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We derive a semiclassical expression for the Green’s function in graphene, in which the presence of a
semiclassical phase is made apparent. The relationship between this semiclassical phase and the adiabatic
Berry phase, usually referred to in this context, is discussed. These phases coincide for the perfectly linear
Dirac dispersion relation. They differ, however, when a gap is opened at the Dirac point. We furthermore
present several applications of our semiclassical formalism. In particular, we provide, for various configura-
tions, a semiclassical derivation of the electron’s Landau levels, illustrating the role of the semiclassical
“Berry-like” phase.
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I. INTRODUCTION

Graphene,1,2 a two-dimensional carbon based material
forming a honeycomb lattice, has attracted a lot of attention
since its experimental isolation has been proved possible.3,4

It is a gapless semiconductor in which, near half filling, elec-
trons behave like massless Dirac particles, obeying a linear
dispersion relation. Among the unusual properties of this
two-dimensional carbon material stand out very distinctive
quantum Hall properties, and, in particular, the �n depen-
dence of the energy in terms of the Landau level number n
and the existence of a Landau level with zero energy, which
is associated with the presence of a Berry phase.1,5

The existence of this Berry phase and its implications for
the Landau levels have been discussed in many places in
different contexts �see, e.g., Refs. 5–7�. The direct connec-
tion between the Berry phase and the observable quantities
under discussion is, however, not always as transparent as
one may wish, and situations where, either because of disor-
der or because one would like to confine the electrons into a
finite region of space, a position dependent electrostatic po-
tential or mass term is introduced, are usually not addressed.

The aim in this paper is to revisit this question of Berry
phase in graphene within a semiclassical, and more specifi-
cally a semiclassical Green’s function, perspective. For the
sake of clarity, our emphasis in this present work will be
more in providing this new point of view, and we shall there-
fore mainly illustrate it with the discussion of the standard
problem of the Landau levels of electrons in a perpendicular
and uniform magnetic field. Even in this familiar framework,
we shall see, however, that our semiclassical approach makes
it possible to address some nontrivial questions, such as the
role of the Berry phase in situations for which a small mass
term has to be included, opening in this way a gap at the
Dirac point.

This paper is therefore organized as follows. In Sec. II, we
derive, following closely the formalism of Bolte and
Keppeler,8 the expression for the semiclassical Green’s func-
tion in graphene. In particular, we discuss in details the ori-
gin of the term corresponding to the Berry phase. These re-
sults are extended in Sec. III to a bilayer of graphene. We
furthermore provide both for the monolayer and the bilayer

cases the expression of the Gutzwiller trace formula for the
semiclassical density of states, valid when classical periodic
orbits are isolated. As an illustration of the Green’s function
formalism, we then apply it in Sec. IV to the computation of
Landau levels for a graphene sheet in constant magnetic
field. We will see, in particular, that the modifications
brought in by, for instance, trigonal warping, are easily in-
cluded within our semiclassical formalism. We then come
back in Sec. V to the discussion of the relationship between
the semiclassical “Berry-like” phase obtained in our ap-
proach and the adiabatic Berry phase9 usually discussed in
this context.

II. SEMICLASSICAL GREEN’S FUNCTION FOR
GRAPHENE

Starting from a tight-binding nearest-neighbor model, the
graphene Hamiltonian at low energies can be obtained by
expanding the momentum near the Dirac points K and K� of
the Brillouin zone. For pure graphene, one obtains in this
way in momentum representation,10–13

Hg
0 = vF���xpx + �ypy� = vF� 0 �px − ipy

�px + ipy 0
� , �1�

where the matrix structure originates from the existence of
two sublattices �denoted as A and B below� in the graphene
honeycomb structure. In this equation, vF=3ta / �2�� is the
Fermi velocity, with t as the hopping parameter and a as the
lattice constant, � is the valley index ��= �1� labeling the
two inequivalent points K and K� in the Brillouin zone �not
to be confused with the sublattice index�, p is the momentum
measured from these points, and �x,y are the Pauli matrices.
This linear approximation to the graphene Hamiltonian will
be valid as long as the condition �p��� /a is fulfilled.

We are interested here in a more general situation than the
one of pure graphene and would like to consider the case
where, because of either disorder or the need to confine the
electrons in some part of the graphene sheet, an electrostatic
potential U�r� and/or a �possibly position dependent� mass
m�r� have to be taken into account. We will not consider,
however, tunneling contributions related to the Klein para-
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dox or boundary effects that may occur at the �zigzag, arm-
chair, or generic� edges of the graphene sample. The
graphene Hamiltonian then takes the more general form,

Hg = vF���x�̂x + �y�̂y� + U�r� · 12 + m�r�vF
2�z, �2�

in which the magnetic field B�r�=��A�r� �if any� is taken
into account by the Peierls substitution,

p̂ → �̂ = p̂ + eA�r� , �3�

with A�r� as the vector potential and p̂�−i� �
�r .

For this problem, the Green’s function G�r� ,r�� is actu-
ally a 2�2 matrix defined by the differential equation,

�E · 12 − Hg�G�r�,r�;E� = ��r� − r�� · 12 �4�

�where Hg is applied to the variable r��. To obtain a semi-
classical solution of this equation, we shall proceed in two
steps. First, assuming r� is far from the source location r�,
we solve semiclassically �i.e., in the WKB approximation�
the Schrödinger equation,

�E · 12 − Hg�G = 0. �5�

In a second stage, we match this general solution to the exact
Green’s function of the “free” �i.e., with constant potential
and mass� problem, valid near the singularity r�. We proceed
now with this derivation.

