenstates are essentially equivalent. In
our specific context, an example satisfying this last require-
ment would be two different rods (corresponding to V and U)
joined at an abrupt junction.’* Reciprocity directly implies
that for unit incident power in a traveling wave e U (with
wave vector ky;), the power transmitted into a traveling wave
eV (with wave vector ky) is equal to the power transmitted
into the wave corresponding to —k; for unit incident power
in the one characterized by —ky.

However, our model for one junction does not satisfy the
above “asymptotic equivalence” since it involves coupling a
1D system (the beam) to 3D and 2D continua corresponding,
respectively, to the bulk and surface states (SAW) of the
support. To overcome this difficulty, we first consider a
model of the junction for which (i) the support is character-
ized by some finite dimension D, (ii) the support states under
scrutiny are equivalent to a phonon waveguide so that the
asymptotic equivalence is satisfied, and (iii) for D— < the
support tends to a free elastic half-space. Then, we apply the
reciprocity relations for finite D and finally take the limit
D — oo, For bulk states (i.e., ¢ with ye{l,SV,SH}), a suit-
able “finite support” is afforded by another beam of square
cross section (side D) subject to periodic boundary condi-
tions on the external faces. On the other hand, for surface
states (i.e., y=s), a suitable construction is given by a slab of
thickness D subject to periodic boundary conditions at the
external semi-infinite horizontal faces and a free boundary
condition at the finite vertical face. In both cases, the decou-
pled support is exactly solvable and the support states of
interest are equivalent to a phonon waveguide whose
branches we index with a single label j. Thus, the free sup-
port eigenmodes® read |u§0)(k’ ,D)) with dispersion relations
w;(k",D), where k' is the wave vector along the waveguide’s
axis. If we define the amplitudes 4 ;(k", D) such that

i@”(k'.D.7) — 1, (k' D)0 [k (k'.D).F]  (51)

asymptotically for z— o0, where |v(0)(k)) are the freely propa-
gating TRE beam modes (cf. Appendlx B) with k>0 and
kg (k',D) as the wave vector in the beam’s branch 8 that
corresponds to the frequency w;(k",D), we have

lim [u(k', D)) = |u,) = lim 15,(k',D)=1,.  (52)
D—» D—»
Taking into account that the modes we consider are normal-

ized (in the standard Euclidean metric) in all 1D, 2D, and 3D
cases, it is then straightforward to realize that
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D—o

lim f dk’z |tﬁ’l(kl,D)|2d:w - w](k',D)]
J

- [ pota-a. (53)
q

where {¢} run only over modes with the corresponding 8 and
the integration includes summation over the appropriate dis-
crete indices. On the other hand, reciprocity directly implies

. Py wi(k',D

7J[kg(k'.D),D] = P—[L(;T))D]]| tp(k" D). (54)
Here, we have introduced T%)(k,D) as the transmission coef-
ficient into the support branch j for a traveling wave of type
B incident from the beam with wave vector —k and Pg(w)
[Pj(w,D)] as the power carried by the normalized free wave-
guide mode with frequency w and branch index B [j]. The
functions Pg(w), P(w,D) have a universal expression in
terms of the mass density of the respective waveguide and
the corresponding dispersion relation. On the one hand, in
complete analogy to the equivalent scenario for the electro-
magnetic field, the power carried by the waveguide mode is
given by the product of the group velocity and the corre-
sponding energy per unit length (averaged over a period). On
the other hand, the latter can be expressed in terms of the
mass density and the frequency by first considering the har-
monic theory of the underlying microscopic discrete lattice
for a finite waveguide of length 27/k subject to periodic
boundary conditions at its ends and then taking the con-
tinuum limit. Thus, we obtain

1 dw dw;
Paw) = — B plw)=—p i (55
) AP (w) = pg P (55)

where p;, (p,) is the density of the beam (support). We can
substitute Egs. (54) and (55) into the LHS of Eq. (53) and
perform the integration, the summation, and the limit to ob-
tain for each branch B the following reciprocity relation:

dk
%L |t,|* 8w - w,) = Tﬁ[kﬂ(“))]jf((")’ (56)

where 74(k) is the total transmission coefficient into the sup-
port for a traveling wave of type $ incident from the beam
with wave vector —k, and {g} run only over modes with the
corresponding S.

Finally, we note that the above derivation can be extended
to the cases considered in Appendix C by suitable modifica-
tions of requirement (iii) so that in all cases, the limit D
— o0 yields the support under consideration (“3D asymmet-
ric” or slab). Naturally, in the asymmetric cases, the labels g
will no longer relate to the beam branch index £ and, in Eq.
(56), we will have t,— 1, s with [, running over all the sup-
port modes. In the case of a SWNT for which we use the
shell continuum model, p, should be replaced by the surface
density of graphene o, while for a nanowire or SWNT for
which the underlying model for the [v(k)) is discrete, the
adequate ansatz reads p,— u,/N, (cf. Appendix C). In the
case of a thin plate geometry,’® both p, and p, should be
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replaced by the surface density. In fact, it can be argued that
Eq. (56) does not depend on any specific properties of the
junction or the support and only relies on the phonon trans-
port being ballistic.

C. Transmission coefficients for each branch

We now turn to the evaluation of the leading contribution
in kd to the LHS of Eq. (56) for each branch B, which we
define as pg(w). On the one hand, we will find in Sec. VB
that the force spectral densities Inﬁ(w) correct to lowest or-
der in the rec1proca1 of the aspect ratio d/L only depend on
the amplitudes t( through these quantities pg(w). On the
other hand, it is clear that if we substitute into Eq. (56) the
approximations 10 glven in Sec. IV A, ps(w) determine the
transmission coefficients 74[k(w)] correct to lowest order in
kd. Tt is important to highlight that pg(w) is amenable to
reduction to a property of the free support at the origin that
directly relates to its DOS or, in the case of torsion, to its
vacuum spectrum for the angle [as defined in Appendix B,
cf. Egs. (B11)-(B13)] and geometrical properties of the free
beam (S, I,, and y,). In fact, we can consider the displace-

ment field operator for the free support l/il(o)(F) and decom-
pose it in terms of its normal modes’? ﬁm)(?). Then, the latter
decomposition and Egs. (47), (50), and (56) yield

2 * .
pe(w) = p S f dee™(i@"(0,1)i(0,0)),

o [ . R R
pw) =222 f dre’ 1im(6 (1) 6°(0)),
_eo S—0 -

Puntw) =278 f dre (i 0(0,029(0,0)),  (57)

where we use Heisenberg operators and (---) denotes the
vacuum expectation value.”! This connection abets the inter-
pretation of pg(w) as an effective environmental DOS set
forth in the Introduction (cf. Sec. I A). We note that the latter
quantity has dimensions of linear density of states and that
for compression and bending it is proportional to the DOS of
the support times the area of the beam’s cross section. We
separate the contributions of each type of support modes y
so that pg(w) =2 ,ps (). In turn, given the symmetrization
of the modes, the wave vector integration in Eq. (56) only
involves ¢,,q,,q.>0, while the symmetries of the half-
space imply for the two bending branches |tqo,)9 oyl

=[t) e yv| —where we use spherical coordinates for the
wave vector g as in Appendix A. One can then perform the
substitutions w=c,4,v=cos 6, integrate over w and ¢, and
eliminate c,, in favor of ¢, to obtain
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Py 45

pc 7(w) (a)w pr y(w) = p_

scz
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2S
Vs @)]e, pony(©) = 250, (@), (58)

s r

Here, we have introduced the following dimensionless constants and functions of the ratio a= (c,/c))*=(1-20,)/2(1-0,) for

the supports’ material (o, is the corresponding Poisson ratio):

(1-2a+2av?)%?

32 1
(64
IZCJ(O{)= 27TJ dv
0

(1-a-v)(1-v0?

[4a3/2\/1 —a+av*(1-vHv+ (1 -2a+ 2avz)2]2’

(a=1+0v)(1 =02)0?

2 V-«
ﬁc,SV(a) = 7_Tf dv
0

2]1
+— dv
) \T"a

16(1 - a-v?)(1 - vHo?+ (v -1)* [4Va—1+02(1 -0 + (202 - 12
1 — 1=-&)2 |?
T.sy=0, . (a)=—=—|Vl-aé(a)-——=| C¥a), (59)
su=0. &, 2&@{ O e
1
B =my = =0, Th=1—, (60)
~(s) _£ ! (1-a+av?)(1 -vH%?
(a) v 32,1 _ 201 _ .2 _ 2y272°
o [4a”* V1 —a+av*(1-v)v+ (1 -2a+2av°)?]
1 [V (1-v)22(2v*-1)2 1! (1-v?)vv*-1) 2
”zsv(a)__ v 2 22,2 2_ 14T dv| —= 2 2 2_ 12|
167 16(1 - a-v?)(1-v*) v+ 2v>-1)*  167) 1= 4Na-1+v(1 -v)v+ Qv -1)
1
~(S) _ ~(S) —
_ 1 (! 40°?(1 - a+ av?)(1 = v?)v?
Mu/h,z(a) =— | dv 32 | 2 2 2\272°
Aty [4&*V1 — a+ av*(1 —vH)v + (1 = 2a+ 2av?)?]
B (@) IJ\Ed (202 - 1)%? lfl (202 = 1)2? 1)
i a)=— v +— ,
oSV 41 ), 16(1-a-v?)(1-vH)*+ 2v* - 1) 47) 7= [4\, —1+0%(1 =) + (20% = 1)*?
- | é(a)
UomsH= 3 iy (@) = T =—=C*a), (62)

where &(a) is the ratio of the velocity of propagation for
surface waves to ¢, and is a function of « that is always less
than unity.*> We note that for compression and bending, the
1, have a nonvanishing limit for k—0 so that the frequency
dependence of the quantities p directly follows from the den-
sity of states of the 3D suppon 72 while in the case of torsion,
there is an extra factor of w’ given that 19 scale as the
derivatives of the displacement field uq In all cases, the
contribution of SV support modes has two distinct terms: one
corresp(Lding to polar angles 6 below the critical angle
arccosy 1 — a for which there is a reflected longitudinal wave,
and another corresponding to angles for which the longitudi-

nal component is evanescent. The corresponding results for
the effective environmental DOS for nanotubes and nano-
wires can be obtained from Eq. (58) via the ansatz p,S
— tpy Ppl.— wp{r?)s (cf. Appendix C). Finally, we can use
Egs. (56) and (58)—(62) and the TRE dispersion relations (4)
to obtain after summing over the index 7 the following ex-
pressions for the transmission coefficients into the support:

3_4aE 3/2 , 12
7.(k) = 4u;<a)( “—") Bl s,
-« Es Pb
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FIG. 3. Dimensionless displacements i, (dashed line), i,
(solid line), and dimensionless angle ﬁis) (dotted line) as a function
of the ratio a=(c,/c;)?. For typical materials of interest, o,~1/3,
which yields 7,(1/4)=0.13, @®(1/4)=0.019, and i, ,(1/4)=0.12.

