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Transport properties of nanoscale quantum dots embedded in a matrix connected with metallic electrodes are
investigated theoretically. The Green’s function method is used to calculate the tunneling current of an Ander-
son model with multiple energy levels, which is employed to model the nanoscale tunnel junction of concern.
A closed form spectral function of a quantum dot or coupled dots �with arbitrary number of energy levels�
embedded in a tunnel junction is derived and rigorously proved via the principle of induction. Such an
expression can give an efficient and reliable way for analyzing the complicated current spectra of a quantum
dot tunnel junction. Besides, it can also be applied to the coupled dots case, where the negative differential
conductance due to the proximity effect is found. Finally, we investigate the case of bipolar tunneling, in which
both electrons and holes are allowed to tunnel into the quantum dot, while optical emission occurs. We find
dramatic changes in the emission spectra as the applied bias is varied.
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I. INTRODUCTION

Recently, nanoscale quantum dots �so-called artificial at-
oms or molecules� have been extensively studied for their
potential applications in novel nanostructure devices based
on the quantum tunneling process. Such quantum dot tunnel-
ing devices include electrically driven single-photon
emitters,1,2 single-electron transistors �SETs�,3,4 and solid
state quantum bits.5 Proposals have been made to integrate
these tunneling devices into circuits and apply them as bio-
sensors to detect the DNA sequence.6 For such applications,
it is very important to have good control of the current-
voltage characteristics �CVC� of these devices. The CVC of
tunneling devices depend not only on the material of the
quantum dot but also on its shape, size, and location. Inter-
esting physical phenomena of such devices, including
bistable current,7 negative differential conductance,8 Fano
resonance, and Kondo effect9 have been extensively investi-
gated. However, most of these studies focus on the properties
of the ground state only �one level� rather than multiple lev-
els. In realistic nanojunction devices, the consideration of
multiple energy levels is essential in order to understand
fully their CVC and the effects due to interaction with neigh-
boring quantum dots and charged defects in the local envi-
ronment.

Theoretical calculations based on the tight-binding,10

pseudopotential,11 k · p,12 or bond-orbital method13 can pro-
vide the energy level separations and charging energies of
quantum dots. However, these calculations require the
knowledge of shape and size of the quantum dot, which is
usually difficult to obtain experimentally, since the quantum
dots are typically embedded in a matrix in most tunneling
devices. Apart from that, the tunneling rates arising from the
coupling between the quantum dots and electrodes as well as
the electron Coulomb interactions also significantly influence
the CVC of these tunneling devices.8 Consequently, it is dif-
ficult to model the I-V curves of devices via ab initio
methods.14,15

Although the energy level separations and charging ener-
gies of individual quantum dots have been reported in many
SET experiments,3,4 both of these physical quantities of SETs
were only qualitatively estimated due to the unknown junc-
tion capacitances �which are related to the location of indi-
vidual quantum dots between electrodes and the geometry of
quantum dots�. Recently, tunneling current spectra of an
STM-tip and/or quantum dot tunnel structure have been stud-
ied experimentally.16–22 Because the shell-filling and shell-
tunneling conditions of a quantum dot significantly influence
the probability for resonant tunneling through each indi-
vidual energy level, it is difficult to identify the origin of the
peaks observed in tunneling current spectra without a reli-
able theoretical guidance.16–22 To analyze the complicated
tunneling spectra in these measurements, it is desirable to
have a simple yet reliable formula that allows one to deter-
mine the CVC characteristics associated with the multiple
energy levels involved and the interplay of the intralevel and
interlevel Coulomb interactions.

We have employed the Anderson model with arbitrary
energy levels to describe the strongly correlated system, as
shown in Fig. 1. The tunneling current through the quantum
dots can be obtained via the nonequilibrium Green’s function
method.9,23,24 Such a method has been extensively used to
investigate the Coulomb blockade and the Kondo effect on
the tunneling current through the ground state of a single
quantum dot.9,25 In a previous article,8 we reported a closed
form expression for the spectral function, which can be used
to reveal the current spectra of not only a single dot but also
coupled quantum dots. We found that specific evaluation of
both the two-particle occupation number as well as the
single-particle occupation number is important for determin-
ing the probability of each resonant-tunneling channel. In the
present paper, we provide a more detailed description of the
above study and give a mathematically rigorous proof to the
formulas derived via the principle of induction. Furthermore,
we investigate the case of bipolar tunneling, in which both
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electrons and holes are allowed to tunnel into the quantum
dot, while optical emission occurs. We also calculate the con-
sequent optical emission due to the bipolar tunneling and we
find that dramatic changes in the emission spectra occur as
the applied bias is varied.

II. ELECTRON TUNNELING CURRENT

We start with the following Hamiltonian for describing
the system of a metal/quantum dot �nanostructure�/metal
double barrier junction, as shown in Fig. 1:

H = �
k,�,�

�kak,�,�
† ak,�,� + �

�,�
E�d�,�

† d�,�

+
1

2 �
�,j,�,��

U�,jd�,�
† d�,�dj,��

† dj,�� + �
k,�,�,�

Vk,�,�ak,�,�
† d�,�

+ �
k,�,�,�

Vk,�,�
� d�,�

† ak,�,�, �1�

where ak,�,�
† �ak,�,�� creates �annihilates� an electron of mo-

mentum k and spin � with energy �k in the � metallic elec-
trode. d�,�

† �d�,�� creates �annihilates� an electron inside the
quantum dot with orbital energy E�, U�,j describes the on-site
interlevel Coulomb energy between levels � and j, and Vk,�,�
describes the coupling between the band states of electrodes
and quantum dot states. The Hamiltonian given by Eq. �1� is
based on the Anderson model with multiple energy levels.9,26

The tunneling current can be expressed as23

J =
− 2e

�
�

�
� d�

2�
�fL�� − �L� − fR�� − �R��

�
��,L�����,R���

��,L��� + ��,R���
Im G�,�

r ��� , �2�

where fL��� and fR��� are the Fermi distribution functions for
the left and right electrodes �source and drain�, respectively.
The chemical potential difference between these two elec-
trodes is related to the applied bias, �L−�R=eVa. ��,L��� and
��,R������,�=2��k�V�,�,k�2	��−�k�� denote the tunneling
rates from the quantum dot to the left and right electrodes,

respectively. The notations e and � denote the electron
charge and Plank’s constant. The expression of Eq. �2� is
nothing but the Landauer formula,27 which is valid even
though on-site Coulomb interactions are taken into account.
The detailed derivation of Eq. �2� is similar to that of Ref.
28. For simplicity, these tunneling rates will be assumed to
be energy and bias independent. Note that the tunneling rates
can be calculated numerically.29 Therefore, the calculation of
tunneling current is entirely determined by the spectral func-
tion of A=Im G�,�

r ���, which is the imaginary part of the
retarded Green’s function G�,�

r ���.
The expression of retarded Green’s function G�,�

r ��� can
be obtained by solving the equation of motion for G�,�

r �t�=
−i
�t��	d�,��t� ,d�,�

† �0�
�, where 
�t� is a step function, the
curly brackets denote the anticommutator, and the angular
bracket �¯� means “thermal average.” The equation of mo-
tion method has been used to investigate charge transport
through the Anderson model.30,31 In Ref. 30, the differential
conductance of electron transport through quantum dot with
multiple levels and a constant Coulomb interaction was in-
vestigated based on the linear-response theory. Their treat-
ment corresponds to Beenakker’s approach, which calculates
the distribution function of N electrons in a quantum dot
using the detailed balance equations.32 Here, we derive the
spectral function for a QD tunnel junction with arbitrary
number of energy levels by solving the equations of motion
directly.