A. Far from the singularity: The WKB approximation

Following Ref. 8, we seek a semiclassical solution of Eq.
�4� with G of the form

G�r�,r�;E� = 	�r�,r��exp� i

�
S�r�,r��	 , �6�

where 	 is a 2�2 matrix. To lighten the notation, we drop
for now the explicit dependence in the source position r�.
Inserting Eq. �6� into Eq. �5� and expanding in � the resulting
expression, we obtain at order O��0�,

�E · 12 − H� �S

�r�
,r��		�r�� = 0, �7�

and at order O��1�,

�H

�p
·

�

�r�
	�r�� = vF���x

�

�x�
+ �y

�

�y�
�	�r�� = 0, �8�

where H�p ,r� is the classical symbol associated with the
quantum Hamiltonian Hg.

This classical Hamiltonian can be diagonalized, with the
eigenvalues

H��p,r� = U�r� � �m2�r�vF
4 + vF

2�2, �9�

and the corresponding normalized eigenvectors V��p ,r�
�whose explicit expressions are given in Appendix A�. Writ-

ing the matrix 	�r�� as 
V�� �S
�r�

,r�� · 	̃��r���, with 	̃� a 1
�2 matrix, the order �0 equation becomes

E − H�� �S

�r�
,r�� = 0, �10�

where the � sign must be taken according to the sign of E
−U�r��.

Equation �10� is the usual scalar Hamilton–Jacobi equa-
tion, which can be solved by the method of characteristics.14

This amounts to constructing a two-dimensional Lagrangian
manifold L �in the three-dimensional energy surface in phase
space� built as a one-parameter family of trajectories follow-
ing the classical equations of motion,

ṙ =
�H�

�p
�p,r� ,

ṗ = −
�H�

�r
�p,r� .

Given any such manifold, the action S�r��=�r�pdr, where
the integral is taken on an arbitrary path on L, is a solution of
Eq. �10�.

The specific Lagrangian manifold that will correspond to
the proper boundary conditions for G�r� ,r�� near the source
r� is the one obtained from the trajectories leaving r� with an
arbitrary initial momentum p� at energy E,

L� = 

p�t�,r�t��,t � 
0,
�

such that r�0� = r�,H�
p�0�,r�0�� = E� �11�


each point on the manifold is therefore parametrized by the
time t and the initial momentum p�0��. The corresponding
action can then be expressed as

S��r�,r�� = �
r�

r�
p · ṙdt �12�

along a trajectory �p�t� ,r�t�� joining r� to r� at energy E.
Having obtained a solution of the O��0� equation, the

prefactor 	̃ is then determined by the O��1� equation 
Eq.
�8��, which, after multiplication on the left by V�†� �S�

�r�
,r��,

can be expressed as �	̃�=0, where

� � �V�†� �S�

�r�
,r�� �H

�p
·

�

�r�
	V�� �S�

�r�
,r�� .

The operator � can be decomposed as �=��1�+��2� with

��1� = �V�†�H

�p
V�� ·

�

�r�
, �13�

and

��2� = V�†�H

�p
· � �V�

�r�
� . �14�

Noting that first order perturbation theory implies
V�†��H /�p�V�= ��H� /�p�, one has straightforwardly that

��1� =
�H�

�p
·

�

�r�
, �15�

and that
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Re���2�� =
1

2

�

�r�
· �V�†�H

�p
V�� =

1

2

�

�r�
·
�H�

�p
. �16�

(Note here that with respect to spatial derivation, H�

�H��r��=H�
��S� /�r�� ,r��.) One recovers in this way, for
the real part of �, the usual expression valid for a scalar
quantum system,14 which is expected since it basically ex-
presses the conservation of probability.

The imaginary part of ���2��, however, is not constrained

by such a conservation law, as it affects only the phase of 	̃,
but encodes information about the adiabatic variation of the
eigenvector V� along the followed trajectory. It needs there-
fore to be computed from the explicit expressions of the
eigenvector and eigenvalues of H�p ,r�. The details of the
algebra are given in Appendix A. One obtains

� �H�

�p
·

�

�r�
+

1

2

�

�r�
·
�H�

�p
+ iM��	̃� = 0, �17�

with

M� =
�vF

2

2
E − U�r���
�eB +

� �
�

�r�

m�r��vF

2 − U�r���

m�r��vF
2 + E − U�r��

� · ez

�18�

�where ez is the unit vector in the direction perpendicular to
the graphene sheet�.