127 1

Z
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where we have also substituted the definition of 7,, used c,
=VE,/2p,(1+0,), and introduced iig(a) =2 jig ,(a). The lat-
ter functions are plotted in Fig. 3 for all ratios « correspond-
ing to physically allowed positive values of the Poisson ratio
oy.

Finally, we consider the frequency dependencies and the
scalings with the transverse dimensions for the analogous
problem of an abrupt junction between a rectangular beam of
width w and a slab (support) of the same thickness t<<w
=d [cf. Appendix C]. The analogous expressions for the
starred amplitudes yield for the corresponding effective en-
vironmental DOS,

2
T,(k) =4|:L + (ﬁ) ﬁ@(a)]

12
Tu/h(k)=4ﬁv/h(a)< ) K, (63)

3

pul) ~ W, flw) ~ Fo.

Bolw) ~ “t—v Fi(0) ~ Wo, (64)

which via Eq. (56) allow us to recover the following scalings
with kd for the transmission coefficients:

7(k) ~ (Wk)*, (65)

already derived in Ref. 33 by an alternative method (cf. Sec.
IV D). Here, we have used that (r*)s~w? and C/I,~t*/w?
for t<w.

Tﬂ#h(k) ~ Wk,

D. Multipole expansion method

The method followed above to derive the transmission
coefficients relies on using the transmission amplitudes from
the support into the beam—which given the results of Sec.
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IV A can be extracted from the free modes of the supports—
and then exploiting the reciprocity relation (56). The naive
expectation is that an alternative method should be afforded
by using the far field of Az_(7) [cf. Eq. (38)] corresponding
to incidence from the beam [case (i) in Sec. IV A] to deter-
mine the power across the surface of a hemisphere with r
— o0 per unit incident power.

The displacement field Az_(7) can also be viewed as the
retarded solution for the problem of the free elastic half-
space harmonically forced at its boundary by the stress

source o'iz(F):f -F-[Au,(F)+u,(F)]. As this radiation prob-
lem involves a source with a typical dimension d much
smaller than the wavelength associated with its frequency, it
is natural to use for Ai_(7) its multipole expansion, whose
successive moments will yield terms of increasing order in
kd. More specifically, if we consider the asymptotic behavior
of the corresponding Green’s function*® G, (7,w) for g,r
— 0 and the nth moment of the stress source

M.

(PR = S<0-i]zxizxi3”'xin+1>5’ (66)

with i,=1,2,3, n=0,1,..., one can show that the corre-
sponding contribution to the displacement field Az (7)
scales as

n k M(n)
IAﬁE")(7)|~&, qr>1, (67)
E;r
where we  have introduced the norm ~M®
E{E{i}[Mt(:l,)iz...i _ J/(n+ D} Naturally, the source o.(F)

should also be expanded in powers of kd. However, our treat-
ment of the solution inside the beam (cf. Sec. IV A) only
provides us with the contributions arising from the TRE part
of it, () whose order is lower than the inertia [(kd)*’8]. Thus,
the multipole expansion will only be useful if it can be es-
tablished that the former result in contributions to the trans-
mission coefficient that dominate over those corresponding
to the end corrections and to higher orders of the TRE
branches. The relative orders directly follow from consider-
ing the expansion in kd of the RHS of Eq. (67). A straight-
forward analysis implies that, in general (i.e., without invok-
ing any symmetries), this is nontrivial due’ to the role
played by the end corrections’ symmetric part of the restric-
tion of Mfll)lz to iy,i,=1,2 [M®] and by their moments M.
We note that the leading contribution to the far field of the
compression, torsion, and bending TRE branches scales, re-
spectively, as k, k%, and k°. In the cases of compression and
bending, these correspond to point sources given, respec-
tively, by a normal force and a tangential force applied at the
origin. On the other hand, for torsion, the leading contribu-
tion corresponds to a normal torque applied at the origin only
when the corresponding M vanishes. For the bending
branches, the reflection symmetries are enough to cancel
M®), and q/(k)~k* implies that higher order moments are
irrelevant. In the case of the torsional branch, it is sufficient
to have M®)=M®@ =0, which can be guaranteed by also re-
quiring symmetry under the swap x<y (i.e., if the cross
section is symmetric under rotations by 7r/2 around z). In
contrast, for compression augmenting the symmetry to that
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of a cylinder does not guarantee the cancellation of the diag-
onal part of M, which could potentially give contributions
to the far field of order k. Thus, while for bending and tor-
sion the multipole expansion approach will provide a non-
trivial corroboration of the exact form of Egs. (63)—and
together with Egs. (58) of the reciprocity relation (56)—for
cross sections with the appropriate symmetries, for compres-
sion, it, in principle, only allows to check the k& dependence
of these relations.

Energy conservation implies that the evaluation of the
contribution to 7 of the aforementioned leading multipole of
the TRE branch can be done at the origin. In general, if we
consider a harmonic point source given by the superposition

of a force F,, and a torque M., applied at the origin, we
have for the power radiated into the half-space averaged over
a period,

out - ER{F out(o) + M:ut : gout(o)}’ (68)

out

where 6,,,(0,7) =limg_, {7, 1))ang s—With S as a circle on
the free face at z=0 [cf. Eq. (B12)]—and ity,(7,t) is the
generated displacement field. If we now express the lowest
order in kd of the incident power associated with iz, (7, 1) [cf.

Sec. IV A] in terms of the corresponding total force F;, and

total torque M, by using the TRE transverse profiles given in
Appendix B we get

| . -
S THF G how(0) + M, - 60u(0)}

T= = | . . (69)
S TUF, - 6(0) + M, - 6:,(0)}

Our results for the reflection coefficients r(cfl)(O) rv/h 57](0)

imply

Fou
F.

m

2 |8, B=v.h ‘Mout
|4, B=c, M,

m

2 [8, B=uv.h
T4, B=1.

(70)

From Egs. (69) and (70), the properties of the TRE solutions,
and the definition of the Green’s function G, it is straightfor-
ward to establish for the leading order of the transmission
coefficients,

7.(k) = 43{G [0, (k) [}F (k)
Tt(k) ZJ{ 072(9)) ny[o w(k)] - (;;22 Gxx[o’ w(k)] }Mz(k) s

Ton(k) = 43{Gxx/yy[0’ (k) [} F (k). (71)

The last factor in each of these equations Fg(k) [Mg(k)] is
defined as the magnitude of the total force (torque) carried by
the TRE solution per unit amplitude. To derive Eq. (71) for
B=t, we have also used that the stress point source corre-
sponding to a normal torque M, at the origin is specified by
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M
Oy = 201][5(75)5,(}’), g,,=—

¥z

M
70‘“5'(x)5(y), 0,=0,

(72)

which can be deduced from the source’s symmetries and
the properties G, [x.y,z,0(k)]=G,[y.x.z,0(k)] and
Gylx.y.z,0(k)]=G,[y.x,z,0(k)]. Note that from the latter,
we also have J{G,[0,w(k)]}=3{G,,[0,w(k)]}. If we now
eliminate k in favor of the transverse wave vector in the
support ¢, and define

2(1 + O-S)QZ“’

G(rolg) = = Gq, (73)

N

dimensional analysis directly implies that the imaginary

parts of the function G and of its derivatives evaluated at the
origin are dimensionless functions of the Poisson ratio for
the support material.”®> This together with

F(k)=E,Sk, MJk)=Ck, F,,(k)=Eyl k>, (74)

and Egs. (71) and (73), yields scalings with kd for the trans-
mission coefficients 74(k) that for all branches are consistent
with Egs. (63) providing a nontrivial check of the reciprocity
relation (56). We have also corroborated the prefactor for
torsion and bending in the cases where the aforementioned

symmetries are met by explicitly calculating J{G,(0)} and
3= Ty yx(O)—ﬁéxx(O)}/Z and comparing with

1 (92 P~ 1
o Gy,(0) - Gxx(m = o =ik

HG (0, 0)} = T, (), (75)

which can be obtained from Egs. (60), (62), (63), (71), (73),
and (74) and the expression for g, in terms of k for each

branch. The explicit derivation of J{G,(0)} from its defini-
tion [Eq. (73)] is given in Appendix E. We have numerically
checked that the corresponding expressions for iz, (@) given,
respectively, by Egs. (E14) and (62) coincide for all physical
values of the sound speed’s ratio a corresponding to positive
Poisson ratios (0<o,<1/2). The analogous derivation for
torsion (applicable to a cross section symmetric under rota-
tions by 77/2) is greatly simplified by the fact that only SH
waves contribute—leading to a universal prefactor. Finally,
we note that Eq. (75) and its analog for compression allow us
to interpret the it as dimensionless displacements and angles.