The Fourier transform of G�,�
r �t� is given by

G�,�
r ��� = �

−�

�

dtG�,�
r �t�ei��+i��t, �3�

with � as a positive infinitesimal number. After some tedious
algebraic operations, rigorous solution to G�,�

r ��� in the Cou-
lomb blockade regime can be obtained by solving a hierar-
chy of equations of motion, relating G�,�

r to two-particle
Green’s functions, G�,�

r ���, which in turn is related recur-
sively upward to the 2M-particle Green’s function, G2M

r ���.
For the fully occupied configuration, the corresponding
Green’s function G2M

r ��� can be solved immediately due to
the self-termination of the hierarchy of equations of motion,
since a fully occupied configuration can no longer be linked
to a different configuration with more particles. By keeping
the two-particle correlation functions associate with the same
level, we can obtain neat closed form expressions for all
Green’s functions involved. The detailed derivations �which
are proved rigorously via the principle of induction� are
given in Appendixes A and B. We obtain

G2M
r =

N�,−��
j

�
cj

��l − U� − 2�
j

�
U�,j�

, �4�

where ��
�−E�+ i���,L+��,R� /2 and U� denotes the intra-
level Coulomb energy in level �. Nj,−�= �nj,−�� and cj
= �nj,−�nj,�� denote the one-particle and two-particle average
occupancies in the level j. Here and henceforth, � j� means

1E
2E

LΓ
RΓ

(a) (b)
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Dot

Drain
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FIG. 1. �Color online� Schematic energy diagram for a quantum
dot junction of concern. �L and �R denote, respectively, the tunnel-
ing rates for electrons from the source to the quantum dot and from
the quantum dot to the drain �which is grounded�. �a� System with-
out bias and �b� System with forward bias. �c� System with reverse
bias.
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taking the product of terms labeled by j with j=1¯M, ex-
cluding �.

G�,�
r ��� = �

j

�
�âj + b̂j + cj�G2M

r /�
j

�
cj


 N�.−� �
m=1

3M−1

pm

�� − U� − 

m

, �5�

and

G�,�
r ��� = �b̂�N�,−�

−1 + 1�G�,�
r ���

= �1 − N�,−�� �
m=1

3M−1

pm

�� − 

m

+ N�,−� �
m=1

3M−1

pm

�� − U� − 

m

, �6�

where b̂�, âj, and b̂j are the operators that put a factor b�

=1−N�,−�, aj 
1− �Nj,�+Nj,−��+cj, and bj 
Nj,�+Nj,−�

−2cj in the numerator and increase the value of the denomi-
nator by U�, 2U�,j, and U�,j, respectively when acting on a

fractional function. For example, b̂j�f /g�= �bjf� / �g+U�,j�.
The operators âj and b̂j, when acting on a term describing the
state with two particles in level j, have the physical mean-
ings of removing two particles and one particle, respectively,
from that state; thus, converting the state into zero-particle
�with probability aj� and one-particle �with probability bj�
states. Similarly, b̂� has the physical meanings of removing
one particle from a state, in which the level � has been oc-
cupied by one electron, and converting it into an empty state
with probability b�=1−N�,−�. Note that the expression of b�

is different from bj and the two-particle removing operator
â� does not exist. This is because level � is the designated
level in which the electron transport is considered. Thus, it is
not physically meaningful to consider the transport through a
state in which the level � is doubly occupied. Consequently,

the operator b̂� will only act on a state in which the level � is
singly occupied. Namely, level � can be either empty �with
probability 1−N�,−�� or occupied by one electron �with prob-
ability N�� when we consider an electron tunneling through
that level.

In the above expressions, 
m in the denominator denotes
the sum of Coulomb interactions seen by a particle in level �
due to other particles in configuration m, in which each level
j�j��� can be occupied by zero, one, or two particles. On
the other hand, the numerator pm denotes the probability of
finding the system in configuration m. For a two-level �M
=2� system ��� j�, the two-particle Green’s function G�,�

r ���
contains three configurations with different occupancies in
level j, while always keeping level � occupied with one elec-
tron. The three corresponding terms have numerators p1=aj

1− �Nj,�+Nj,−��+ �nj,�nj,−�� �the probability with no par-
ticle in level j�, p2=bj 
Nj,�+Nj,−�−2�nj,�nj,−�� �the prob-
ability with one particle in level j�, and p3=cj 
�nj,�nj,−��

�the probability with two particles in level j�. Meanwhile, the
denominators contain Coulomb energies: 
1=0, 
2=U�,j,
and 
3=2U�,j, respectively. For a three-level case ��� j
� j��, there are nine �3�3� configurations for different oc-
cupancies in levels j and j�. The corresponding numerators
�probability factors� are given by the expansion of the prod-
uct �aj +bj +cj��aj�+bj’+cj’�. Namely, p1=ajaj�, p2=bjaj�,
p3=ajbj�, p4=cjaj�, p5=cj�aj, p6=bjbj�, p7=cjbj�, p8=cj�bj,
and p9=cjcj�. The denominators contain the following inter-
level Coulomb interaction factors: 
1=0, 
2=U�,j, 
3
=U�,j�, 
4=2U�,j, 
5=2U�,j�, 
6=U�,j +U�,j�, 
7=2U�,j
+U�,j�, 
8=2U�,j�+U�,j, and 
9=2U�,j +2U�,j�. Based on
these simple rules, the probability factors and interlevel Cou-
lomb interaction factors for any number of energy levels can
be similarly determined by applying the product of operators

�âj + b̂j +cj� on the fully occupied configuration, as described
in Eq. �5�. It is worth noting that the sum of probability
factors pm for all configurations associated with arbitrary
number of levels is always equal to 1, resulting from a sum
rule obeyed by G�,�

r ���. From Eqs. �4�–�6�, we see that the
probability of finding the system in each configuration is
determined not only by the average one-particle occupancy
but also by the average two-particle occupancy. It should be
pointed out that for two particles occupying different levels,
we still adopt the approximation �n�,�nj,����N�,�Nj,��, effec-
tively ignoring the correlation of electrons occupying differ-
ent levels. This is consistent with the Hartree–Fock approxi-
mation adopted in the Coulomb blockade regime and it will
not lead to unphysical tunneling current as it would other-
wise occur had we also assumed �nj,�nj,−��=Nj,�Nj,−�.

N�,� and c� in the above equations can be obtained by
solving the following equations self-consistently:

N�,� = −� d�

�

��,LfL��� + ��,RfR���
��,L + ��,R

Im G�,�
r ��� , �7�

c� = −� d�

�

��,LfL��� + ��,RfR���
��,L + ��,R

Im G�,�
r ��� . �8�

The values of N�,� and c� are restricted between 0 and 1.

III. UNIPOLAR TUNNELING CURRENT

The fluorescence microscopy and spectroscopy based on
cadmium selenite �CdSe� nanoparticles are invaluable ana-
lytical tools in biomedical research.33,34 Consequently, it is
important to clarify the electronic structure of a single CdSe
QD. We now apply our theory to study electrical transport in
a single-electron transistor made of a CdSe QD and metallic
leads.35 Because the electrodes are biased at Va and Vg, the
one-particle energy levels E� in the CdSe QD are changed to
E�+�aeVa+�geVg. The dimensionless scaling factors �a and
�g depend on the position and shape of quantum dots and
satisfy �a�1 and �g�1. Vg denotes the applied gate voltage
just tuning the energy levels of a single dot but not inject any
carriers from the gate electrode to the QD. Throughout the
paper, the system is assumed at zero temperature. In the for-
ward bias regime, three one-particle energy levels of the
CdSe QD are used for modeling the tunneling spectra. The
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chemical potentials of both the left electrode and right elec-
trodes are assumed to be 0.78 eV below the ground state
energy level E1 at zero bias. Meanwhile, we choose E2−E1
=0.236 eV, E3−E1=0.456 eV, U1=0.137 eV, U1,2=U2,1
=0.122 eV, U2=0.07 eV, U3=0.06 eV, U1,3=U3,1
=0.1 eV, and U2,3=U3,2=0.04 eV. These physical param-
eters were determined by considering their possible physical
range and the best agreement between the calculated and
measured tunneling spectra. We note that the p-like level is
sixfold degenerate �including spin� due the symmetry of the
spherical QD. The coupling strength between the left elec-
trode �or the right electrode� and the px- or py-like orbital is
weak. Therefore, only pz-like orbital has been included,
which is labeled by E2, while E3 denotes one of the d-like
orbitals that is strongly coupled to the leads.