In the absence of the complex term iM, the scalar trans-
port equation � �H�

�p · �

�r�
+ 1

2
�

�r�
· �H�

�p ���=0 has the usual
solution14

�� = C
exp�− i �

2 
��
��J��r�,r���

, �19�

J��r�,r�� = − ṙ��ṙ��� �2S�

�r�� � r��
�−1

= ṙ��ṙ��� �r��

�r��
� , �20�

where r� and r� are the coordinates parallel and transverse to
the trajectory 
actually Eq. �20� remains valid for any system
of coordinates� and 
� is the Maslov index counting the
�algebraic� number of caustic points. Writing

	̃� = ����,

we obtain that

� �H�

�p
·

�

�r�
+ iM���� � � d

dt
+ iM���� = 0,

and therefore, ���t�=exp�i�sc����t=0�, with

�sc = − �
0

t

M��p�t��,r�t���dt�. �21�

Summing the contributions corresponding to different orbits
j joining r� to r�, we get

G�r�,r�;E� = �
j:r�→r�

� j
�Vj

��r��� j
��t = 0� exp� i

�
Sj

��r�,r��

− i�
0

tj

Mj
�
p�t��,r�t���dt�� , �22�

where Vj
��r���V���Sj

� /�r� ,r�� �and therefore depends not
only on r� but also on the final momentum p j� of the trajec-
tory j�.

The semiclassical phase �sc 
Eq. �21�� is the analog, in our
context, of a Berry phase.9 In the same way, it has its origin
in the adiabatic change of the eigenvectors of the “internal
degree of freedom” Hamiltonian H
p�r� ,r� along the classi-
cal paths contributing to the semiclassical Green’s function.
Furthermore, in some circumstances, �sc exactly corresponds
to the genuine Berry phase �ad defined for the adiabatic mo-
tion along the trajectory. This will be the case in particular
for “pure” �i.e., without mass term� graphene. In general,
however, �sc and �ad differ.15,16 We will come back to this
point in Sec. V and, in particular, clarify the question of
which of the two phases is relevant for the Landau levels.

B. Matching to the exact solution near the source

Sufficiently close, on the classical scale, to the source r�,
we can neglect the variation of the various potentials and of
the mass, i.e., assume U�r�=U0 ,m�r�=m0 and A�r�=0. In
this case, we have the expression for the exact retarded
Green’s function,

G = �GAA GAB

GBA GBB
� ,

with

GAA�r�,r�,E + i�� = �− i
m0vF

2 + ��2 + m0
2vF

4

4��vF�2 �
�H0� �

�vF
�r� − r��� , �23�

GAB�r�,r�,E + i�� = ��
�e−i��

4��vF�2�H1� �

�vF
�r� − r�� ,

�24�

and GBB=GAA�m0→−m0�, GBA=GAB��→−��. Here,

�=��E+ i�−U0�2−m0
2vF

4 , � is the phase of px+ ipy, and H0
and H1 are Hankel functions of order 0 and 1. Asymptoti-
cally, as �r�−r��→ +
, GAA and GAB take the form

GAA � − i
m0vF

2 + E − U0

4��vF�2 � 2

�

ei�k�r�−r��− �
4 �

�k�r� − r��
, �25�

GAB � − i�e−i��
��E − U0�2 − m0

2vF
4

4��vF�2 � 2

�

ei�k�r�−r��− �
4 �

�k�r� − r��
,

�26�

with �k= 1
vF

��E−U0�2−m0
2vF

4 = �p�.
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Let us assume E−U0�0 so that semiclassically we con-
sider the positive eigenspace H+. We note first that, in the
free case considered here, the choice of the Lagrangian mani-
fold L+ given by Eq. �11� corresponds to the action
S+�r� ,r��= �p� · �r�−r�� and to

J+�r�,r�� =
vF

4


E − U�r���2 �p� · �r� − r��

so that, as anticipated, expression �22� matches the
asymptotic expressions �25� and �26�, provided one chooses
C= 1

�2i��

1
i� and

�+�t = 0� = V+†� �S+

�r�
,r�� . �27�

The asymptotic expressions �25� and �26� are valid as
soon as �r�−r�� is larger than a few Fermi wavelengths,
which can still correspond to a distance short on the classical
scale, and therefore, such that the free Green’s function is a
good approximation. We can therefore use this matching
condition to fix the prefactors �+�t=0� and C in the generic
case, obtaining finally

G�r�,r�;E� =
1

�2i��

1

i��
j

exp� i

�
Sj

� − i�
0

tj

Mj
�dt� − i

�

2

 j

��
��Jj

��

�Vj
��r�� · Vj

�†�r�� . �28�

III. BILAYER GRAPHENE AND GUTZWILLER TRACE
FORMULAS

We turn now to a few extensions of the result derived in
Sec. II. We start with a generalization to the bilayer graphene
case and then briefly discuss the resulting Gutzwiller trace
formulas for the density of states, valid when classical peri-
odic orbits are isolated in phase space �i.e., generically, for
chaotic systems�.

A. Semiclassical Green’s function for the bilayer case

The bilayer graphene Hamiltonian can be written at low
energy as17

Hbi
0 = −

1

2m�� 0 �px − ipy�2

�px + ipy�2 0
� , �29�

with m�=�1 / �2vF
2�, where �1 is the intralayer coupling pa-

rameter. As before, we would like to include electric or mag-
netic fields, as well as a possibly position dependent mass
term. We therefore consider the more general Hamiltonian

Hbi = U�r� · 12 + m�r�vF
2�z + Hbi

0 �p → �� . �30�

Following the same approach as above, one obtains the
semiclassical Green’s function in Eqs. �6�–�22� except for a
different expression of the classical Hamiltonian eigenener-
gies,

H� = U�r� ��m�r�2vF
4 + � �2

2m��2

,

and of the semiclassical �Berry-like� phase term,

M� =
1

m�
�1 −

m�r��2vF
4


E − U�r���2��eB

+
1

2

� � �
m�r��vF
2 − U�r���/�r�

m�r��vF
2 + E − U�r��

� · ez. �31�

In the free case �m�r��m0 ,U�r��U0�, the exact Green’s
function can be shown to behave asymptotically as �r�−r��
→ +
 as