V. RESONATOR-BATH REPRESENTATION
AND SPECTRAL DENSITIES I(w)

A. Resonator modes, scattering modes, and their overlaps

We now return to the analysis of the normal modes of the
whole structure i,(r) (scattering modes) and the resonator
mode iyx(7) inside the beam for the purpose of determining
their overlaps to lowest order in d/L. The prescription for the
resonator mode given in Sec. II B implies that the procedures
to be followed for the bridge and cantilever geometries differ

only in the boundary conditions: clamped boundary condi-
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tions at the junctions, but free boundary conditions at the end
of the cantilever. Of course, the resulting Sturm-Liouville
problem defines an infinite set of resonator modes so that
WR— W, g with n=0,1,... and B=c,t,v,h. As we are inter-
ested in the regime d/L << 1, a natural requirement to identify
these localized modes with the physical resonances of the
whole structure is @, g— w,, g for d/L— 0, where the former
are the real parts of the poles of the propagator for the dis-
placement field [Eq. (18)]—this will be borne out below. In
this respect, it is worth noting once again that our problem
can be viewed as a mechanical lossy Fabry—Perot (cf. Secs.
IT A and III). As already discussed, we focus on low frequen-
cies so that wg[k(q)], w, s<w? with kg(w,)~m/d. In this
regime, the localized resonator modes can be associated with
effective one-dimensional fields ¢, 5(z) defined in complete
analogy to the fields ¢y, g(z) describing the scattering
modes [cf. Egs. (33) and (35) and Appendix B 1]. As ex-
pected, the reflection symmetries imply that resonator modes
associated with a given branch S are orthogonal to scattering
modes characterized by B’ # B.

We now consider the results for the reflection amplitudes
rb(0), r,% 57(0), rR(0), rgf,),’ 5,(0) and for the ratio »(0) ob-
tained in Sec. IV A together with the analysis for the propa-
gation of low-frequency modes inside the beam performed in
Sec. III [cf. Egs. (34) and (36)]. It follows that to zeroth
order in d/L, the scattering effective one-dimensional field
$i(g).,p(2) and its derivatives satisfy the same homogeneous
boundary conditions as those defining the ¢, 4(z) except for
the value of the field at the left junction’® specified by

¢k,c/t(0) = 1’ d)k,v/h(o) =1+1. (76)

On the other hand, all of these effective fields are solutions
of the TRE equation,

Dydp=w’e, (77)
with

FPB

e

Dy = (- 1)scy, (78)

It is then simple to use the aforementioned boundary condi-
tions and Egs. (77) and (78) to obtain

(b gDl p) = wé(k)<¢n,ﬁ| dip)

= wi,g( ¢n,ﬁ| d’k,g)
PPl
~2 n.3
+ (— 1)pBCB [?Zzpﬁ’_l ¢k,,3 7=0> (79)

where we have used integration by parts and that the ¢, 4(z)
are real (cf. Sec. II B) to establish the last equality. We have
calculated the resonator modes ¢, 4(z) (cf. Refs. 9 and 46),
normalized them to the length L, and computed their neces-
sary derivatives [note the 7 phase freedom for the choice of
¢, 5(2)]. These, together with Eqs. (76) and (79) and the
dispersion relations for the different branches, yield
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=\2C ;
<¢n,ﬁ’| ¢k(w),ﬁ’> \ n.B eHT/4’ ﬂ — U,h .
(80)

) “%21 {1, B=c,t

2 2
k, 0” - w,

Here, n=0,1,..., C, =1, Cn,v/h=(tanh2%)(‘l)n, and pg is
the exponent of the corresponding dispersion relation, i.e.,
pc/t=l and pu/h=2'

Equation (80) will prove useful below when using the
overlaps to calculate the force spectral densities I(w), g.
Naturally, its above derivation is invalid whenever k is a zero
of the resolvent of the linear system—Eq. (34) [Eq. (36)] for
B=c,t [B=v,h]—that determines the scattering mode
¢ p(z), which for k=k, (at a generic value of z) diverges as
d/L—0. The behavior of the overlaps and the spectral den-
sities in the neighborhood of these special points, which cor-
respond to the resonances, is discussed further in Appendix
F. Naturally, the divergent behavior at w, can be used to
prove @, — ,.

B. Relations between I(w) and p(w), 7(w)

In principle, the overlaps calculated in Sec. V A would
allow us to obtain the leading contribution in d/L to the
environmental spectral densities I(w) from Egs. (26) and
(32). However, the latter exact expression has the drawback
that even for a generic value of w, the dispersive contribution
Ag(w) brings into play both the behavior at wg and at high
frequency of the function S(w), while the analysis we have
done of the scattering modes i, (7) and their overlaps with
the resonator modes fails at these frequencies. To overcome
this issue, we first invert Eq. (32) to recover a well known
expression for the function S(w) in terms of I(w),

wpl(w)
[w® - (1)12Q - wpA (W) + w,zelz(w) ’

S(w) = (81)

and subsequently derive from it the following approximate
relation:

S(w)

(&

() = =—[(w+wp) (= &)’ + 0z (@p)].  (82)
Here, @y, is the approximation to the renormalized frequency
afforded by the solution that the equation,
@ A (@)
SRy L
Wg Wg + wp

(83)

has close to wg when |A,(wg)|/ g < 1. The latter condition is
necessary for the validity of the approximate relation (82)
and the corresponding relative error is at most of order
|A/(wg)|/ wg. The derivation of Egs. (81) and (82) is given in
Appendix F where we also establish that |A,(wg)|/wg— 0,
I(wg)/ wg—0 for d/L—0 and give the analog of the ap-
proximation [Eq. (82)] for the couplings {{,}. Hence, to ob-
tain I(w) correct to lowest order in d/L, we can replace the
factor in square brackets in Eq. (82) by its limit for d/L
—0, which will be given by &g — wg, I(wg) — 0. If we now
consider the definitions of #, and ¢(z), and the correspond-
ing expressions for the displacement field given in Sec. III,
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and substitute into definition (26), we obtain for the remain-
ing factor,

S(w) _ ﬂ<¢R|¢k<w>>|2&

wp 4Lwrw  py

f 1P o= w,),  (84)
q

where we have used definition (19) for the overlap <u1’e|uq>,
the expressions for u(7) in terms of ¢(z) given in Appendix
B, and neglected the contributions that involve derivatives of
¢(z), which are higher order in d/ L—note that ¢,— ¢, de-
fined in Sec. V A is normalized to the length while |up) is
normalized in the metric defined by Eq. (19). Here, g runs
only over modes with the branch index S corresponding to
the appropriate resonator mode (frequency wg) and we have
introduced the number of supports & so that for the bridge
geometry, ¢ is further restricted to right movers. On the one
hand, the last factor on the RHS of Eq. (84), correct to lowest
order in kd, is just given by the appropriate pg(w) [Eq. (58)
summed over all y], which together with Eq. (80) for the
overlaps and the relation

2 —1
Psth %@w_(&)”‘* dog
( k, ) a0 =\ a (83)

valid for pg=1,2, yields Eq. (5), namely,

_sc | 498, | PE@) @

In,ﬁ(w) - 5Cn,ﬂ|: dk (wn)i| 7w .

On the other hand, the last factor on the RHS of Eq. (84) can
also be exactly expressed in terms of the transmission coef-
ficients 74(w) by using the reciprocity relation (56) derived
in Sec. IV B. We can use this fact, Eq. (80) for the overlaps
and Egs. (85), (84), and (82), to finally obtain relation (6)
between the leading contribution to /(w) for each resonance
and the transmission coefficients,

do 75(w) ( o, )Pﬁ
n,B(w) Cn,ﬁ dk (w) 2L

The validity of Egs. (5) and (6) to lowest order in d/L is
affected by the caveats discussed in Sec. V A when deriving
the overlaps, so that the neighborhood of the other reso-
nances is excluded and ® should be much smaller than
wg(/d). Note that with the judicious choice of dimension-
less variables d/L, w/w,, the latter is not an additional ap-
proximation as wg(m/d)/ w,— %= for d/L—0. Clearly, the
above procedure is questionable in a neighborhood of wg
where Eq. (80) for the overlaps diverges. Nonetheless, wg is,
in fact, included in the frequency range where Egs. (5) and
(6) are valid. To resolve this issue, it suffices to prove, with-
out using Egs. (81) and (82), that the function I(w) remains
well behaved at this resonant frequency as d/L—0 (cf. Ap-
pendix F).

In turn, it can be argued that wg(7/d) always sets the
order of the natural ultraviolet cutoff. If we consider exact
Eqgs. (26) and (32), it is clear that the lattice constant a pro-
vides an obvious ultraviolet cutoff for the functions S(w) and
I(w) so that the case d~ a trivially follows. If instead d>a,
one finds that wg(m/d) provides a “soft cutoff” beyond
which the functions S(w) and I(w) decay as integer power
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laws. In fact, for @> wg(7/d), one can argue that to analyze
the scaling of S(w), it is permissible to replace in its defini-
tion (26) the relevant modes iz, (7) inside the beam, i.e., those
with w,> wg(7/d), by the normal modes the beam would
present for d — . Thus, the function wS(w) will scale as the
DOS times the corresponding Fourier transform of the reso-
nator mode.*® The latter yields a factor of 1/w? for the lon-
gitudinal direction and a factor of 1/ for each transverse
direction. Hence, we obtain S(w) ~ 1/ ™, where m=7 for the
case of a “bulk cross section” and m=6 for the case of a
SWNT modeled as a shell>* A straightforward analysis
yields in both cases 1/w® for the leading term of the
asymptotic expansion of Ag(w). The latter behavior together
with Eq. (32) leads to I(w) ~ 1/ ' with /=3 and /=2, respec-
tively. Finally, it is worth noting that the scaling for o —0
can also be analyzed without resorting to approximation
(82). In fact, one always has A¢(0) <0, which together with
Egs. (84), (80), (58), and (32) imply that the functions S(w)
and I(w) share the same scaling as a positive power law
detailed in the Introduction (Sec. I A) for the different
branches.