Occupation numbers N� and c� are obtained by solving
the coupled equations �Eqs. �7� and �8��. Once they are de-
termined, we can calculate the tunneling current by substi-
tuting Eq. �6� into Eq. �2�. Figure 2 shows the tunneling
current as a function of the applied bias at zero temperature
and zero gate voltage. For simplicity, we have adopted the
following energy and bias independent tunneling rates, �L
=�R=1 meV. The tunneling current exhibits a staircaselike
plateaus, arising from the well-known Coulomb blockade ef-
fect �including both intralevel and interlevel interactions�.
The length of each plateau indicates the energy level separa-
tion of adjacent resonant channels. The height of each step in
the staircase indicates the probability strength of the resonant
channel, which is determined by the one-electron and two-
electron occupation numbers. To further analyze and resolve
the current spectra, the differential conductance defined as
dJ /dVa is also plotted near the bottom in Fig. 2. The first
eight peaks arising from the resonant channels are �1=E1,
�2=E1+U1, �3=E2, �4=E1+U1+U12, �5=E2+U2, �6=E2
+U12, �7=E1+U1+2U12, and �8=E2+U2+U12. These differ-
ential conductance peaks have a Lorentzian shape of width
��L+�R� /2, which reveals the broadening of resonant chan-
nels. However, it is difficult to directly determine these im-
portant physical parameters by experiment because of the

inhomogeneous broadening caused by other factors.
To examine the whole functionality of the SET, the tun-

neling current as a function of the gate voltage for various
tunneling-rate ratios and at Va=10 mV is plotted in Fig. 3.
The tunneling current exhibits an oscillatory behavior, which
is different from the staircase behavior shown in Fig. 2.
Curves �a�–�e� correspond, respectively, �L=0.2 meV, �L
=0.4 meV, �L=1 meV, �L=5 meV, and �L=10 meV. �R
is fixed at 1 meV. In shell-tunneling condition �L /�R�1, the
strengths of peaks arising from the E1+U1, E2+2U12+U2,
and E3+2U13+2U23+U3 are weaker than those of peaks aris-
ing from E1, E2+2U12, and E3+2U13+2U23. On the other
hand, such a trend is oppositive in the shell-filling case, i.e.,
�L /�R�1. Many small satellite peaks are present. These
peaks result from the fact that one-particle and two-particle
occupation numbers have not yet reached one for the applied
bias. For example, increasing �L �going from �a� to �e��, the
strengths of resonant channels E2, E1+U1+U12, and E2
+U12 are enhanced. It is worth noting that resonant channels
resulting from the intralevel Coulomb interactions do not
disappear even though �L /�R�1. This is attributed to carri-
ers blockaded by electrons in the right electrode, when the
energy level of the quantum dot is tuned into continuum
states below the Fermi energy of the right electrode. Note
that the assumption of energy-independent tunneling rates is
not very realistic since different orbitals have different cou-
pling strengths to the band states of electrodes. In fact, one
can measure the tunneling current spectra as functions of the
gate voltage at small bias �Va� and zero temperature to de-
termine the different tunneling rates associated with different
levels and reveal the orbital characteristics of CdSe QD if the
widths of the peaks are larger than the inhomogeneous
broadening caused by other factors.

Figure 4 shows a direct comparison of the calculated tun-
neling current spectrum with the measured one reported in
Ref. 21, where the observed differential conductance peaks
are broadened. To take into account the inhomogeneous
broadening caused by either the Coulomb interactions from
neighbor QDs or other factors, we replace each Lorentzian
function appearing in the differential conductance by a

Gaussian function of the form f i exp	−
��−�i�2

2�i
2 
 / ��i

�2��. f i, �i,
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FIG. 2. �Color online� Tunneling current �in the units of J0=e
� �meV� /h� as a function of the applied bias Va at zero tempera-
ture. The relevant parameters are �=0.61 and �L=�R=1 meV. The
corresponding differential conductance dJ /dVa is also shown for
comparison �the sharp peaks�.
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FIG. 3. �Color online� Tunneling current as a function of the
gate voltage at Va=10 mV for various ratios of �L /�R: �a� 0.2, �b�
0.4, �c� 1, �d� 5, and �e� 10. �R is fixed at 1 meV.
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and �i denote the peak strength, resonance energy, and
broadening width, respectively. The following parameters
�L,1=1 meV, �R,1=0.15 meV, �L,2=3 meV, �R,2
=0.6 meV, �L,3=1.5 meV, and �R,3=0.375 meV are
adopted. The inhomogeneous broadening parameter is fixed
at �i=35 meV for all levels. As seen the figure, both the
positions and relative strengths of these peaks are in very
good agreement with the experimental measurement. With-
out the inhomogeneous broadening ��=0�, the differential
conductance spectrum exhibits many more sharp peaks, as
shown in the lower part of the figure.

The proximity effect due to the coupling among multiple
nanoparticles placed between two electrodes were reported
in CdSe SETs.21,22,36 Furthermore, negative differential con-
ductance �NDC� due to the proximity effect has been ob-
served for self-assembly Si quantum dots array. To describe
the effect of interdot Coulomb interactions on the tunneling
current, we consider the case of three weakly coupled quan-
tum dots �dots A, B, and C�. Dot A is placed at the center and
dots B and C are placed at two sides of dot A. We consider a
low bias situation, where only the ground states of the three
QDs are involved. We assume the physical parameters of dot
A are the same as those of the dot considered in Fig. 2. Dot
B and dot C are identical dots with energy levels EB=EC
=EA+20 meV and intralevel Coulomb interaction UB=UC
=150 meV. The interdot Coulomb interactions between dot
B and dot C are disregarded due to the large interdot distance
assumed. However, the interdot Coulomb interactions, UAB
and UAC, are still appreciable and taken to be 30 meV. The
parameters here fall into the regime U�,j ��E=Ej −E�. We
have shown that the two-particle occupation numbers play an
important role in such a condition.8 In Fig. 5, we plot the

tunneling current as a function of the applied bias for two
case: �a� dot B and dot C are in the shell-filling condition and
�b� dot B and dot C are in the shell-tunneling condition.
Curve �a� exhibits NDC when dot B and dot C are in the
shell-filling condition. Once dot B and dot C are in the shell-
tunneling condition, as shown in curve �b�, the NDC behav-
ior disappears due to the suppression of interdot Coulomb
interactions for small NB�NC� and NBB�NCC�. To clarify the
origin of NDC, we plot the tunneling current through dot A
alone JA for the same condition as in curve �a�, as the dashed
curve in Fig. 5. Here, the tunneling currents through dot B
and dot C are much smaller than JA due to the small tunnel-
ing rates to the right lead. We focus on the case when the
applied bias is insufficient to overcome the charging energy
of any energy level. Then, the expression of GA,�

r has the
following simplified form:

GA,�
r ��� = �1 − NA,−���aBaC

�A
+

aBbC

�A − UAC
+

bBaC

�A − UAB

+
bBbC

�A − UAB − UAC
� , �9�

where �A
�−EA+ i��A,L+�A,R� /2. In the beginning, the
tunneling current JA arises from electrons tunneling through
the resonant channel EA with probability �1−NA,−��aBaC.
The probability factor aBaC become reduced when some
electrons tunnel through the energy levels of EB and EC.
Consequently, JA is suppressed. The tunneling current
bounces back from the valley when more resonant channels
EA+UAB, EA+UAC, and EA are opened at higher bias. The
decreasing of total probability of these three channels
�1−NA,−���aB+bBaC� once again suppress the tunneling cur-
rent JA when more electrons accumulate into dot B and dot C
�note that carriers tunnel not only through channel EB�C� but
also through channel EB+UAB�EC+UAC��. The tunneling

FIG. 4. �Color online� Differential conductance as functions of
applied bias with and without the inhomogeneous broadening. For
comparison, the experimental data taken from Ref. 21 is shown on
top. Three one-particle energy levels for electrons in the QD are
considered in the modeling.
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current resumes as the channel EA+UAB+UAC opens up
when the bias further increases.