GAA �
− im�

4�2 � m0vF
2 + E − U0

− m0vF
2 + E − U0

� 2

�

ei�k�r�−r��− �
4 �

�k�r� − r��
,

GB̃B̃ = GAA�m0 → − m0� ,

GAB̃ �
im�

4�2e−2i�� 2

�

ei�k�r�−r��− �
4 �

�k�r� − r��
,

GB̃A = GAB̃�� → − �� ,

with � the phase of px+ ipy. Matching the exact solution near
the source to the semiclassical expression far from the source
eventually gives the semiclassical Green’s function as a sum
over all trajectories j joining r� to r� under the classical
Hamiltonian H+ or H− (depending on the sign of 
E
−U�r���)

G�r�,r�;E� =
1

�2i��

1

i��
j

Vj
��r��Vj

�†�r��

�

exp� i

�
Sj

� − i�
0

tj

Mj
�dt� − i

�

2

 j

��
��Jj

��
,

�32�

with J� given by Eq. �20�.

B. Trace formulas for isolated orbits

One important application of the semiclassical expres-
sions for the Green’s functions is that, by taking their trace,
one obtains a semiclassical approximation for the density of
states ��E�=�i��E−Ei�. We have in mind here a quantum
dot defined in a finite region of a graphene sheet �with the
confinement imposed for instance through the mass term�,
and Ei are the corresponding discrete energies of the con-
fined system. We will furthermore assume in this section the
classical motion within the dot fully chaotic so that all tra-
jectories are isolated.

Starting from Eqs. �28� or �32�, the semiclassical density
of states can be obtained as the trace,
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��E� � −
1

�
Im � dr Tr
G�r,r;E�� �33�

�where Tr is the trace on the internal structure of the Green’s
function�. The smooth �Weyl� part of the density of states,
which is associated with “zero length” orbits, has the usual
expression �Weyl�E�=�Weyl

+ �E�+�Weyl
− �E� with

�Weyl
� �E� =� dpdr

�2���2�
E − H��p,r�� .

When potential and mass terms are constant this gives

�Weyl
� �E� =

�E − U0�A
2���vF�2 �
��E − U0� − m0vF

2� , �34�

for the monolayer and

�Weyl
� �E� =

m*A
2��2

�E − U0�

���E − U0�2 − m0
2vF

4 �
�
��E − U0� − m0vF

2� ,

for the bilayer, with A as the area of the graphene sheet and
� as the Heaviside step function.

The oscillating part �osc�E� of the density of states can
then be obtained inserting the semiclassical expression for
the Green’s function in Eq. �33�. Performing the integral on r
in the stationary phase approximation imposes that, in the
semiclassical sums Eqs. �28� or �32�, only the trajectories
with identical initial and final momentum should be kept. As
a consequence, the sum over the index j becomes a sum over
periodic orbits. In particular, in Eqs. �28� or �32�, Vj

��r��
=Vj

��r�� since r�=r�=r and p j�=p j� (remember that Vj
��r�

�Vj
�
p j�r� ,r� so the second condition is necessary here).

Therefore, Tr
Vj
��r�� ·Vj

�†�r����r�=r�=r�=1. Once this point is
recognized, the calculation of �osc from the semiclassical
Green’s functions is, up to the inclusion of the semiclassical
Berry-like phase term � jM

��t�dt, essentially the same as in
the scalar case18,19 �see also the particularly clear discussion
in Ref. 20�. We thus just quote the final results: ��E�
=�+�E�+�−�E� and ���E�=�Weyl

� �E�+�osc
� �E�, with

�osc
� �E� =

1

��
�
p.o.

Tppo

��det�M̃po − 1��

�cos�Spo
�

�
−

�

2
�po

� − �
0

Tpo

M�dt�� . �35�

Here, M̃ =
��p�� ,r�� �
��p�

’ ,r�
’ � is the monodromy matrix, ��=
�+�� is

the topologically invariant Maslov index ��=0 or 1, depend-
ing on the sign of d2Sj /dr�

2 , see the discussion in Ref. 20�,
and Tppo is the period of the primitive orbit �Tpo=nTppo if the
orbit consists of n repetitions of the same path�.

IV. GRAPHENE IN A CONSTANT MAGNETIC FIELD

As an illustration of the semiclassical Green’s function
formalism, we consider in this section the simple �but useful�
case of a graphene sheet immersed in a constant magnetic
field and show how some standard �and less standard� ex-
pressions can be easily reobtained in this way. We start with

the Landau levels in the monolayer and the bilayer, without
potential or mass term 
U�r�=m�r�=0�, and assuming the
low-energy approximations 
Eqs. �1�–�29�� of the Hamil-
tonian apply. We then study the influence of higher order
corrections �e.g., trigonal warping� to this low-energy Hamil-
tonian. We finally consider the case where a finite mass term
m�r�=m0=const is introduced. This last example will be
used to introduce the discussion on the distinction between
the semiclassical and adiabatic Berry phases, with which we
shall end this paper in Sec. V.