VI. CONCLUSIONS

In summary, we have analyzed a generic beam geometry
suspended from structureless supports in the limit of large
aspect ratio d/L—0 and provided for each of its low-
frequency resonances a Caldeira-Leggett model adequate to
describe the associated quantum Brownian motion induced
by phonon tunneling losses. The corresponding effective
Hamiltonian for the low-frequency vibrational degrees of
freedom is derived from the underlying microscopic physics
performing a controlled approximation in the natural small
parameter d/L. This yields the lowest order contribution in
the aspect ratio to the associated environmental force spectral
densities. We find two general formulas for these functions
[Eq. (6) and Eq. (5)] that involve, respectively, the transmis-
sion coefficient at a single junction and an effective environ-
mental DOS, whence providing two alternative pictures for
this dissipation mechanism in terms, respectively, of phonon
tunneling losses and support-induced modification of the
DOS [cf. Egs. (81), (5), and (58)]. These yield functions of
frequency for the spectral densities that only depend on the
length L and on properties of the “decoupled” support and of
the decoupled infinite beam. Furthermore, they are universal
in the specific sense that they only depend on the properties
of the beam through the quantities that determine its low-
frequency effective theory known as TRE.

These environmental spectral densities result in funda-
mental limits for the intrinsic dissipation (i.e., upper bounds
for the Q values) with structureless supports, which are rel-
evant for state of the art mechanical resonators in the
0.1-1 GHz frequency range (cf. Table I and Ref. 3). It is
important to note the fast degradation as the length is short-
ened and that the fundamental limit of torsional resonators
greatly exceeds that of flexural ones (for comparable
frequencies77). In fact, for torsion, this dissipation mecha-
nism is likely to be negligible when compared to other con-
tributions to the mechanical damping.® In addition, we find
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that semiconducting SWNTs are far more resilient to this
dissipation mechanism than semiconductor heterostructure
realizations (typical values for the figure of merit kz7/fwrQ
are at least an order of magnitude larger).

In the case of 3D supports, the environmental spectral
densities are Ohmic for flexural and compressional reso-
nances and super-Ohmic for torsional resonances, while in
the case of 2D slab supports, they yield 1/f noise with an
infrared cutoff provided by the size of the slab. It is worth
noting that this type of noise is normally associated with
interactions involving charge degrees of freedom>®>’ while
here it arises in an insulator from purely vibrational effects.

Naturally, supports can be engineered to suppress the pho-
non tunneling losses. However, in many feasible alternatives,
analysis of phonon propagation in a beam geometry is essen-
tial to determine the improved limits attainable.”® In this con-
text and also when analyzing situations where the resonator
mode couples to a pseudospin, the resonator-bath represen-
tation given in this paper may need to be complemented with
an approximation for the complete phonon propagator inside
the beam. In other words, the effect of the “environment”
cannot be “lumped” into the finite mechanical Q value and
there may be interference effects between different reso-
nances arising from correlations between their effective
noise sources. Clearly, away from the resonances, an ad-
equate approximation for the complete phonon propagator is
afforded by the lowest order contributions in d/L to the scat-
tering modes [cf. Eq. (18)]. The latter are specified by Egs.
(33)—(36) and our approximations for the reflection and
transmission amplitudes given in Sec. IV—of particular in-
terest is the behavior that results for w—0. On the other
hand, a satisfactory solution for all frequencies requires go-
ing beyond the lowest order for the reflection amplitudes—a
matter pursued in detail elsewhere.”

Furthermore, we highlight the relevance of the precise
connection, given in Appendix B, between the effective one-
dimensional TRE description and the underlying transverse
mode profile to scenarios where the resonator is manipulated
by coupling to an embedded optical emitter.?

Finally, we have provided a general expression for the
spectral density of a given resonance in terms of the relevant
elastic modes [cf. Eq. (10)] that allows us to extend the treat-
ment to other geometries. We have illustrated this for an
axially symmetric resonator supported by a vertical pedestal
of length at least comparable to the resonator’s size, a sce-
nario which is relevant for optomechanical systems based on
microtoroids, microdisks, or microspheres.
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APPENDIX A: NORMAL MODES OF THE FREE
ELASTIC HALF-SPACE

The free elastic half-space supports four types of normal
modes that can be classified based on the character of the
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incident wave: longitudinal bulk waves, transverse bulk
waves with two polarizations (SV and SH), and Rayleigh
surface waves.*%¢ In all four cases, the corresponding eigen-
functions can be written in the general form

1 o o o
GE W[goew +AEL T+ AELNT], (A1)
where d, is the dimensionality (d,=2 for y=s and d,=3 for
v#s), & and g correspond to the polarization and wave
vector of the incident wave, and A, &,,, and g,; correspond
to the amplitude, polarization, and wave vectors of the re-
flected transverse (longitudinal) waves. These depend on g
and +y and are given by the following.
Longitudinal waves,

q = p(sin 6 cos ¢,sin B sin @,cos 6), (A2a)

q;= p(sin 6 cos @,sin O sin ¢,— cos 6), (A2b)

g, = p(sin 6 cos @,sin @sin ¢,— \1/a—sin 6), (A2c)

g=1 g=% (A2d)
p p
g,= (- cos @\1 — a sin® 6,— sin @\1 — a sin® 6,— Vasin 6),
(A2e)

202 sin 6V1 — a sin® @sin 20— (1 - 2« sin® 6)?

" 202 sin 0\1 — asin® Gsin 260+ (1 = 2asin® 6)2

(A2f)
A 2\ sin 262 sin 6- 1)
" 2a¥ sin O\1 — asin® @sin 260+ (1 — 2a sin® 6)2
(A2g)
SV waves,
q = p(sin 6 cos ¢,sin #sin @,cos 6), (A3a)
;= p(sin @ cos @,sin @sin ¢,— \Va —sin® O+ ie),
(A3b)
q,= p(sin 6 cos @,sin 0 sin ¢,— cos 6), (A3c)
gy = (cos 0 cos ¢,cos 6 sin ¢,— sin 6), (A3d)
g=—1L, (A3e)
pla
g,=— (cos #cos ¢,cos A sin ¢,sin 6), (A3f)
e

2Va —sin® O+ iesin Osin 20— cos® 26

A= (A3g)

- [ . R . . >
2\ —sin® O+ iesin 6 sin 260 + cos> 26
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2v’;sin20cos26
A= e — . (A3h)
2Va—sin” @+ iesin @sin 20+ cos” 26

SH waves,

g = p(sin 6 cos ¢,sin Osin ¢,cos 6), (Ada)
q,= p(sin 6 cos ¢,sin O sin @,— cos 6), (A4b)
gy =g,= (sin ¢,— cos ¢,0), (Adc)
8[20, Alz(), Atz 1. (A4d)

Surface waves,
g =p(cos @,sin ¢), (A5a)
q1= plcos @,sin ¢,— i1 - a&’), (A5b)
g,=p(cos @,sin @,— iVl — &), (A5c¢)
5o=0, &=—1_ (A5d)

p&Na
1 — —

§,=E(i\r’1 — & cos @iVl — & sin @, 1), (A5e)

2

[ . /2 -1
A= E2apCla), A= zgvzfpg,l—jaa), (ASf)
\’ -—

2
Cla) = {%{é(a)m + Ea)-1]

2 a§2(a) }—1/2
+ T .
V1 - aé(a)

Here, we have defined VEEC,/ ¢, where ¢, and ¢; are the
velocities of propagation of transverse and longitudinal
waves in the elastic medium, and adopted spherical coordi-
nates for the wave vector g (cf. Fig. 1). The parameter £ is
the ratio of the velocity of propagation for surface waves to
¢, and is a function of « that is always less than un _tﬁ We
note that for SV waves with polar angles #>cos™'y1-a, the
longitudinal component is evanescent.

(A5g)

APPENDIX B: NORMAL MODES OF THE BEAM

1. Thin rod elasticity solutions

At low frequencies, there are four branches of propagat-
ing modes in an infinite beam: two bending branches (verti-
cal and horizontal), a torsional and a compressional branch.
A heuristic way of understanding how these four types of
motion arise is to decompose the associated displacements of
the points of each cross section into an overall translation, an
overall rotation, and a “residual” deformation. The vicinity
of free boundary conditions and the fact that the wavelength
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21/ k of these low-frequency modes is much longer than d
determine that the deformation is higher order in the small
parameter kd when compared to the rotation and translation.
Thus, each cross section can be seen as a slightly deformed
rigid body. Clearly, if we considered a chain of coupled rigid
bodies, each unit would have six degrees of freedom that
would lead to six branches. However, only four of them will
have a vanishing dispersion relation and respect the require-
ment that the cross sections remain only slightly deformed as
they move together, namely, those associated with the three
possible translations and to rotation around the beam’s axes.
As these considerations are quite general, though throughout
this section we focus on the case when the low-frequency
effective theory can be derived from 3D elasticity [cf. Eq.
(4)], in the case of nanowires and SWNTS, the expressions
for the TRE modes that follow are warranted up to the high-
est order for which the strain vanishes, i.e., first order for
bending and zeroth order for compression and torsion, with
discrete coordinates x,y and up to a prefactor.