IV. BIPOLAR TUNNELING

So for, we have only discussed current generated by the
electrons tunneling through resonant channels. Simultaneous
electron and hole transport can occur and it has been ob-
served in the negative bias regime.21,22 In the system consid-
ered, the Fermi level �EF� is much closer to the lowest con-
duction state than to the highest valence state �see Fig. 1�a��.
Therefore, a small forward bias can lead to the electron tun-
neling, while the holes remain blocked �see Fig. 1�b��. On
the other hand, a large reverse bias must be applied before
the hole can tunnel into the quantum dot, which would also
accompany the electron tunneling �see Fig. 1�c��. Our formu-
las �Eqs. �4�–�8�� presented in Sec. II remain valid for such a
situation, provided that the signs of particle energies and
interlevel Coulomb energies are properly taken care of. For
the holes, the energy levels are denoted by Eh,�, which are
defined as the difference in energy of the lowest-lying con-
duction state and the corresponding valence state of concern.
For the interlevel Coulomb energies, U�,j will be negative for
two levels occupied by one electron and one hole and posi-
tive otherwise. Furthermore, the bipolar tunneling is accom-
panied by a radiative recombination. For the system consid-
ered in Ref. 21 under reverse bias, two-electron levels and
two hole levels need to be involved. This correspond to a
four-level system �M =4�. For a hole tunneling through level
Eh,� while the other hole level j and electron levels 1 and 2
can be occupied by 0, 1, or 2 particles, the retarded Green’s
function is given by

Gh�,�
r ��� = �âhj + b̂hj + chj��âe2 + b̂e2 + ce2��âe1 + b̂e1 + ce1�

�� 1 − Nh�,−�

�h,� − 2Uhh,j� + 2Ueh,1� + 2Ueh,2�

+
Nh�,−�

�h,� − Uhh,� − 2Uhh,j� + 2Ueh,1� + 2Ueh,2�
� ,

�10�

and similarly for an electron tunneling through level Ee�, we
have

Ge�,�
r ��� = �âej + b̂ej + cej��âh2 + b̂h2 + ch2��âh1 + b̂h1 + ch1�

�� 1 − Ne�,−�

�e,� − 2Uee,j� + 2Ueh,1� + 2Ueh,2�

+
Ne�,−�

�e,� − Uee,� − 2Ueh,j� + 2Ueh,1� + 2Ueh,2�
� ,

�11�

where �e�h�,�=�e�h�,�−Ee�h�,�+ i��e�h�,L,�+�e�h�,R,�� /2. Uee,�
�Uhh,�� and Ueh,j� denote the intralevel and interlevel electron
�hole� Coulomb interactions, respectively. The signs preced-
ing these Coulomb interactions are chosen such that all Uj,�’s
are positive. Note that index j�� in Eqs. �10� and �11� is
restricted into the same band. Ueh,1� and Ueh,2� describe in-

terband electron-hole Coulomb interactions. The above ex-
pressions are based on the assumption that �e�h�,��Re�h�,�,
where �e�h� and Re�h�,� are the electron �hole� tunneling rates
and electron-hole recombination rates involving level �. The
sum of electron and hole tunneling current in the reverse bias
can be expressed as

J =
− 2e

�
�

�
�� d�e

2�
�fe,L��e� − fe,R��e��Te Im Ge,�,�

r ��e�

−� d�h

2�
�fh,L��h� − fh,R��h��Th Im Gh,�,�

r ��h�� , �12�

where fe��� and fh��� are the Fermi distribution functions
for electrons and holes, respectively. Te�h�
=�e�h�,�,L�e�h�,�,R / ��e�h�,�,L+�e�h�,�,R�. Note that we intro-
duced the so-called hole electrodes in Eq. �12�, which is
empty states of electron electrodes. Let us consider the case
where the energy gap of the quantum dot is Eh+Ee
=2.28 eV.21 Under the picture of hole electrodes, the ground
state of holes will be 1.5 eV above the Fermi energy of hole
electrodes. When the applied bias of left electron electrode is
in the regime of negative bias, such a bias appears positive
for holes in the left electrode. Because Reh is typically less
than 0.01 meV for semiconductor QDs �which is much
smaller than the tunneling rates considered here�, we can
safely ignore the effect of radiative recombination on the
average occupancy in the analysis here.

To describe the tunneling spectra observed in Refs. 21 and
22, some physical parameters relevant with holes and
electron-hole Coulomb interactions should be determined.
First, we adopt the energy level separation for holes as
Eh,2−Eh,1=80 meV, which is much smaller than that
between the ground state and the first excited state of elec-
trons. The intralevel and interlevel hole Coulomb interac-
tions are Uhh,11=160 meV, Uhh,22=140 meV, and Uhh,12
=Uhh,21=150 meV. Due to the more localized wave function
for holes �as a result of heavier effective mass for the valence
band�, it is expected that hole-hole Coulomb interactions
are stronger than those for electrons. Meanwhile
Ueh,11=−130 meV, Ueh,12=−120 meV, Ueh,21=−108 meV,
and Ueh,22=−85 meV. The tunneling rates for electron and
hole energy levels are given by �e,1,L=0.5 meV, �e,1,R
=0.1 meV, �e,2,L=3.0 meV, �e,2,R=0.6 meV, �h,1,L
=1.0 meV, �h,1,R=0.6 meV, �h,2,L=1.0 meV, and �h,2,R
=0.6 meV. Figure 6 shows the calculated differential con-
ductance as a function of the negative bias. Again, we take
into account the inhomogeneous broadening effect by replac-
ing each Lorentzian function appearing in the differential
conductance by a Gaussian broadening function with width
�=35 meV. For comparison, the experimental results taken
from Ref. 21 are shown on the top of the figure. Our results
for negative bias below −2.5 V agree well with the experi-
ment. Because the experimental system is not stable in the
strong negative bias regime, Jdira21,22 did not show the tun-
neling spectra beyond −2.5 V. The complete spectra in the
high bias regime �beyond −2.5 V� should involve more than
four levels.
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According to the results shown in Fig. 6, the origin of
each resonant channels can be clearly clarified. The first tun-
neling resonance corresponds to electrons of right electrode
tunneling through �1=Ee,1 level. Once electrons are injected
into the quantum dot, holes in the left electrode are injected
into the second resonant channel of �2=Eh,1−Ueh,11. The
broadened peaks P1 and P2 observed in Ref. 21 are attributed
to these two resonant channels with more negative bias elec-
trons tunnel through the third channel at �3=Ee,2−Ueh,21. We
also identify the subsequent resonant channels as
�4=Ee,1+Uee,11, �5=Eh,2−Ueh,12, �6=Ee,2−Ueh,22, �7=Ee,2

+Uee,12−Ueh,21−Ueh,22, �8=Ee,2+2Uee,12−2Ueh,21−Ueh,22,
and �9=Eh,1. Note that the corresponding voltages of �5 and
�6 almost merge together. �8 and �9 are the same. Based on
the tunneling rate ratios, electrons are in the shell-tunneling
regime. On the other hand, holes are in the shell-filling re-
gime. This indicates that holes tend to remain inside the QD
during this bipolar tunneling process.

We also note that during the bipolar tunneling process, the
electron and hole can recombine to produce a single-photon
emission spectrum, which can be tuned by the applied bias.
The electrically driven single-photon source has found im-
portant application in quantum communications.37 Here we
show that the bipolar tunneling process in an STM-tip/QD
tunnel junction can produce interesting bias-dependent emis-
sion spectra of exciton complexes. For the sake of simplicity,
only a two-level model is considered in the following study.
We calculate the polarization for the spontaneous emission
process and obtain the following form:

P��� = �eh
2 �NX0

�X0
+

NX−

�X−
+

NX+

�X+
+

NX2

�X2
� . �13�

where �eh is the Rabi frequency of an emission photon with
angular frequency of �. The emission spectrum strengths of
exciton complexes are determined by the probability factors

NX0 = Ne,�Nh,−� − �ne,−�ne,��Nh,−� − �nh,−�nh,��Ne,�

+ �nh,−�nh,���ne,−�ne,�� ,

NX− = �ne,�ne,−���Nh,−� − �nh,�nh,−���

NX+ = �nh,�nh,−���Ne,� − �ne,�ne,−��� ,

and

NX2 = �nh,�nh,−���ne,�ne,−�� ,

which correspond, respectively, to the emission frequencies
of exciton �X0 =Ee,1+Eh,1−Ueh,11−�+ i�, negative trion
�X− =Ee,1+Eh,1+Uee,11−2Ueh,11−�+ i�, positive trion �X+

=Ee,1+Eh,1+Uhh,11−2Ueh,11−�+ i�, and biexciton �X2

=Ee,1+Eh,1+Uhh,11+Uee,11−3Ueh,11−�+ i�.
In the absence of particle correlation, the polarization re-

duces to P���=�eh
2 NeNh / �Ee,1+Eh,1−�+ i��. The imaginary

part of P��� describes the emission spectra, which is shown
in Fig. 7. Emission peaks due to the exciton, negative trion,
positive trion, and biexciton are labeled by X0, X−, X+, and
X2, respectively. Here we assume Uh�Ueh�Ue since the
hole tends to be more localized than the electron due to its
heavier effective mass. Therefore, the biexciton emission
peak �transition from the biexciton to the exciton� exhibits a
blueshift from the exciton peak. Because the probability of
each emission peak is determined by the occupation num-
bers, which are sensitive to the applied bias, it leads to dra-
matic changes in intensity for various peaks as the applied
bias is varied. Such dramatic change was not observed in the
p-n junction setup, as reported in Ref. 1, because the occu-
pation number can be changed easily in that setup.