A. Landau levels in monolayer graphene

In the absence of confining potential or mass term and
with a constant magnetic field, the classical equations of mo-
tion in graphene are integrable and lead to cyclotronic mo-
tion, i.e., circular periodic orbits with period T and radius R
given in the monolayer case by

T =
2�

vF
2

E

eB
, �36�

R =
vF

2�
T . �37�

Since the periodic orbits are not isolated, we cannot use the
Gutzwiller trace formula derived in Sec. III B and we have to
obtain the density of states directly from inserting the semi-
classical expression Eq. �28� in Eq. �33�. Here, however, the
classical dynamics is extremely simple: there is only one
primitive orbit, and the sum over j is actually a sum over the
number of repetitions of this primitive circular orbit. We
therefore have Sj

�=Etj /2, with tj = jT. Two caustics are fur-
thermore traversed for each iteration of the orbit, one mid-
way through the circle, the other when the orbit comes back
to its starting point, and the Maslov index is thus 
 j

�=2j
�note that, as discussed below, the last caustic should be in-
cluded�. Finally, the semiclassical Berry-like phase term 
Eq.
�18�� reduces here to Mj

�
r�t��=�vF
2eB / �2E�=const so that

�
0

tj

Mj
��t�dt = �j� . �38�

The only technical point in this calculation is therefore
that since, whatever the initial momentum, all trajectories
initiated in r�=r eventually return there, the final point r�
=r is a caustic ��r�� /�p�

’ =0�, and the prefactor 1 /��Jj� di-
verges. As discussed in Appendix E of Ref. 21, this diver-
gence can be cured using a mixed representation of the
Green’s function, i.e., by expressing the Green’s function

G�r� ,r�� in terms of its Fourier transform G̃�px� ,y� ;x� ,y�� as

G�x�,y�;x�,y�� =
1

�− 2i��
� dpx�G̃�px�,y�;x�,y��exp� i

�
x�px�� .

�39�

A semiclassical expression for G̃ can be derived in exactly
the same way as for G and leads to the same expression

except for the transformations Sj→ S̃j =Sj − px�x� and Jj =

−ẏ�ẏ��
�2Sj

�x��x�
�−1→ J̃j =−ẏ�ẏ��

�2S̃j

�px��x�
�−1. Thus,
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J̃j = ẏ�ẏ�� �px�

�px�
� , �40�

which is not diverging since for the cyclotron motion,
�px� /�px�=1. The integral over px� in Eq. �39� becomes then
straightforward �noting that dpx� / ẏ�=d�, with � as the angle
made by the initial velocity with the x axis, this integral
basically provides a factor �0

2�d�=2��. Furthermore, the in-
tegration over position in Eq. �33� amounts to a multiplica-
tion by the area A of the graphene sheet, and as in Sec. III B,
Tr
Vj

��r�� ·Vj
�†�r����r�=r�=r�=1 since the final and initial mo-

menta are identical. One therefore obtains

�osc�E� =
�E�A

���vF�2�
j=1

+


cos 2�j
E2

2�eBvF
2 . �41�

The total density of states is then ��E�=�Weyl�E�
+�osc�E� with �Weyl�E� the smooth density of states �which is
identical to the one without magnetic field� given by Eq.
�34�. Using the Poisson formula, we therefore have

��E� =
A

2�lB
2 �

n=−


+


��E − En� , �42�

with lB=�� / �eB� and

En = sign�n�vF
��2n�eB� . �43�

We recover in this way the expression of the Landau levels
as obtained in a fully quantal derivation.12 This approach
furthermore provides a direct link between the phase
�0

tjMj�t�dt=�j� and the existence of a zero energy level, as it
cancels out the phase associated with the Maslov indices
�another example of such a cancellation can be found in Ref.
22�. An alternative semiclassical derivation of the graphene
Landau levels can be obtained starting from the Dirac
oscillator,23 in the limit of massless carriers, provided the
frequency of the oscillator is taken to be the cyclotronic one.

B. Landau levels in bilayer graphene

Considering now the bilayer case, we can proceed in ex-
actly the same way as above except for two differences.
First, the period T and radius R are now given by

T =
2�

�
= 2�

m�

eB
, �44�

R =� �E�
2�2m�

T . �45�

Second, the semiclassical Berry-like phase term Eq. �31�
now reduces to Mj

�
r�t��= �eB /m�=const so that

�
0

tj

Mj�t�dt = 2j� . �46�

The Berry-like phase does not in this case compensate the
phase associated with the Maslov index. Noting furthermore
that for the bilayer graphene, �Weyl�E�=m�A / �2��2�, we ob-
tain

��E� =
A

2�lB
2 �

n=−


+


��E − En
sc� , �47�

where

En
sc = ���n −

1

2
� �48�

is the semiclassical approximation to the exact quantum val-
ues of the Landau levels, En

quant=���n�n−1�=���n− 1
2 �

+O� 1
n �. The semiclassical calculation fails here to account

for the O� 1
n � term. The n=0 and n=1 Landau levels, which

both have zero energy, are therefore not correctly described
within this semiclassical approach. However, for n�2, the
agreement between the semiclassical approximation and the
exact result is quantitatively very good.