We now turn to the analysis of the small kd behavior of
the corresponding normalized eigenmodes for these four
propagating branches (B8=c,t,v,h with m=0). We may focus
on a right moyer given by |v(0)(k)> Aﬁ olx,y,d,—ik]e™: with
eigenvalue w 0(k d) and obtam the left movers by reflection
symmetry and (in the case of bending) the large decay length

exponentials Av/h,l by analytic continuation. The problem of

determining the Taylor expansions of A po and wéyo(k,d) in
powers of k can be formulated as the search for a harmonic
solution uﬁ(r t) of the 3D elastic wave equations for the

beam* via the ansatz

(71 = 2 A% 0, (B1)
n=0

k=0t If one neglects in Eq. (B1) all orders
that scale at least as the inertia (i.e., as wz), one obtains the
TRE low-frequency effective theory.*>#® Then, the function
¢(z,1) will correspond to the effective one-dimensional field.
On the other hand, the lowest order for w? yields the corre-
sponding approximate dispersion relation wxkPB. It is
straightforward to realize by substitution of Eq. (B1) into the
elastic wave equations for the beam*#¢ that the result of this
truncation at order 2pz—1 will yield an exact solution of the

corresponding static equations (w—0) provided that izif

vanishes. Thus, the leading terms of the Taylor expansions of

with ¢(z,1)=¢'

the transverse profiles A po can be extracted from the corre-
sponding static solutions. These are given by the following.
Compression,

ux(x,y,z) =- Uxo;_f(z) 5

a
uy(x,y,2) == Oya—f(z),

u(x,y,2) = P(z). (B2)
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Torsion,

ux(x,y,z) == y¢(Z),

uy(x,y,2) = x(z),

) = e 22(0). (B3)
iz
Vertical bending,
0063,9)= 40 + 262 %
Uy(x,)’,l) = ny%zﬁ(z)v
';
e (5,y,2) = - x‘;—f@ + oxv(x,w%‘f(z). (B4)

In the above, the coordinate system is oriented along the
principal axes of inertia, (x,y)=0 corresponds to the center
of mass of the cross section, and o is the Poisson ratio of the
beam’s material. The functions ¢(x,y) and x,(x,y) are deter-
mined by the static equation V- o-=0, the free boundary con-
ditions, and the condition (u_)s=0. In the case of bending,
these yield

No, e X+’
o (x,y)=- ay(x,y) ya
d Ii)%
(j“”( x.y) = X”(x y)+
y
(xu(63))s =0, (BS)

where Y, is a harmonic function that at the cross section’s
boundary (x[[],y[!]) satisfies

Xv(l)—_[3(1+0')xy+(l_ o= Z(HU)J Yar®

(B6)

The analogous relations for the case of torsion are given in
Ref. 45, while the transverse profile of the displacement field
for horizontal bending can be obtained from the RHS of Eq.
(B4) and Egs. (B5) and (B6) via the ansatz x<y, x,(y,x)
_)Xh(xsy)’ iv(y ’x)_)ih(x’y)-

Finally, the desired approximation for A polx.y.d,—ik] is
obtained from Eqgs. (B2)—(B4) via the replacement

—(lk)” for B=c,v,h
R V27 k

P (B7)
< (ik)" for B=t,

\J”Z 7l

Z

where we have taken into account that the 1D continuum
modes |vf,39)(k)> are normalized in the standard Euclidean
metric. Whence, we define
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p
’2 S
000 for B=c
ta
/ I
Biq).p(2) = 9 7 2-V X u,(0,0,z) for B=t
| Vth
\27TS
Uy 4(0,0,2) for B=v/h.
\ q

(B8)

The corresponding approximate dispersion relations (4) are

specified by
EJl,,.
N N T
oy PbI ppS

Here, I; are the moments of inertia with respect to the prin-
cipal axes of a cross section per unit surface density, C is the
torsional rigidity of the beam, and E,, is its Young’s modulus.

2. End corrections

If one considers now a semi-infinite beam (z>0), it is
clear that complex values for k (the wave vector along z) are
physically meaningful provided that their imaginary part is
positive. The corresponding solutions can be understood as
the analytic continuation of the “traveling-wave” eigen-
modes of an indefinite beam. More precisely, w?(k,d) and

the transverse profile A(x,y,k,d) will be multivalued ana-
lytic functions of k that yield harmonic solutions on the paths
in the complex plane specified by R[w?(k,d)]
=0,J[w?(k,d)]=0. This can be explicitly viewed for a cy-
lindrical cross section given that the resulting problem is
separable (see Ref. 46, and references therein) but will hold
in general provided that the boundary of the cross section is
well behaved. We assume for simplicity that the latter is
characterized by a single length scale d but all our consider-
ations follow for an arbitrary cross section (within the cave-
ats that follow) provided that we reinterpret d as the largest
chord. Heuristic considerations imply that for a generic ge-
ometry, the finite complex zeros of »?(k,d) will have a real
part that is at least of order 1/d. We will further assume that
at these zeros, w’(k,d) is nonsingular (i.e., they are not
branch points) and has nonzero derivative and that the asso-
ciated path yielding physical solutions admits a parametriza-
tion in terms of PM[k] or J[k] that can be Taylor expanded.
Thus, each of these nontrivial zeros yields a branch of end
corrections (with labels®® B,m as defined in Sec. IV A)

specified by the transverse proﬁles A Py alx.y.d, kg, (0?,d)]
and the “wave vectors along z,” kg, (w?,d) =—ik, where the

functions A gm> Kpm can be expanded in natural powers of
.

To analyze the problem of transmission at a 3D-1D junc-
tion, it proves useful to consider the overall displacement
and rotation of a given cross section. The former is simply
defined as the displacement of the cross section’s center of
mass. In turn, a natural definition of a spatially averaged
angle for a neighborhood V undergoing harmonic motion is
afforded by considering the maximum total angular momen-
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tum L, with respect to the center of mass 7, of V over a
period,

1 -
<ﬁ(ﬂ>ang,\/ = _ILV’ (BIO)

I
®
where [ is the equilibrium inertia tensor for V. If we orient

the axes along the principal axes of inertia and set the origin
at 7y, we obtain

drF X a(r) - i
14

f dar3(r* - x?)
v

If V is small enough, this reduces to

(@(F)Y gy 1= (B11)

N 1 A~ .
() ang.y 1= SV % u(0) - i+ yuu(0)  with =1,
(B12)

where y;=2; €;(l;—1;)/2I; and the relative order of the
corrections is at most u(0)d/min{|u;;(0)|} with d as the typi-
cal dimension of the neighborhood V. We note that through-

out Sec. IV, we use the notation

0= (A(F))ang.s- (B13)
where S is the beam’s cross section at the origin.

In the limit w— 0, each branch of end corrections yields
an exponentially decaying solution (oe™*8n(%42) of the cor-
responding static problem (i.e., a static end correction). To
establish Egs. (46) underpinning our analysis of a 3D-1D
junction, in addition to the aforementioned analyticity prop-
erties, we just need to use the following exact universal
properties of static end corrections:

(F-{Ag,[x,y.d, kg,,(0,d)]e~ 8n 0Ny =0, (B14)

<F ' {Aﬁ,m[xay’ d; Kﬁ,m(o’ d)]e_Kﬁ’m(o’d)Z»ang,S = O’

(B15)
<A_B,m[x’y’d’ Kﬁ,m(osd)]>5= 09 (B16)
<Aﬁ,m[-x’y’d» KB,m(05d)]>ang,S=O» (B17)

<f dr*G(F—7.0) - F-{Ag,[x".y".d, kg, (0.d)]
N

XE_KB,W(O‘(])Z/}> =0, (B 1 8)
N
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< f dr*G(r-7.,0) - F-{Ag,[x".y".d kz,(0,d)]
S

X e_KB,m(O’d)Z,} =0,
ang,S

(B19)

where now G(7,0) is the static Green’s function of a free
elastic half-space loaded at the free surface. Equations (B14)
and (B15) correspond, respectively, to the total force and
torque applied at S and can be established by simply stating
the equilibrium conditions for a given finite segment of the
beam. In fact, the exponential dependence on z implies that
the total external force and total external torque applied to
the finite segment result, respectively, proportional to the
LHS of Egs. (B14) and (B15). On the other hand, Egs.
(B16) and (B17) can be reduced to the lemma that follows
by taking the displacements at z=0 specified by

Kﬁ,m[x,y,d,Kﬁ,m(O,d)] and then sending L— .

Lemma. For a finite beam of length L in equilibrium sub-
ject to specified displacements at z=0 and free boundary
conditions at z=L, the average displacements and angles at
both ends coincide.

In turn, the above lemma can be understood by using a
variational argument given that the elastic energy density is
positive definite in the relative distances between the mate-
rial points of the beam (see Ref. 46, and references therein).
Equations (B14)—(B17) underly the standard recipes for the
boundary conditions in the TRE treatment of static small
deflections (i.e., “linearized-strain” theory).*>#® In this re-
spect, it is important to note that for a beam in equilibrium,
the corresponding TRE solutions, already discussed, are ex-
act within the linearized-strain 3D theory. Thus, the validity
of the latter recipes hinges on whether the strain can be lin-
earized and not on the smallness of d/L.

We now consider the cantilever geometry (cf. Fig. 1) for
an arbitrary length L and apply the stress source associated
with a given static end correction (B,m) at z=L, the usual
free boundary conditions at the other surfaces, and fixed dis-
placement boundary conditions for z——% in the support
(the latter ensues for @—0 given the boundary conditions
satisfied by the support’s Green’s function). Equations (B14)
and (B15) imply that the TRE part of the corresponding
static solution inside the beam [cf. Egs. (B2)-(B4)] is at most
an overall displacement and rotation. However, a variational
argument analogous to the one underlying the above lemma
implies that this displacement and rotation of the beam
should vanish so that the solution is given solely by “end
corrections.” Then, continuity at the junction yields Eqgs.
(B18) and (B19) if we take the limit L— 0. We note that this
derivation will be valid for any well-behaved support irre-
spective of any symmetries.

APPENDIX C: GENERALIZATIONS TO ASYMMETRIC
STRUCTURES, TWO-DIMENSIONAL SLAB
SUPPORTS, AND SINGLE-WALLED
CARBON NANOTUBES

The derivations in Sec. IV A rely on the assumption that
both the support and the beam are symmetric under reflec-
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tions with respect to the x and y axes. It is straightforward to
extend these results to the case where only the beam’s cross
section presents these symmetries so long as we assume that
the (now asymmetric) support is still characterized by a
structureless continuum of free eigenmodes & 0 )(r) that has
an effectlve 3D density of states.’! More spe01ﬁcally, each
mode i (r) should be characterized by a single length scale
of order 1/q, [where g/(w,) is the wave vector for propaga-
tion of transverse elastic waves in the support’s material].
Thus, the analogous property will hold for the corresponding
Green’s function G(7,7',w) (7' lies at the boundary where
the normal stress vanishes when the support is unloaded). A
simple example would be an elastic quarter space or any
fraction of an elastic space with origin at the junction sub-
tending a solid angle of order 7r/2. In this more general
scenario, there will be mode mixing between the branches
due to the scattering at the support. Equation (38) will still be
valid with the analogous definition for i, but now in Eq.
(39), the decompositions of the fields A, and i, in terms of
the eigenmodes of the beam will involve an additional sum
over all the branches B (ie., 2, —Z, 5. Concomitantly,
these fields will no longer have a branch index except for ir,,
in case (i) where B’ will denote the character of the associ-
ated incident field i;, 5/, and the analog of Eq. (45) will no

longer involve a symmetrization operator S g The support
mode labels g no longer bear any relation with the beam
branch index 8 and now a convenient parametrization of the
complete solution is afforded by ¢, instead of k.