FIG. 6. �Color online� Differential conductance as a function of
negative applied bias with and without the inhomogeneous broad-
ening. For comparison, the experimental data taken from Ref. 21 is
shown on top. Four one-particle energy levels in the QD �two for
electrons and two for holes� are considered in the modeling.
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V. SUMMARY

A multiple-level Anderson model which takes into ac-
count the intralevel and interlevel Coulomb interactions is
used to calculate the tunneling current spectra of quantum
dot tunnel junctions. The tunneling current through the
ground state and excited states of individual quantum dots
are calculated in the framework of Green’s function method.
A closed form expression of the spectral function is derived
and it provides a simple and efficient way to model the com-
plicated tunneling current behavior of a quantum dot junc-
tion.

The tunneling current characteristics as functions of the
applied bias Va and gate voltage Vg are investigated. It is
found that due to the Coulomb blockade effect, the
tunneling-rate ratio can significantly influences the tunneling
current spectra of the quantum dot junction. This indicates
that the implementation of quantum dot junction should have
precise control over the position, shape, and size of quantum
dots in order to achieve the desired IV characteristics. We
also point out that the negative differential conductance can
be produced due to the interdot Coulomb interactions for a
tunnel junction involving multiple QDs sandwiched between
the metallic electrodes. Using a four-level model �two level
for electrons and two level for holes�, we can identify the
origin of various peaks observed in the bipolar tunneling
current spectra, as reported in Refs. 21 and 22. Finally, we
show that the bipolar tunneling process can lead to a single-
photon emission spectrum, which can be changed dramati-
cally via the change in the applied bias.
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APPENDIX A: QUANTUM DOT JUNCTION INVOLVING
TWO LEVELS

In this appendix, we derive the retarded Green’s function
for the case with two levels. The derivations presented here
will make the rigorous proof for the general case �as pre-
sented in Appendix B� much easier to follow. We consider a
quantum dot with two levels denoted by � and j �j���.
From the equation of motion for G�,�

r �t�, we obtain

�lG�,�
r ��� = 1 + U�G�,�

r ��� + U�,j�G�,j,−�
r ��� + G�,j,�

r ���� ,

�A1�

where �l
�−E�+ i���,L+��,R� /2 and G�,�
r ���

= �n�,−�d�,�d�,�
† �, G�,j,−�

r ���= �nj,−�d�,�d�,�
† �, and G�,j,�

r ���
= �nj,�d�,�d�,�

† � are the two-particle Green’s functions which
are coupled to G�,�

r via the intralevel and interlevel Coulomb
interactions. ��,L and ��,R are the tunneling rates, describing
the coupling between the quantum dot and the electrodes.
Here, we have not included the effect of particle correlation
on the tunneling rates. Such approximation is adequate for
describing the Coulomb blockade, but not the Kondo effect.9

In this paper, we only focus on the Coulomb blockade re-
gime.

To solve Eq. �A1�, we need to calculate the equation of
motion of the two-particle Green’s functions. They satisfy

��l − U��G�,�
r ��� = N�,−� + U�,j�G�,�,j,−�

r ��� + G�,�,j,�
r ���� ,

�A2�

��l − U�,j�G�,j,−�
r ��� = Nj,−� + U�G�,�,j,−�

r ��� + U�,jG�,j,j
r ��� ,

�A3�

and

��l − U�,j�G�,j,�
r ��� = Nj,� + U�G�,�,j,�

r ��� + U�,jG�,j,j
r ��� .

�A4�

N�,−� and Nj,� �Nj,−�� are the steady-state electron occupation
numbers in the �th and jth level. Note that � is not
equal to j in Eqs. �A1�–�A4�. Now the two-particle Green’s
functions are coupled to the following three-particle Green’s
functions: G�,�,j,−�

r ���= �n�,−�nj,−�d�,�d�,�
† �, G�,�,j,�

r ���
= �n�,−�nj,�d�,�d�,�

† �, and G�,j,j
r ���= �nj,−�nj,�d�,�d�,�

† �. The
equation of motion of the three-particle Green’s functions
will lead to coupling with the four-particle Green’s functions,
where the hierarchy terminates. Three particle Green’s func-
tions are given by

��l − U� − U�,j�G�,�,j,−�
r ��� = N�,−�Nj,−� + U�,jG4

r , �A5�

��l − U� − U�,j�G�,�,j,�
r ��� = N�,−�Nj,� + U�,jG4

r , �A6�

and

��l − 2U�,j�G�,j,j
r ��� = �nj,−�nj,�� + U�G4

r , �A7�

where G4
r 
�n�,−�nj,−�nj,�d�,�d�,�

† � is the four-particle
Green’s function, which can be immediately solved since the
hierarchy of equations of motion terminates here. We obtain

��l − U� − 2U�,j�G4
r = N�,−��nj,−�nj,�� . �A8�

Consequently, these three-particle Green’s functions can be
expressed in the following closed form:

G�,�,j,−�
r ��� = N�,−�� Nj,−� − cj

�l − U� − U�,j
+

cj

�l − U� − 2U�,j
� ,

�A9�

where cj 
�nj,−�nj,�� denotes the two-particle occupation
number in the same level j and we have used the identity

U�,j

��l − U� − U�,j���l − U� − 2U�,j�

=
1

�l − U� − 2U�,j
−

1

�l − U� − U�,j
. �A10�

Similarly,

G�,j,j
r ��� = cj� 1 − N�,−�

�l − 2U�,j
+

N�,−�

�l − U� − 2U�,j
� . �A11�

and
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G�,�,j,�
r ��� + G�,�,j,−�

r ���

= N�,−�� bj

�l − U� − U�,j
+

2cj

�l − U� − 2U�,j
� ,

�A12�

where bj 
Nj,−�+Nj,�−2cj denotes the probability of finding
one particle in the level j. Equation �A11� describes the
mixed amplitudes for the propagation of an electron in level
� in the presence two other electrons in level j. Equation
�A12� describes the mixed amplitudes for the propagation of
n electron in level � with another electron in the same level
�with opposite spin� plus one more electron in level j �with
either spin�. From Eqs. �A9� and �A11�, we observe a simple
“sum rule:” the sum of the numerators of all terms �i.e.,
probability factors of all propagators� is always equal to the
first term appearing in the right-hand side of the equation of
motion for the Green’s function, i.e., Eqs. �A5� and �A7�.
The probability factors for the remaining propagators are di-
rectly related to those appearing in the higher-particle-
number Green’s functions, which are coupled to the present
one. This sum rule should always hold since all numerators
are derived from partitions of the product of two fractions for
the remaining terms. This sum rule will be very convenient
for checking the derivations and it also allows easy determi-
nation of the probability factor of the leading propagator.
Henceforth, for all the derivations below, we can determine
the numerators for the nonleading terms first �which are eas-
ily obtained via partition of a product of two fractions� and
then use the sum rule to determine the numerator of the
leading term �which would be very tedious if we try to work
out directly�.

Substituting Eq. �A12� into Eq. �A2�, we obtain

G�,�
r ��� = N�,−�� aj

�l − U�

+
bj

�l − U� − U�,j

+
cj

�l − U� − 2U�,j
� , �A13�

where aj 
1−bj −cj =1−Nj,�−Nj,−�+cj is determined by us-
ing the sum rule and it denotes the probability of finding no
particle in level j. Substituting Eqs. �A11� and �A12� into the
sum of Eqs. �A3� and �A4�, we obtain

G�,j,−�
r ��� + G�,j,�

r ��� = bj�1 − N�,−�

�l − U�,j
+

N�,−�

�l − U� − U�,j
�

+ 2cj� 1 − N�,−�

�l − 2U�,j
+

N�,−�

�l − U� − 2U�,j
� ,

�A14�

where we have used the identity

�U� + U�,j�2cjN�,−�

��l − U�,j���l − U� − 2U�,j�

= 2cjN�,−�� 1

�l − U�,j
−

1

�l − U� − 2U�,j
� . �A15�

Note that the sum of the amplitudes of all propagators in Eq.
�A14� is

bj + 2cj = Nj,� + Nj,−�,

which again satisfies the sum rule mentioned above.
Inserting Eqs. �A13� and �A14� into Eq. �A1�, we obtain

the final expression

G�,�
r ��� = �

k=1

3

pk� �1 − N�,−��
�l − 
k

+
N�,−�

�l − U� − 
k
� , �A16�

where 
1=0 ,
2=U�,j, and 
2=2U�,j. p1=aj, p2=bj, and
p3=cj. This result corresponds to Eq. �6� with M =2.