C. Influence of higher order corrections [in the parameter
(a�p� Õ�)]

The next example to which we shall apply our semiclas-
sical formalism is the shift of the Landau levels associated
with deviations, for large momenta, to the linear approxima-
tion of the graphene dispersion relation 
Eq. �1��.24 Starting
from a tight-binding description of the graphene monolayer
in which the effect of the next-to-nearest neighbor hopping is
taken into account via the parameter t�� t, and expanding
the resulting dispersion relation near the K and K� points up
to third order in �a�p� /�� �the reason for expanding up to
third order will become clear below�, the resulting Hamil-
tonian reads �in the absence of electric or magnetic fields�24

Hg� = Hg
0 + �h��p� h�p��

h�p� h��p�
� , �49�

with Hg
0 given by Eq. �1� and

h��p� = − 3t� + 6
t�

t
vF�p��vF

6t
�p� − 2��vF

6t
�2

p2 cos 3�p	 ,

h�p� = − vF�vF

6t
��px − ipy�2 + 2�vF

6t
�2

p2��px + ipy�	 .

Keeping only terms no greater than third order in momen-
tum, the eigenvalues of the associated classical Hamiltonian
can be expressed as

H� = h��p� � vF�p��1 − �
vF

6t
�p�cos 3�p −

1

2
�vF

6t
�2

�p2�3 + cos2 3�p�	 , �50�

with �p=arctan�py / px�. The anisotropic terms, proportional
to cos 3�p, are often referred to as trigonal warping. Recall
now this expansion is valid if the condition �p��� /a is ful-
filled. Rewriting the expression �vF /6t��p�= �p�a / �4��, higher
order terms in H� can thus be viewed as a perturbation of the
original eigenvalue H�= �vF�p� in the small parameter
��vF�p��, where ��� /6t will be used below to identify the
order in the perturbation. In the semiclassical limit ��→0�,
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only the modification of the action needs to be taken into
account since this latter is multiplied by the large parameter
1 /�. Our aim is therefore to compute the �first and second
order here� corrections to the action in an expansion in �,

S = S0 + ���1�S + �2��2�S . �51�

In the presence of a constant magnetic field, the classical
equations of motion derived from the first order approxima-
tion H�= �vF��� are integrable, and this property is not
modified by the addition of terms in H� depending only on
���. This can be easily shown by performing a canonical
transformation to the guiding center coordinates. For the
sake of completeness, this canonical change of variables is
detailed in Appendix B. The new coordinates read

R = � 1

eB
�y,x0� ,

P = ��x,eBy0� ,

with r0 the center of the cyclotron orbit so that ���
=�Px

2+ �eBX�2 and tan ��=eBX / Px. We thus have

H+ = − 3t� + � − 
2��2 − 
1�2�3,

with vF�Px+ ieBX�=�ei�, 
2= �cos 3�−6� t�
t �, and 
1= 1

2 �3
+cos2 3�+6� t�

t cos 3��. In this new system of coordinates,
the action is easily calculated as

S =� PdR =� PxdX =
1

2vF
2eB

�
0

2�

�2���d� ,

with the constraint E=H+. Therefore, to order �2, and with
E�=E+3t�,

�2 = E�2 + 2
1�E�3 + �5
1
2 + 2
2��2E�4,

which gives for the action,

S =
1

2vF
2eB

�2�E�2 − 24��
t�

t
�E�3

+ 12��1 + 30� t�

t
�2	�2E�4� .

The third order terms had to be taken into account in the
low-energy expansion since their contribution in the second
order correction of the action is of the same magnitude as
that of second order terms. The third order term in the next-
to-nearest neighbor contribution however cancels out in the
calculation of S and thus a second order expansion in h��p�
would have been sufficient. Introducing this shift in the ac-
tion in the Landau-levels calculation of Sec. IV A finally
gives

En� = En�1 � 6�
t�

t
�En − 3�2En

2�
= En�1 �

3t�
�2t

a

lB

�n −
3

8� a

lB
�2

n	 �52�


lB=�� / �eB� is the magnetic length�. This result is identical
to the one obtained purely quantum mechanically in Ref. 24.

As discussed in this paper, the resulting effect is, however,
too small to interpret shift in Landau levels observed experi-
mentally by Plochocka et al.24

D. Effect of a mass term

To end this section, let us consider the effect of a constant
mass term m0vF

2�z in the graphene Hamiltonian so that

H� = � �m0
2vF

4 + vF
2�2. �53�

Interestingly, a constant mass term does not modify the time
derivative M�t� of the semiclassical Berry-type phase since

see Eq. �18�� it depends only on the gradient of m�r�. Fur-
thermore, as shown by a direct calculation, the energy depen-
dence of the Landau frequency is not affected either by the
mass term. Therefore,

T =
2�

�
=

2�

vF
2

E

eB
, �54�

M
r�t�� = �vF
2 eB

2E
= const, �55�

and the semiclassical phase,

�
0

tj

Mj�t�dt = j�� �56�

is the same as without the mass term.
The m0 dependence of the Landau level position is there-

fore entirely due to the m0 variation of the action,

Sj = j�
E2

eBvF
2 �1 − �m0vF

2

E
�2	 , �57�

which, following the same steps as in Sec. IV A, gives
��E�= 
A / �2�lB

2���n=0
+
 ��E�En�, with

En = �En
2�0� + m0

2vF
4 �58�

�En�0��1 +
1

4n

�m0vF�2

e�B
� �59�


En�0� is the value of En at m0=0 given by Eq. �43��. One
recovers semiclassically in this way the result originally de-
rived by Haldane.25