In complete analogy to the symmetric case we substitute
the modified decompositions [Eq. (39)] into the modified
Egs. (45) and (38) and take on both sides the spatial averages
(-++)s and (- )ye 5. Note that the beam’s symmetries imply
that on the LHS of each of the resulting equations for the
amplitudes b m ) and Cpm» Only the term with the relevant 3,
i.e., the one associated with the TRE branch for which the
corresponding average does not vanish, will survive. Once
again, we solve for the TRE starred amplitudes in the linear
system arising from the analog of Eq. (45) and substitute
them into the linear system arising from the analog of Eq.
(38), whence we solve for the unstarred TRE amplitudes. As
before, the end corrections yield terms that scale at most as
the inertia (¢,d)*>. Thus, we find that—with the noticeable
exception of the unstarred torsional TRE amplitude for case
(ii)—the results for the amplitudes c( and cg,, are given by
Egs. (44) and (47)—(50) with the followmg straightforward
modifications: kd is replaced by \q,d, it qo (7) denotes now the
free modes of the “generic” support, and in case (i) the RHS
of the equations for the starred TRE amplitudes are now
multiplied by &g g/

The caveat for incidence from the support [case ii)] is
that now ¢, (¢,d) has a contribution comparable to c, (q,d)
of order g,d arising from the other TRE branches. Thus in
this case, Eq. (41) is no longer valid. However, the correction
to the approximate transmission amplitude to (whose scal-
ing as g,d is preserved) arising from C,O(qtd) can be readily
added to yield
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0 _ 9 ET))
10 = (0) + X

{B#t,m} e TRE

[
N2l 2

f dr’G(rF,0)- 20, F) ) ch(0), (C1)

ang,S
with

m_Eb
L) 1,30 = (= 1) ﬁxmkimm m=0,1,
N

E
19 x1x0) = iﬁkc(q,), (C2)

where we have used the transverse profiles of the TRE
modes given in Appendix B and G(7,7’,0) is now the static
Green’s function for the asymmetric support under consider-
ation.

The aforementioned results for the starred amplitudes im-
ply that for incidence from the beam to lowest order in g,d,
there is no mixing between the branches so that the reflection
amplitudes for B+ B vanlsh and those for B=8’ coincide
with the ’"c/; [k(q,)d] rv/h 57][k(q,)d] already found for the
symmetric case. On the other hand, for incidence from the
support, the solution is a superposition of all four branches
with approximate amplitudes tg?ﬁ given by Eq. (C1), and for
B#t, the same results as in Sec. IV A in terms of the modi-
fied ﬁflo)(F). If we now revise the treatment of the modes of
the whole structure given in Sec. III, the fact that the
branches do not mix implies that to lowest order, the dis-
placement field inside the beam (and away from the junc-
tions) is just given by adding coherently the four contribu-
tions of the TRE branches, which are given by similar
expressions as in the symmetrlc case but with modified trans-
mission amplitudes tq7 B (i.e., the reflection amplitudes and
the ratio b remain the same). Furthermore, the symmetries of
the beam imply that a resonator mode of branch $ only has a
nonvanishing overlap with the contribution to a scattering
mode of the same branch so that the quantities (u,’e|uq) (to
lowest order in ¢g,d) coincide with those for the symmetric
supports except for the modification in the prefactor t(q?)ﬁ.
Thus, in general, the results for the force spectral densities
(cf. Sec. V B) that we will extract from these overlaps will be
completely analogous to those for the fully symmetric case.

The only caveat is when there are degeneracies between
resonances of different branches, i.e., w, g=w, g=wg with
B+# B'. Unlike the fully symmetric case, there is now mode
mixing, which, albeit higher order in d/L, may nonetheless
invalidate our approximations for the functions 7, s(w),
I, pr(w) in a neighborhood of wy (cf. Sec. V B and Appendix
F). The situation is completely equivalent to the failure of
our treatment for I, 5(w,, g) with n#m with the difference
that now the syndrome precisely occurs where the function is
more relevant. On the other hand, it is simple to realize that
this breakdown is completely consistent with the nature of
our approximation, which is perturbative in d/ L. If the asym-
metry removes the selection rules that prevented the supports
from coupling the two degenerate modes, the Caldeira—
Leggett Hamiltonian provided by Eq. (20) with a single dis-
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crete resonator mode no longer affords a convenient repre-
sentation as d/L—0. In particular, this will affect the two
bending branches for cross sections symmetric under rota-

tions by m/2 whenever the supports break the ﬁy symmetry
[cf. Eq. (14) and Fig. 1]. Thus, in a realistic scenario (i.e., at
finite d/L and finite mode splitting), our results for the bend-
ing resonances , ,;, Will only be applicable to the case of
SWNTs and nanowires (discussed below) provided that the
mode splitting is negligible compared to the natural line-
width w, /O, ,/, induced by the phonon tunneling.

We have also analyzed the case when the cross section is
also asymmetric following the analogous procedure. The key
point in this further extension is that the lowest order contri-
butions in kd to the TRE mode profiles given in Appendix B
satisfy the reflection symmetries for arbitrary cross section
(with the axes oriented along the principal axes of inertia).
Thus, when the starred amplitudes are zeroth order in ¢g,d, the
overlaps (ug|u,) will once again coincide [to lowest order in
q,d and up to a modification in the prefactor tgo)ﬁ] with those
for the symmetric supports. It follows that the extension to
asymmetric cross sections carries over for the results that
will ensue for the force spectral densities (cf. Sec. V B) ex-
cept for torsional resonances—in which case the relevant
transmission amplitudes are higher order—and the afore-
mentioned case of degeneracies.

Furthermore, we have used the same framework to ana-
lyze the analogous problem of an abrupt junction between a
rectangular beam of width w and a slab (support) of the same
thickness?? t<<w=d. Thus, we can use instead of 3D elas-
ticity the 2D effective theory provided by ‘“thin plate
elasticity”334 adequate for phonon wavelengths much larger
than t. A completely analogous treatment is feasible based on
the 2D analog of Egs. (38) and (39) with (i) ﬁ;o)(y,z) and
G(y,z,w) denoting now, respectively, the free modes and
retarded Green’s function of the two-dimensional elastic
half-plane (i.e., a semi-infinite thin plate lying on the yz
plane in our notation) and suitable redefinitions of (ii) the
operator F and (iii) the beam’s mode profiles
Aﬁ,m[y,d,xﬁ,m(k,d)], which are now one dimensional. The
reflection symmetries also apply in this case so that the ver-
tical bending and torsional branches of the beam only couple
to the flexural modes of the plate, while its horizontal bend-
ing and compressional branches only couple to the in-plane
modes of the latter. Thus, one can prove the same results for
the reflection amplitudes and obtain results analogous to Egs.
(47) and (50) for the transmission amplitudes #,, bt, in terms
of the averaged displacements and angles of the slab
support—the redefinitions (iii) imply that in the correspond-
ing cross-section-dependent prefactors, one has to replace S
—w and I,—w(r?)g (cf. Sec. I A). The only caveat is that
for vertical bending, the second relation for the starred am-
plitudes in Eq. (49) is no longer homogeneous since now the
averaged angles 6, scale as Vo for the relevant “free modes”
of both the beam and the plate (flexural modes). This leads to
a modification of the ratio b for vertical bending that now
may acquire a g dependence. As a consequence of the above
analogy, the relations [Eq. (5) or (6)] between the spectral
densities /, g(w) and the effective environmental DOS of the
support pg(w) or the transmission coefficients 74(w), respec-
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tively, will be the same (in terms of the analogous functions
for the thin plate “support”) as in the 3D case with the ex-
ception of the expression for C,, that will be modified for
small n—for large n, the large decay length exponentials can
be neglected and the dependence on the ratio b of I, g(w)
becomes negligible.

Finally, we turn to the case of SWNTs and nanowires.
One should note that as there is no valid underlying micro-
scopic theory applicable to both the supports and the beam,
the precise analog of Eq. (38) will, in general, be unknown,
depending on details of the clamping procedure. However,
one can argue that insofar as there is no dissipation inside the
“junction,” the above results for the reflection and transmis-
sion amplitudes will still hold—with the straightforward re-
placements in Egs. (47), (49), and (50) that result from the
redefinition of the transverse mode profiles: S—N., I,
— N(r?)s, where N, is the number of atoms in the unit cell®
(of the appropriate equivalent 1D chain in the case of a
nanowire*’). In particular, one should note that the analog of
the universal properties of the end corrections (cf. Appendix
B) are expected to hold if the SWNT or nanowire is to be
regarded as “clamped.”

APPENDIX D: EXTENSION TO MICROTOROIDS AND
OTHER GEOMETRIES

The fact that the resonator mode |uy) and the scattering
modes |uq> are solutions of the time-independent elastic
wave equations (cf. Sec. II) and that if,(7) is real directly
imply*?

1 do, i

wﬁ(uHu,,) =— —f dr3u,'ey,» A (D1)
Ps Vg axj
1 ATy -

wi(uﬂuq) =— —f dr3uq’iTRﬂ, (D2)
Ps Vg xj

where we use Einstein’s sum convention and that i(7) only
has support in V. The above can be re-expressed as

1 J
2 3
w (ugluy) =—— J dr [ (g 04,) = ”;e,ij‘fq,ij} :
Ps Vi (9)6]

(D3)

1 1%
2/ 1 3 ’ ’
wuplu,) =—— dar’| —(u, ;05 ) — U, ;:0p ::
R< R| q> pstR {&xj( q.i R,u) q.ij R,z_/]

(D4)

by using that the stress tensor is symmetric and that the con-
traction of a symmetric tensor with an antisymmetric one
vanishes. As the mapping of the strain u;; onto the stress o;;
corresponds to a symmetric matrix (given that its entries are
the second derivatives of the elastic energy with respect to
the strain components), we have

! !
UR ij0q,ij = Uq,ijOR - (D5)

By subtracting Eq. (D4) from Eq. (D3) and using Eq. (D5),
the divergence theorem, and the free boundary conditions
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satisfied by the displacement fields at the free surfaces of the
resonator, we obtain

dr’ (it -
s

— ! A
o,y op) -7l

: (D6)

(il plog— (9]

which together with Egs. (26) and (82) finally yields Eq.