According to the expression of the retarded Green’s
function of Eq. �6�, we need to determine the average
occupation numbers N�,��N�,−�� and N�,�, which can
be calculated by N�,�=��d� /2�i��d�,�d�,�

† �� and N�,�
=��d� /2�i��d�,�n�,−�d�,�

† ��, respectively.38 The lesser
Green’s functions �d�,�d�,�

† �� and �d�,�n�,−�d�,�
† �� can

be obtained by the equation of motion method25,39

or the Dyson equation approach.9 In the Coulomb
blockade regime, we have �d�,�d�,�

† ��=2f����Im G�,�
r ���

and �d�,�n�,−�d�,�
† ��=2f����Im G�,�

r ���, where f����
=−i���,L���fL���+��,RfR���� / ���,L+��,R�. The above results
lead to Eqs. �7� and �8�, which can be used to calculate the
average occupation numbers.

APPENDIX B: QUANTUM DOT JUNCTION WITH
ARBITRARY NUMBER OF LEVELS

Now, we consider the general case with M levels
�M �2� labeled by j=1, . . . ,M. Equations �A1� and �A2�
become

�lG�,�
r ��� = 1 + U�G�,�

r ��� + �
j

�
U�,j�G�,j,−�

r ��� + G�,j,�
r ���� ,

�B1�

where the prime on the summation means that the level � is
excluded.

��l − U��G�,�
r ��� = N�,−� + �

j

�
U�,j�G�,�,j,−�

r ��� + G�,�,j,�
r ���� .

�B2�

We define the �2+n�- and �1+n�-particle �n�2M −2�
Green’s functions as

G�,�,j1,. . .,jn
r = �n�,−�nj1

¯ njn
d�,�d�,�

† � ,

and

G�,j1,. . .,jn
r = �nj1

¯ njn
d�,�d�,�

† � ,

where j1 , . . . , jn label any n states out of the 2�M −1� states
�excluding spin up and down states in level ��. Here j� is a
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composite index for energy level and spin. In general, the
�2+n�- and �1+n�-particle �n�2M −2� Green’s functions
satisfy

��l − U� − �
�=1

n

U�,j��G�,�,j1,. . .,jn
r

= N�,−��nj1
¯ njn

� + �
j�

�
U�,j�

G�,�,j1,. . .,jn,j�
r , �B3�

and

��l − �
�=1

n

U�,j��G�,j1,. . .,jn
r = �nj1

¯ njn
� + U�G�,�,j1,. . .,jn

r

+ �
j�

�
U�,j�G�,j1,. . .,jn,j�

r , �B4�

where the “double prime” on the summation indicates that j�
is not among the n states and not in the level �. In the
n-particle state labeled by j1 , . . . , jn, if there are m levels
occupied with two particles and the rest singly occupied, we
can label them by j1 , j1 , . . . , jm , jm , j2m+1 , . . . , jn. We then as-
sume that the n-particle correlation function can be factor-
ized as follows

�nj1
¯ njn

� = cj1
¯ cjm

N2m+1 ¯ Nn,

where cji
= �nji

nji
� denotes the two-particle correlation func-

tion in level ji and Nj = �nj� denotes the average occupancy in
state j. Note that if we made the further approximation cji
=Nji

Nji
, it would then correspond to the Hartree–Fock ap-

proximation, typically adopted in the literature for studying
the charge transport of an SET. Here, we shall go beyond the
Hartree–Fock approximation by keeping the two-particle
correlation functions when the two particles occupy the same
level. They are evaluated by solving Eq. �8� self-consistently.

The 2M-particle Green’s function can be immediately
solved since the hierarchy of equations of motion terminates
there. We obtain

G2M
r 
�n�,−��

j

�
�nj,−�nj,��d�,�d�,�

† �
=

N�,−��
j

�
cj

��l − U� − 2�
j

�
U�,j� , �B5�

where � j�means taking the product of terms with subscript
j=1, . . . ,M, excluding ��. cj is the probability of fining two
particles in level j. The �2M −1�-particle Green’s functions
can then be solved by substituting Eq. �B5� into Eqs. �B3�
and �B4�. It is convenient to redefine the �2M −m�-particle
Green’s functions as

Gj1,. . .,jm
r 
 G�,�,jm+1,. . .,j2M−2

r ,

and

G�,− �,j1,. . .,jm−1

r 
 G�,jm,. . .,j2M−m

r ,

where j1 , . . . , jm denotes states 1¯m are unoccupied while
all the rest are occupied and � ,−� denotes that the state
�� ,−�� is unoccupied. Following the same procedure as for
deriving Eq. �A12�, we obtain for the �2M −1�-particle
Green’s functions

�
�1

Gj1,�1

r = N�,−���
j

�
cj/cj1�� bj1

�l − U� − 2�
j

�
U�,j + U�,j1

+
2cj1

�l − U� − 2�
j

�
U�,j�


 �b̂j1
+ 2cj1

�G2M
r /cj1

, �B6�

and

G�,− �
r = ��

j

�
cj�� 1 − N�,−�

�l − 2�
j

�
U�,j

+
N�,−�

�l − U� − 2�
j

�
U�,j�


 �q̂� + 1�G2M
r , �B7�

where q̂�
N�,−�
−1 b̂�, and bj1

denotes the probability of finding

one particle in level j1� as defined previously. b̂j �b̂�� is an
operator that puts a factor bj �b�
1−N�,−�� in the numerator
and increases the value of the denominator by U�,j �U��
when acting on a fractional function.

To get the �2M −2�-particle Green’s function, we substi-
tute Eq. �B6� into Eq. �B3� and obtain �following the same
procedure as for deriving Eq. �A13��

Gj1j1
r = N�,−���

j

�
cj/cj1�� aj1

�l − U� − 2�
j

�
U�,j + 2U�,j1

+
bj1

�l − U� − 2�
j

�
U�,j + U�,j1

+
cj1

�l − U� − 2�
j

�
U�,j�


 �âj1
+ b̂j1

+ cj1
�G2M

r /cj1
, �B8�

where the two missing particles are associated with the same
level j1 and the spin indices of the pair have been omitted. âj
is an operator that puts a factor aj in the numerator and
increases the value of the denominator by 2U�,j when acting
on a propagator. When the two missing particles are associ-
ated with two different levels j1 and j2, we have
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�
�1�2

Gj1,�1,j2,�2

r = N�,−���
j

�
cj/�cj1

cj2
��� bj1

bj2

�l − U� − 2�
j

�
U�,j + U�,j1

+ U�,j2

+
2bj1

cj2

�l − U� − 2�
j

�
U�,j + U�,j1

+
2cj1

bj2

�l − U� − 2�
j

�
U�,j + U�,j2

+
4cj1

cj2

�l − U� − 2�
j

�
U�,j�

= �b̂j1
+ 2cj1

��b̂j2
+ 2cj2

�G2M
r /�cj1

cj2
� . �B9�

Similarly, substitute Eqs. �B6� and �B7� into Eq. �B4� yields

�
�1

G�,− �,j1,�1

r = ��
j

�
cj/cj1��bj1� 1 − N�,−�

�l − 2�
j

�
U�,j + U�,j1

+
N�,−�

�l − U� − 2�
j

�
U�,j + U�,j1�

+ 2cj1� 1 − N�,−�

�l − 2�
j

�
U�,j

+
N�,−�

�l − U� − 2�
j

�
U�,j��

= �q̂� + 1��b̂j1
+ 2cj1

�G2M
r /cj1

. �B10�

To get the �2M −3�-particle Green’s function, we substitute Eqs. �B8� and �B9� into Eq. �B3� and obtain