V. SEMICLASSICAL VERSUS ADIABATIC BERRY PHASE

We would like to finish this paper with some general dis-
cussion concerning the semiclassical phase,

�sc � − �
0

T

Msc
p�t�,r�t��dt , �60�

Msc
p�t�,r�t�� = Im�V�†�H

�p
· � �V�

�r
�	 �61�


see Eq. �14�� computed on a periodic orbit 
p�t� ,r�t�� �of
period T�.
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That, for a clean graphene monolayer without a mass
term, �sc= �� 
as expressed by Eq. �38�, with j=1� is usu-
ally said to be expected since the corresponding configura-
tion is exactly the one discussed in detail by Berry in his
1984 paper:9 the path of integration corresponds to encircling
once the Dirac point, where the H+ and H− manifolds inter-
sect. This argument, however, relies on an exact intersection
between the two manifolds and should a priori not apply
when a mass term m0 introduces a gap. From this perspec-
tive, one does not expect the Berry phase to be equal to ��
when m0�0, and Eq. �56� may come as a surprise. �Note
though this was already observed in Ref. 26.�

The resolution of this apparent paradox is that, as dis-
cussed in Refs. 15 and 16, the semiclassical phase �sc defined
by Eq. �21� and the adiabatic phase introduced by Berry are
closely related, but eventually different, quantities. Both of
them are induced by the adiabatic variation of the eigenstates
V+ and V− along the trajectory. However, the point of view
taken in the semiclassical approach is that both the internal
space 
associated here with the sublattices �A ,B�� and the
external space �position r� are coupled dynamical variables.
Treating the coupling between these variables in the semi-
classical approximation �which indeed implicitly assumes
that the “external” variable is slow and the internal variable
fast� leads to the semiclassical expression �61�.

The problem Berry was considering in his seminal article9

is, however, different: in that case, only the internal degree of
freedom is considered a dynamical variable, and the external
degrees of freedom are actually a space of parameters as-
sumed to be entirely controlled by the experimentalist. One
may in that case of course choose this path as the classical
trajectory 
r�t�� �with H�r��H
p�r� ,r�� determined by the
dynamics in the semiclassical approach. In that case, how-
ever, the corresponding phase is given by9

�ad � �
0

T

Mad
r�t��dt , �62�

Mad
r�t�� = iV�†�V�

�r
· ṙ �63�

�the normalization of V� ensures that Mad is real�.
Let us assume, for this discussion, that we are interested

in the evolution of the eigenstate V+ associated with the posi-
tive eigenvalue H+. Furthermore, let us switch to the bra/ket
notation for the eigenvector and write V���� �, V�†����.
First order perturbation theory implies ṙ=�H+ /�p
= �+���H /�p��+ �, and therefore, Eq. �63� can be rewritten as

Mad
r�t�� = i�+ �
�H

�p
� + � · �+ �

�

�r
� + � . �64�

On the other hand, inserting the identity 12= �+ ��+�+ �−��−� in
Eq. �61�,

Msc�r�t�� = Im��+ �
�H

�p
� + � · �+ �

�

�r
� + �

+ �+ �
�H

�p
�− � · �− �

�

�r
� + �	 . �65�

Thus, the adiabatic and semiclassical phases actually differ
from the quantity

�ad − �sc = �
0

T

Im��+ �
�H

�p
�− � · �− �

�

�r
� + �	dt . �66�

From this expression, we can see that in the absence of a
mass term, but for an arbitrary electrostatic potential U�r�,
the semiclassical and Berry phases are identical. Indeed, for
m�r��0, the expressions 
Eqs. �A2� and �A3�� for the eigen-
vectors of H�p ,r� take the simple form

� + � =
1
�2

� 1

�ei�� � , �67�

�− � =
1
�2

��e−i��

− 1
� , �68�

with � as the phase of �x+ i�y. As a consequence,

�+ �
�H

�p
�− � · �− �

�

�r
� + � =

vF

2
�− sin ��x� + cos ��y�� ,

�69�

�+ �
�H

�p
� + � · �+ �

�

�r
� + � = i

�vF

2
�cos ��x� + sin ��y��

=
i�

2

d�

dt
. �70�

The right hand side of Eq. �69� is purely real, implying that,
in the simple case m=0 considered here, �ad−�sc=0. Equa-
tion �70� then expresses that, independently of the nature of
the electrostatic potential U�r�, the—here identical—Berry
phase and semiclassical phase are just given by plus or mi-
nus �depending on �� half the angle of rotation of the veloc-
ity vector. In particular, as demonstrated by Berry from geo-
metric arguments,9 we see here from a direct calculation that
for a periodic orbit, �ad=�sc=−�j�, with j as the number of
windings of the trajectory. This makes particularly simple the
inclusion of the semiclassical phase in the Gutzwiller trace
formula Eq. �35� when m=0.

Similarly, for the bilayer Hamiltonian Eq. �30� with
m�r��0, we have

� + � =
1
�2

� 1

− ei2� � , �71�

�− � =
1
�2

�e−i2�

1
� , �72�

with � as the phase of �x+ i�y, and
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�+ �
�H

�p
�− � · �− �

�

�r
� + � =

���
m�

�− sin ��x� + cos ��y�� ,

�73�

�+ �
�H

�p
� + � · �+ �

�

�r
� + � = i

���
m� �cos ��x� + sin ��y�� = i

d�

dt
.