(10), namely,
T
dr* (it - o, —
2p§wafq fS ( . !

Xdw-w(g)].

The above is very general as it only assumes |A;(wg)|/ wg
<1 to ensure the validity of Eq. (82).

We now focus on an axially symmetric structure consist-
ing of a “resonator volume” supported by a vertical pedestal.
Concrete relevant realizations of this geometry are microtor-
oids (cf. Fig. 2), microdisks, and microspheres. We consider
the regime in which the contact area S between the resonator
volume and the pedestal satisfies S<<hD and VS =h, where
D and h are, respectively, the largest diameter and smallest
characteristic dimension of the former. Thus, there will be
axially symmetric resonances with typical wave vector®? kg
that satisfy SkR< 1. We focus on one of them® and assume
that it is “isolated” (cf. Sec. I A). The limit §—0 yields a
finite resonator volume subject to free boundary conditions
on its whole surface, which specifies the natural choice of
boundary conditions for the corresponding resonator mode®’
ig. This directly implies that the terms involving o7, vanish
in Egs. (D6) and (10), while property \Skz<<1 allows us to
factor 1,7,’3 out of the integral, which reduces then to the total
force across S associated with the scattering mode q.

We assume that for studying the propagation of modes
with wave vector g ~ kg, the pedestal can be modeled as an
infinite beam with slowly varying cross section ¢S(z)/S'(z)
> 1. This should capture the adiabatic limit of perfect imped-
ance match with the substrate for the purpose of studying the
dissipation. In turn, our prior treatment of a 3D-1D junction
(cf. Sec. IV) can be extended to our present context (with the
roles of support and resonator interchanged). Now, the 3D
object (resonator volume) presents finite dimensions compa-
rable to the relevant wave vectors. Naturally, providing rig-
orous derivations (as the ones given in Sec. IV) is now com-
plicated by the lack of an explicit expression for the Green’s
function of the 3D object. Nonetheless, heuristic con51der-
ations imply that (i) in the limit xSq<1 with VS=<h, the
scattering mode i, can be asymptotically approximated in
the pedestal by i, , (which corresponds to an incoming wave

2
l(w) =

iy~ Og) -t

satisfying clamped boundary conditions at S) provided that
w(g) is not close to a resonance w, of the resonator volume,
and (ii) once again I(w) is smooth in a neighborhood of wy.
The latter implies (as for the beam geometry) that the restric-
tion to modes i, with w(q)# w, is immaterial as it only
invalidates our result for I(w) at w=w, # wg. In turn, it is
straightforward to extend the formalism in Appendix B to a
beam with adiabatically varying cross section. Thus, the uni-

versal properties of the end corrections imply that to lowest
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order in y@q, only the TRE part of i, contributes to the
aforementioned total force. The axial symmetry of the reso-
nance further implies that only compressional modes yield a

finite contribution.®® Thus, we obtain (cf. Fig. 2)

Jdr2ﬁ§~a'q-ﬁ~—ES\/ iR(0) - 2 ¢(0) (D7)
N

where the corresponding effective one-dimensional field
satisfies*0

Fo, S b, ps

—q __‘1 s 2 D8

S pea,=0 (08)
and the approximation by i, implies ¢,(0)=0,

(b( (0)=1—here, we define ¢( )[¢(+] as the incoming (out-
gomg) components of the scattermg mode®” g. We adopt for
simplicity an exponential dependence S(z)=Se~'?, which
leads to the following:

b (2)=85(2) - ¢(2).

_ 4+ S F2
#(2) = 2505 with g = g—wz(q) e (D9)

s

d
dq _ ps(q) . (D10)
dw & 2() F_2

g

Then, substitution of Egs. (D7), (D9), and (D10) into Egq.
(10) allows us to obtain

12 20(w— o).

E
I(w) = —s—uRz\rw - wj
ps @

(D11)

Clearly, the infrared cutoff w;= \s’mr/ 2 is an artifact of
the adiabatic assumption ¢S(z)/S'(z)> 1, which implies w
> w,. In the latter appropriate limit, we finally obtain Eq.
(11) for the spectral density where itg ,(0)=\mg/psug_(0)
corresponds to the resonator mode normalized to the “rel-
evant coordinate”®® (in our specific context, AD/2). Note
that, as expected, the result is independent of I". As for the
beam geometry, for typical materials, the Q will be mostly a
size-independent geometric property.

APPENDIX E: DERIVATION OF 3{(~}xx(0)} FOR THE
ELASTIC HALF-SPACE

In the following, we define iz =G-£ and use dimension-
less variables setting g,= 1. We need to solve for the half-
space (z<0),

Vi + V(V-i)+u=0, (E1)

1-20;
subject to the following boundary conditions at z=0:

2u, = 8x)Aly), (E2)
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2uy.= [(1 = oJuz + o +uy,)]=0. (E3)

1_20-x

One can construct the solution as a superposition of longitu-
dinal (j=1), SH (j=2), and SV (j=3) waves,

+o0 d
u(x Y, Z J J Sj(CIx’qy)ﬁj(QX’q)*)

. / 2 2
X ¢! (@r+ayy=V aj—qx—qyz)’ (E4)

where we have defined

2
¢, 1-20y
1——12—2(1—_9—6405), am=a=1, (E5)
&1=(q09y9:1), & =(9y,=q:0), (E6)
53 = (_ qz39x— qz,BQy’ q)zc + CI%) . (E7)
IR

We note that ¢, ;= —\r’aj—qf—qi can be imaginary, we do not
need to normalize the &; for our purposes, and a<1.

In order to obtain the outgoing solution, one can introduce
damping, then calculate (E4) that will correspond to the
steady state solution, and, finally, take the limit of damping
coefficient going to zero. If we decompose the total displace-
ment field into transverse and longitudinal components i
=i | +uy, the modified equations of 3D elasticity can be writ-
ten as

P ou

_7.7 Py 22— _ _

e +607l —c,IVun—O, n= 1,1, (ER)
VXuy=0, V-u, =0, (E9)

with €>0 and ¢, =q,;, ¢=¢,c,. We look for solutions
ii(7,1) =8¢’ %7, which leads to

, o €
qgi=—7\1+i—],
cj 1)

(E10)

with ¢;=¢; and ¢,3=c . These solutions can be obtained
from the undamped ones by the replacement a;— a;(1+ie).
The analysis of the limiting procedure e—0 allows the de-
termination of the adequate integration contour C in the com-
plex plane in the standard way.

If we substitute expression (E4) and Fourier transform,
we arrive at

24,9, 090 algivai—ql,)
24,4..; -0 G+ g q)
(1-0)g +o(gi+q) 0 (1-20)q.2(q;+q)
I8 —1i
D |=| 0 (E11)
) \0

We adopt polar variables g,=p cos ¢, g,=p sin ¢ and solve
for i;
]7
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pV1 —p? +iecos @
D(p)

i (p.¢) =i(1-20,)

)

_ . sin ¢
MZ(P,ﬁo) S
pV1l —p“+ie

l.[(l - o,)a(o,) + (20, - 1)p*Jeos ¢

pD(p) - E12)

’/73(P, @) =

where

D(p)=2(1 - 20’S)|:p2\"/1 —p?+ieVa(o)(1 +ie) — p?

)

If we consider the integral of expression (E4) evaluated at
z=0 over the contour C, we can identify a regular and a
singular contribution to the displacement at the free bound-
ary. We are only interested in the imaginary part of the x
component to which only the regular part contributes. Fi-
nally, evaluation at the origin x=y=0 leads to

1 2 2 _ P
J{EH(o,a)}Jpl f g =127
™ 0

p(1-v?)
—f dvv
0

,(a— V)0 +1-a)
1
+R[&(a),a] + e

(E13)

pla-0v?)
(E14)

where we have eliminated o in favor of «, the contribution
of the Rayleigh pole associated with the surface waves
(SAW) is given by

1 (1-&2)1-8+(1 -1 -af

Rlgal=-1c ¢ 6la-1)+2B3-208-&
(E15)
and we have defined
p(v)=16(a-1)v*+83-2a)>’-8v+1. (E16)

We note that the parameter &, already introduced in Appendix
A, satisfies é=1/ N/Z’ where v, is the only real root of Eq.
(E16) greater than unity.

APPENDIX F: DERIVATION OF EQ. (82)

We will first invert Eq. (32) to obtain Eq. (81). To this
effect, we define a complex function G(w) on the real axis
such that for w>0,

IG(w)]=-S(w)
and the extension to w<<0 is specified by
G(- w) =G*(w), (F2)

and R[G(w)]=Ag(w), (F1)

which, after rearranging the integral for Ag(w) using the par-
tial fraction expansion of 2w’/(w’-w'?), yields for the
whole real axis,
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do’

—00

Glw)=—P J o 2050

o —isgn(w)S(|w|).