�
�2

Gj1j1,j2,− �2

r = N�,−���
j

�
cj/�cj1

cj2
��� aj1

bj2

�l − U� − 2�
j

�
U�,j + 2U�,j1

+ U�,j2

+
bj1

bj2

�l − U� − 2�
j

�
U�,j + U�,j1

+ U�,j2

+
cj1

bj2

�l − U� − 2�
j

�
U�,j + U�,j2

+
2aj1

cj2

�l − U� − 2�
j

�
U�,j + 2U�,j1

+
2bj1

cj2

�l − U� − 2�
j

�
U�,j + U�,j1

+
2cj1

cj2

�l − U� − 2�
j

�
U�,j�

= �âj1
+ b̂j1

+ cj1
��b̂j2

+ 2cj2
�G2M

r /�cj1
cj2

� , �B11�

and

�
�1�2�3

Gj1,�1,j2,�2,j3,�3

r = N�,−���
j

�
cj/�cj1

cj2
cj3

��� bj1
bj2

bj3

�l − U� − 2�
j

�
U�,j + U�,j1

+ U�,j2
+ U�,j3

+
2bj1

bj2
cj3

�l − U� − 2�
j

�
U�,j + U�,j1

+ U�,j2

+
2cj1

bj2
bj3

�l − U� − 2�
j

�
U�,j + U�,j2

+ U�,j3

+
2bj1

cj2
bj3

�l − U� − 2�
j

�
U�,j + U�,j1

+ U�,j3

+
4bj1

cj2
cj3

�l − U� − 2�
j

�
U�,j + U�,j1

+
4cj1

bj2
cj3

�l − U� − 2�
j

�
U�,j + U�,j2

+
4cj1

cj2
bj3

�l − U� − 2�
j

�
U�,j + U�,j3

+
8cj1

cj2
cj3

�l − U� − 2�
j

�
U�,j�

= �b̂j1
+ 2cj1

��b̂j2
+ 2cj2

��b̂j3
+ 2cj3

�G2M
r /�cj1

cj2
cj3

� . �B12�

Similarly, substituting Eqs. �B8�–�B10� into Eq. �B4� yields
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G�,− �,j1j1
r = ��

j

�
cj/cj1��aj1� 1 − N�,−�

�l − 2�
j

�
U�,j

+
N�,−�

�l − U� − 2� j
� U�,j� + bj1� 1 − N�,−�

�l − 2� j
� U�,j + U�,j1

+
N�,−�

�l − U� − 2� j
� U�,j + U�,j1�

+ cj1� 1 − N�,−�

�l − 2� j
� U�,j

+
N�,−�

�l − U� − 2� j
� U�,j��

= �q̂� + 1��âj1
+ b̂j1

+ cj1
�G2M

r /cj1
, �B13�

and

�
�1�2

G�,− �,j1,�1,j2,�2

r = ��
j

�
cj/cj1

cj2��bj1
bj2� 1 − N�,−�

�l − 2� j
� U�,j + U�,j1

+ U�,j2

+
N�,−�

�l − U� − 2� j
� U�,j + U�,j1

+ U�,j2
�

+ 2bj1
cj2� 1 − N�,−�

�l − 2� j
� U�,j + U�,j1

+
N�,−�

�l − U� − 2� j
� U�,j + U�,j1

�
+ 2cj1

bj2� 1 − N�,−�

�l − 2� j
� U�,j + U�,j2

+
N�,−�

�l − U� − 2� j
� U�,j + U�,j2

�
+ 4cj1

cj2� 1 − N�,−�

�l − 2� j
� U�,j

+
N�,−�

�l − U� − 2� j
� U�,j

��
= �q̂� + 1��b̂j1

+ 2cj1
��b̂j2

+ 2cj2
�G2M

r /�cj1
cj2

� . �B14�

Based on the above derivations, we can now prove the following two theorems.
Theorem 1. The �2+n�-particle Green’s functions for m singly occupied levels and �n�−m� empty levels �with any choice

of n� and m subject to the constraints n��M, 0�m�n�, and 2�M −n��+m=2+n� satisfy the following relation:

�
�1,. . .,�m

Gj1�1, . . . , jm�m,jm+1jm+1, . . . , jn�jn�

r = ��
i=1

m

�b̂ji
+ 2cji

� �
i=m+1

n�

�âji
+ b̂ji

+ cji
��G2M

r ��
i=1

n�

ci

= �
k=1

2m�3n�−m

pk

�� − U� − 
k
, �B15�

where levels j1 , . . . , jm are singly occupied, levels jm+1 , . . . , jn� are empty, and the remaining �M −n�� levels are doubly
occupied. Each term in the sum represents a “propagator” with probability pk given by the product of the corresponding
coefficients and the pole occurring at the corresponding energy 
k, which is determined by counting the occupancies of levels
associated with the configuration.

Theorem 2. The �1+n�-particle Green’s functions for m+1 singly occupied levels �including the level �� and �n�−m� empty
levels �with any choice of n� and m subject to the constraints n��M, 0�m�n�, and 2�M −n��+m=2+n� satisfy the following
relation:

�
�1,. . .,�m

G�,− �,j1�1, . . . , jm�m,jm+1jm+1, . . . , jn�jn�

r = �q̂� + 1��
i=1

m

�b̂ji
+ 2cji

� �
i=m+1

n�

�âji
+ b̂ji

+ cji
�G2M

r ��
i=1

n�

cji

= �
i

2m�3n�−m � q�pk

�� − 
k
+

pk

�� − U� − 
k
� . �B16�

The above two theorems can be proved via induction. We already shown from Eqs. �B6�–�B14� that Theorem 1 is valid for the
cases 2+n�2M −3 and Theorem 2 is valid for the cases 1+n�2M −3. Assuming that case n is valid if we can show that Case
�n−1� is also valid, then the above two theorems are proved. Let us consider a �2+n−1�-particle Green’s function, which is
obtained by removing one particle from the �2+n�-particle Green’s function as described in Theorem 1. Assume that the
particle is removed from the level jr, which can be any level other than jm+1 , . . . , jn� or �. There are two possible situations: �a�
jr does not coincide with one of the levels in j1 , . . . , jm and �b� jr coincides with one of the levels in j1 , . . . , jm. We first consider
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the situation �a�. Substituting Eq. �B15� into Eq. �B3� and summing over all spin indices for singly occupied levels yields

�
�r,�1,. . .,�m

Gjr�r, j1�1, . . . , jm�m,jm+1jm+1, ¯ , jn�jn�

r

= ��l − U� − 2�
j

�
U�,j + �

i=1

m

U�,ji
+ 2 �

i=m+1

n�

U�,ji
+ U�,jr�−1

��N�,−� �
�r,�1,. . .,�m

�njr�r
nj1�1

¯ njm�m
� �

i=n�+1

M

ci + �
�r

�
j�

�
U�,j�P̂j�,jr�r�

i=1

m

�b̂ji
+ 2cji

� �
i=m+1

n�

�âji
+ b̂ji

+ cji
�G2M

r ��
i=1

n�

ci�
= ��l − U� − 2�

j

�
U�,j + �

i=1

m

U�,ji
+ 2 �

i=m+1

n�

U�,ji
+ U�,jr�−1

��N�,−��Njr,+
+ Njr,−

��
i=1

m

�Nji,+
+ Nji,−

� �
i=n�+1

M

ci + �
�r

�
j�

�
U�,j�P̂j�,jr�r �

k=1

2m�3n�−m

pk

�� − U� − 
k
� , �B17�

where P̂j�,jr�r
is a permutation operator that replaces the index j� with jr�r. j� is a composite index for spin and orbital that runs

through all the states, which are not occupied in the �2+n−1� configuration. There are nr=2M −n−1 states available. The
permutation operator affects all the coefficients in the term that follows �i.e., pk and 
k�. When j�= jr�r, the �2+n−1�-particle
configuration considered here is coupled to the �2+n�-particle configuration, as described in Eq. �B15�. When j�� jr�r, it

converts an operator b̂j� to b̂jr
or an operator âj� to b̂jr

b̂j�, thus changing the probability factor pk and the pole 
k. For a

permutation with j� labeling a singly occupied level, we obtain 2m�3n�−m propagators, while for j� labeling an empty level,
we obtain 2m+2�3n�−m−1 propagators. We can prove that