�74�

Again, the Berry phase and semiclassical phase are identical
if m�r��0 
as Eq. �73� is purely real�, and both phases are
given by the angle of rotation of the velocity vector.

For both bilayer and monolayer graphene, it has to be
born in mind, however, that in the generic case m�r��0, the
semiclassical phase �sc should in general differ from the
Berry phase �ad. Furthermore, we do not have a general ar-
gument constraining any of the two phases to be directly
related to the winding of the velocity vector �beyond the case
where either m �r� � 0 or both the mass and the electrostatic
potential are constant�.

VI. CONCLUSION

To conclude, we have derived an expression for the semi-
classical Green’s function in graphene and discussed, in par-
ticular, the semiclassical phase associated with the internal
pseudospin structure. If no mass term is included in the
graphene Hamiltonian, this semiclassical phase is identical to
the corresponding �adiabatic� Berry phase. In that case both
phases are, up to a sign, given by half the angle of rotation of
the velocity vector. For a bilayer of graphene, the same result
holds but with a phase which is twice as large.

When a mass term is introduced however, the semiclassi-
cal and Berry phases in general differ. In particular, for a
clean graphene sheet in a constant magnetic field, we have
shown that the semiclassical phase remains unmodified upon
the inclusion of a constant mass term m�r�=m0, while the
corresponding Berry phase �ad= 
m0vF

2 / �E−U0�−1��j�
shows some dependence on m0. We have shown furthermore
that in this case, what is relevant to the calculation of the
Landau levels is the semiclassical, rather than the Berry,
phase. Other applications of our semiclassical formalism
were also discussed, including the effect of higher order
terms of the graphene Hamiltonian—e.g., trigonal
warping—on the position of the Landau levels. The semi-
classical approximation to the graphene Green’s function
should prove a useful tool when considering confined elec-
tron systems in graphene, such as graphene nanoribbons, or
more complicated geometries.
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APPENDIX A: IMAGINARY PART OF THE OPERATOR
(�2)

In this appendix, we give the details of the computation of
the imaginary part Im���2��=M� 
see Eq. �17�� of the op-
erator,

��2� = vFV�† · ���x
�V�

�x
+ �y

�V�

�y
� . �A1�

Here,

V+�p,r� =

�m�r�vF
2 + ��p,r�

vF���x + i�y�
�

�2
��p,r��
m�r�vF
2 + ��p,r��

, �A2�

V−�p,r� =

� vF���x − i�y�
− 
m�r�vF

2 + ��p,r��
�

�2
��p,r��
m�r�vF
2 + ��p,r��

�A3�

are the normalized eigenvectors of the classical Hamiltonian
H� 
see Eq. �9��,

��p,r� = H+�p,r� − U�r� = �m�r�2vF
4 + vF

2�2,

and, with respect to spatial derivation, it is understood that
V��V�
��S� /�r� ,r�.

We perform here the calculation for M+, the one for M−

being essentially identical. We have

� Im
V+†�x��xV
+�� =

�

2��mvF
2 + ��

Im�
mvF
2 + �,vF���x

− i�y�� · �x · � �x�mvF
2 + ��

vF�x���x + i�y�
��

=
�vF

2��mvF
2 + ��


�mvF
2 + ���x�y

− �y�x�mvF
2 + ��� , �A4�

and in the same way,

Im
V+†�y��yV
+�� =

1

2��mvF
2 + ��

Im��mvF
2 + �,vF���x

− i�y�� · �y · � �y�mvF
2 + ��

vF�y���x + i�y�
�	

=
�vF

2��mvF
2 + ��


�mvF
2 + ���− �y�x�

+ �x�y�mvF
2 + ��� �A5�

so that

Im���2�� =
�vF

2

2�
� �

�r
� � +

� � �r�mvF
2 + ��

mvF
2 + �

	 · ez,

�A6�

with ez as the unit vector in the direction perpendicular to the
graphene plane.

Using finally that
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� �

�r
� A�

z

= B ,

��r � �rS�z = �x�yS − �y�xS = 0,

and that the Hamilton–Jacobi equation E−H+� �S+

�r ,r�=0 im-
plies

�

�r
��� �S+

�r
,r�	 = −

�U

�r
,

then gives Eq. �18�.

APPENDIX B: GUIDING CENTER COORDINATES

We sketch here the construction of the new canonical
variables 
R= �X ,Y� ,P= �Px , Py�� introduced in Sec. IV C.
We start first by performing the simple canonical transforma-
tion r→r�= �x , py� ,p→p�= �px ,−y�. Then, introducing the
guiding center r0= �x0 ,y0� coordinates,

x0 = x −
1

eB
�y =

x

2
−

1

eB
py ,

y0 = y +
1

eB
�x =

y

2
+

1

eB
px,

we define the point transformation R�r�� as

R = � x

2
+

1

eB
py,

x

2
−

1

eB
py� = � 1

eB
�y,x0� .

This transformation is obtained from the generating function
F�r� ,P�=P ·R�r��, and therefore, the new momentum is
given by

p� =
�F

�r�
=�

1

2
�Px + Py�

1

eB
�Px − Py� � ,

which is easily inverted into

P�p�� = �px −
eB

2
y,px +

eB

2
y� = ��x,eBy0� .

The unperturbed Hamiltonian is then given as H+�p ,r�
=vF���=vF

�Px
2+ �eBX�2.
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