(F3)

Given that S(w) is well behaved (C.,. for @>0) and given its
behavior for w— 0 and w— o0 discussed at the end of Sec.
V B, Eq. (F3) implies that the real and imaginary parts of
G(w) are Hilbert transforms of each other. Then, it follows
from Titchmarsh’s theorem®® that G(z) is analytic in the com-
plex upper half-plane and that the integral over a semicircu-
lar contour in the latter tends to zero as the radius is in-
creased. Thus, we arrive at

G(2)=-— f G(w) (F4)

valid for J(z) >0. We note that G(w) gives the propagator of
the resonator mode’s canonical coordinate at zero tempera-
ture so that in physical terms, the above properties of G(z)
can be understood as a consequence of causality—the in-
verse Fourier transform of G(w) only has support for r>0. If
we now substitute Eq. (F3) into Eq. (F4), interchange the
order of the integrations over w and w’, perform the former,
and rearrange the latter, we obtain

1 [~ 20’
G(Z)=—f dw'ﬁS((u'), (F5)
7 —w

™t

which with the help of Eq. (27) can be re-expressed as

1wy 1 (7 20°
G(z)= S+t~ dos— 7 S(w) (F6)
4 Z Tz Jg Z

To proceed, we define the function

S() =22 - wp— , (F7)

G(2)
which using Egs. (F3), (F1), and (32) can be shown to have
the property

sgn(w)S(|w|)

A= el

— wg sgn(w)l(|w|). (F8)

As already discussed in Sec. V B, S(w) has a natural ultra-
violet cutoff, given by w,~ wg(m/d), beyond which it is
bounded by a power law 1/w™ with m= 6. From this behav-
ior, one can derive that the last term in the RHS of Eq. (F6)
is bounded by In|z/w,|/|z|® if m=6 and by 1/]z|° if m>6.
This property together with Egs. (F7) and (F6) directly im-
plies that

1n|Z/w>k| 1
2(z)| =0 E or |E(z)|$0[w}, (F9)

respectively, for z— . On the other hand, Eq. (F5) implies
that the propagator G(z) has no zeros with J(z) >0 so that
3.(z) is analytic in the upper half-plane. This property and
Eq. (F9) allow us to obtain
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E(w)=i,7>f do 'E(“"),
Tl (,0 w

(F10)

—o0

using the Cauchy integral formula. If we now take the real
part of this equation and use Egs. (F7), (F3), (F1), and (F8),
we obtain after some simple rearrangements,

As(w)
A¥w) + S*(w)’
(F11)

RZ(w)] = wph () = @ - wp -

for > 0. If we assume that the functions A,(w) and I(w) are
known, Eq. (F11) together with Eq. (32) provide a system of
algebraic equations for the unknowns Ag(w) and S(w). Thus,
we can solve for S(w) to finally obtain the desired result
given by Eq. (81).
If we now consider Egs. (F11) and (F8), we have
3(w) = wg[Af(w) — i sgn(w)I(|])], (F12)
which together with Egs. (20) and (21) allow us to interpret
the function 3(w)/2wyg as the resonator’s self-energy in-
duced by its interaction with the environment. Given the
properties of I(w) discussed below, we may assume that 2.(z)
is analytic in a neighborhood of z=wg. Thus, it follows from
Eq. (F7) that any pole of G(z) in that neighborhood is given
by a root zp of the equation

E(“’R) 2

F13
nl&n ( )

- wR (‘UR)(Z - wp)" =

In turn, the behavior of the function S(w) discussed below
[cf. Eq. (F25)] and Eq. (F3) imply that for d/L—0, the
propagator G(z) has indeed a pole in the lower half-plane
close to wg that tends to wg. If we now consider the
asymptotic expansion of (zp—wg)/wg and 3(w)/wj as a
function of d/L for d/L— 0 and substitute it into Eq. (F13),
it is straightforward to realize [cf. Eqs. (F8) and (F11)] that
(zg—wg)/ wg—0  directly  implies the  properties
|A(wg)|/ wg—0, I(wg)/ wg—0 used in Sec. V B and in the
derivation of Eq. (82) pursued below. Heuristically, this van-
ishing of the self-energy can be viewed as an unavoidable
consequence of the behavior of the transmission coefficients
7(w) for d/L— 0 unveiled in Sec. IV. In fact, the interaction
with the bath giving rise to the self-energy can be understood
in terms of phonon tunneling between the beam and its sup-
ports, i.e., a mechanism that is suppressed as 7 w)—0.

To proceed, we reformulate Eq. (82) by defining I, (w) as
its RHS. Thus, it is enough to prove

Afw 2
I(w)=1*(w)‘1+o{M” : (F14)
R
This can also be written as the condition |E(w)|

<|A[(wg)|/ @g, where the function E(w) is defined by
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A(@) - A@g) - iL1(@)  I(@)] - 2 ‘f’f INTA

E(w) = R OR
w — (T)R +1 i I(GR)
wWpt+ ®
(F15)
[cf. Eq. (83)] so that given Eq. (81), we have
It 2
o) 1Ok g (F16)
I (o) wp+

We note that Eq. (83) is just the real part of Eq. (F13) re-
stricted to the real axis. If we use again its asymptotic ex-
pansion in terms of the aspect ratio d/L, it is straightforward
to derive from &@p—wgp when d/L—0 that 2(ag
—wg)/A(wg) — 1, which together with Eq. (83) implies that
A/(@g) and A;(wg) coincide to lowest order in the aspect
ratio. It is worth noting that though the real part of the exact
pole of G(z) differs from @y, as the imaginary part of Eq.
(F13) comes into play, analogous considerations yield 2(zg
—wg)/A(wg) — 1 so that A(wg)/2 provides the lowest order
contribution to the renormalization of the bare frequency.

In order to ensure the validity of Eq. (82), we find that in
addition to |A[ wg)|/wg<<1, the following assumptions
(whose validity is discussed below) are needed:

7o |l | | )

w -~ N s
0k (@) ‘ " d" "

(@) (F17)

for n=1,2 and frequencies smaller than the ultraviolet cutoff
®,.> wp. Heuristic considerations imply that from Eq. (F17)
and the behaviors of I(w) for w— 0 and w— o (discussed at
the end of Sec. V B), it follows that the only relevant fre-
quency scale when considering the profile of I(w) is w, near
which this function attains its maximum. In turn, this implies
that

|A[(@g)| = [A[0)] ~ (w,) ~ max{l(w)}  (F18)

and that in the interval (0, w,,), 5—;((;)) > (. On the other hand,
we can use the mean value theorem to write

3w/2 )
mA (o) = j [—(Q[w ,w]) - I(w')
{f f } -l(0')do',
1w |- 0 0+
(F19)
where Q[ w’,w] € (w, ). Equations (F17)—(F19) imply
Af(w)| ’ I(_w) |AI(wR)| (F20)
1) 1) g
for op=w<w,, and
Afw) = Afap), (F21)

for w < wp.
Furnished with relations (F17), (F20), and (F21), we turn
now to the analysis of |E(w)| defined in Eq. (F15). First, we

PHYSICAL REVIEW B 77, 245418 (2008)

consider the case |w—a@g|=ag. For w>adg, we use |w
— @g| ~  and Eq. (F20), while for w < @k, we use Eq. (F21).
In both instances, it is simple to establish |E(w)
=<|A/(wg)|/ wg. To analyze the remaining case |w— @g| < @,
we consider the Taylor expansions of the functions A,(w) and
I(w) around the frequency @g. Equation (F17) implies that
substituting into Eq. (F15) the linear parts of these expan-
sions results in a relative error for E(w) of order |a)
—@g|/ @g<1. Thus, we may write

9A ol Af@p)
E(w)z[—’( ) — i (@) — —
0 Jw wp + W
X O~ Ok , (F22)
w—ap+i—2 (@)
(()R w

which using again Egs. (F17) and (F20) leads to the desired
result for E(w). This completes the derivation of Eq. (82) for
the frequency range in which it is used in Sec. V B. It is
worth noting that a straightforward derivation using Eqgs.
(31), (32), (F11), and (F15) leads to

Uq) - Z.(q)
£:(q)

(F23)

Tk )‘

(UR+

with

£ =D o,

— @) +iwgl(@R)],
2Nopw,

(F24)

which can prove useful when analyzing the manipulation of
a specific resonance by coupling to a pseudospin.?’

Finally, to warrant our derivation of Egs. (5) and (6) in
Sec. V B, we also need to establish that the function I(w)
remains well behaved at w=wy as d/L—0. This can be ac-
complished by using the exact expression (32), Eq. (26), and
the behavior of the overlaps for small but finite d/L. To
understand the latter, it is essential to consider the qualitative
behavior of correctlons to the scattering modes ¢y, 5(2).
This can be done’ using (i) that each of the reflection am-
plitudes admits an expansion in powers of kd and those cor-
responding to a junction relate to the finite transmission co-
efficient via energy conservation and (ii) the exact reduction
to a single junction performed in Sec. III. We note that for
our present purposes, the precise form of the coefficients of
the expansion (i), which will be studied elsewhere,” is not
important. Propositions (i) and (ii) and Eq. (26) allow us to
write the following Lorentzian approximation L= 1:

Tr(d)2

S = A O + Ty
. w — op(d)
Ag(w) = Ag(d) [0— ap(d) + Fzze(d)/“ + Bg(d),
(F25)

where the corrections are higher order in d for all frequencies
in a small neighborhood of wy and to establish
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1
lim Ag(d) = ——. (F26)

d—0 Wp d—0

By inserting Eq. (F25) into Eq. (32), we obtain

1 FR<d)(1 LB
wRAR(d) 2 AR(d)

Bx(d) _ o TR )-1
+ A_i(d){[w_ wr(d)]7 + —4 } , (F27)

(o) = [ — @g(d)]

which together with Eq. (F26) leads to I(w)=Ig(d) for fre-
quencies close to wg implying that (as expected on physical
grounds) the resonator mode’s environment is structureless
at the characteristic resonant frequency wg (cf. Sec. II B).
An analogous procedure allows us to analyze the qualita-
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tive behavior at the other resonances w=w, # wg where we
find that S(w) presents Fano profiles that result in corre-
sponding features in the function I(w) that have negligible
relative spectral weight as d/L—0. Thus, though the latter
do not affect the behavior at other frequencies, they invali-
date Egs. (F20) and (F21) at these special frequencies pre-
cluding in their neighborhoods the use of Eq. (82). To con-
clude, we point out that from Egs. (F25), (84), and (80), one
can obtain an approximation for the function S(w) [in terms
of I'g(d)] adequate for all low frequencies other than w,
# wp. The latter approximation together with the asymptotic
behavior discussed at the end of Sec. VB and the exact
relation (32) allow for an independent heuristic justification
of Eq. (F17), i.e., without resort to the approximation [Eq.
(82)] or the properties of the spectral densities expected on
physical grounds.
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