�
�r,�1,. . .,�m

Gjr�r, j1�1, . . . , jm�m,jm+1jm+1, . . . , jn�jn�

r = �b̂jr
+ 2cjr

��
i=1

m

�b̂ji
+ 2cji

� �
i=m+1

n�

�âji
+ b̂ji

+ cji
�G2M

r ��cjr�
i=1

n�
cji�

= �
k=1

2�m+1��3n�−m

pk�

�� − U� − 
k�
, �B18�

which takes the same form as Eq. �B15�. To see this, we first
show that for every propagator appearing in Eq. �B18�, there
is a corresponding propagator in Eq. �B17� with the same
denominator. It is easy to see that the first term �the leading
propagator� in Eq. �B17� has the same denominator as the

term �b̂jr
��i=1

m b̂ji
���i=m+1

n� âji
��G2M

r in Eq. �B18�, which repre-
sents a configuration of �2+n−1� particles. For all the other
terms, which represent configurations with �2+n� or more
particles, we can always find it from the product

��i=1
m �b̂ji

+2cji
��i=m+1

n� �âji
+ b̂ji

+cji
��G2M

r via suitable permuta-
tion of indices. For example, the term

b̂jr���
i=1

m−2

b̂ji�cjm−1
cjm� �

i=m+1

n�

âji��G2M
r

appearing in Eq. �B18� can be obtained via the permutation

P̂jm−1,jr
or P̂jm,jr

in Eq. �B17�. Likewise, the term

b̂jr���
i=1

m

b̂ji�b̂jm+1
� �

i=m+2

n�

âji��G2M
r

can be obtained via the permutation P̂jm+1,jr
. For any given

term in this group, the numerator obtained from Eq. �B17�
�not including the factor U�,j�� is always the same as that
from Eq. �B18�, since it only involves a permutation of states
and the numerator always equal to the corresponding prob-
ability factor pk for that configuration.

Next, we show that a given term in Eq. �B18�, which
corresponds to a �2+n−1+n��-particle configuration �where
n� is an integer between 1 and 2M −n−1� can always be
matched by making a permutation from the product

��i=1
m �b̂ji

+2cji
��i=m+1

n� �âji
+ b̂ji

+cji
��G2M

r with n� different
ways. For the start, it is easy to see that the term

cjr
��i=1

m 2cji
���i=m+1

n� cji
�G2M

r / �cjr
�i=1

n� cji
� in Eq. �B18� can be

matched by applying any of the nr=2M −1−n permutations
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on the product ��i=1
m 2cji

���i=m+1
n� cji

�G2M
r /�i=1

n� cji
in Eq. �B17�

since the c operators are just plain numbers, and they have
no effect on the denominator of the term. For the analysis
below, we are not concerned with the numerator of the term.
Thus, the presence of an âj operator will be treated as the

product of two b̂ operators, b̂j+b̂j− �the + and − indicate the

two spin states�. When a b̂ja
operator appears in a given

product of Eq. �B18�, the permutation Pj�,jr�r
with

j�= ja must be excluded since we cannot replace b̂ja
by b̂jr

and produce a match. Thus, for the �2+n−1+n��-particle

configuration in Eq. �B17�, there are �nr−n�� b̂ operators,

b̂j1
, . . . , b̂jnr−n�

appear in the product, and we must exclude the

permutations with j�= j1 , . . . , ĵnr−n� and left with n� different
permutations.

Therefore, we have shown that

�
�r

�
j�

�
U�,j�P̂j�,jr�r �

k

2m�3n�−m

pk

�� − U� − 
k

= �
k=2

2m+1�3n�−m � �
i=1

n��k�

U�,ji�� pk�

�� − U� − 
k�
. �B19�

Namely, every term labeled k in Eq. �B18� is matched from
the sum of n� terms �n� depends on k� in Eq. �B17� except
the leading term �k=1�. Furthermore, the prefactor for this

term �i=1
n� Û�,ji�

must be equal to the difference in energy de-
nominator between the term and the leading propagator. This
is obvious since the leading term is produced by the product

b̂j1
, . . . , b̂jnr

and the term of concern is produced by the prod-

uct b̂j1
, . . . , b̂jnr−n�

. Thus, such a term can always be written as

��l − U� − 2�
j

�
U�,j + �

i=1

m

U�,ji
+ 2 �

i=m+1

n�

U�,ji
+ U�,jr�−1��

j�=1

n�

Û�,j�� pk�

�� − U� − 
k�

=
pk�

�� − U� − 
k�
−

pk�

�l − U� − 2� j
� U�,j + �i=1

m
U�,ji

+ 2�i=m+1
n� U�,ji

. �B20�

So it introduces a coefficient −pk� to the numerator of the leading propagator. Thus, the numerator of the leading propagator
becomes

N�,−��Njr,+
+ Njr,−

��
i=1

m

�Nji,+
+ Nji,−

� �
i=n�+1

M

ci − �
k=2

2�m+1��3n�−m

pk�,

which can be shown to be the same as p1� in Eq. �B18�. Namely, the sum rule described above is satisfied. This is verified via
the relation

�
k

pk��� �
i=n�+1

M

ci� = N�,−��bjr
+ 2cjr

���
i=1

m

�bji
+ 2cji

� �
i=m+1

n�

�aji
+ bji

+ cji
��

= N�,−��Njr,+
+ Njr,−

��
i=1

m

�Nji,+
+ Nji,−

� , �B21�

since aji
+bji

+cji
=1 and bji

+2cji
=Nji,+

+Nji,−
. Therefore, we have proved that if Eq. �B15� is valid for a �2+n�-particle

configuration with m singly occupied levels and �n�−m� empty levels, the same equation holds for a �2+n−1�-particle
configuration with m+1 singly occupied levels and �n�−m� empty levels.

Next, we consider the situation �b� when we remove one particle from the level jr, where jr coincides with one of the levels
in j1¯ jm. Without losing generality, we let jr= jm. Namely, we want to prove that

�
�1,. . .,�m−1

Gj1�1, . . . , jm−1�m−1,jmjm, jm+1jm+1, . . . , jn�jn�

r = �
i=1

m−1

�b̂ji
+ 2cji

��
i=m

n�

�âji
+ b̂ji

+ cji
�G2M

r ���
i=1

n�

cji� �B22�

is valid, provided that Theorem 1 is valid. However, since Theorem 1 is valid for any choice of configuration subject to the
constraints. We can write a equation similar to Eq. �B15� for the following �2+n�-particle Green’s function:

�
�1,. . .,�m−2

Gj1�1, . . . , jm−2�m−2,jrjr, jmjm, . . . , jn�jn�

r ,

which is for the configuration with �m−2� singly occupied levels and �n�+1−m� empty levels. Since Eq. �B22� also describes
the situation where one particle is removed from level jm−1 �which does not coincide with one of the levels j1 , . . . , jm−2 from
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the configuration described above, we can use the relation just proved for situation �a� as described by Eq. �B18� to prove that
Eq. �B22� is valid. Consequently, Theorem 1 is valid for any �2+n−1�-particle Green’s function provided that it holds for any
�2+n�-particle Green’s function.

To prove Theorem 2, we consider a �1+n−1�-particle configuration, in which the levels �, jr, and j1 , . . . , jm are singly
occupied, jm+1 , . . . , jn� are empty, and the rest of the M levels are doubly occupied. Here we only consider the situation where
jr does not coincide with one of the levels in j1 , . . . , jm �i.e., situation �a� as discussed above for proving Theorem 1�.
Substituting Eqs. �B15� and �B16� into Eq. �B4� for this configuration yields

�
�r,�1,¯,�m

G�,− �,jr�r, j1�1, . . . , jm�m,jm+1jm+1, . . . , jn�jn�

r

= ��l − 2� j
U�,j + �

i=1

m

U�,ji
+ 2 �

i=m+1

n�

U�,ji
+ U�,jr�−1�N�,−� �

�r,�1,. . .,�m

�njr�r
nj1�1

¯ njm�m
� �

i=n�+1

M

ci

+ U���b̂jr
+ 2cjr

��
j=1

m

�b̂j + 2cj� �
i=m+1

n�

�âi + b̂i + ci��G2M
r ��

i=1

n�

ci + �q̂� + 1��
�r

� j�
U�,j�P̂j�,jr�r

���
j=1

m

�b̂j + 2cj� �
i=m+1

n�

�âi + b̂i + ci��G2M
r ��

i=1

n�

ci�
= ��l − 2� j

U�,j + �
i=1

m

U�,ji
+ 2 �

i=m+1

n�

U�,ji
+ U�,jr�−1��Njr,+

+ Njr,−
��

i=1

m

�Nji,+
+ Nji,−

� �
i=n�+1

M

ci

+ 2U� �
k=1

2m+1�3n�−m

pk�

�� − U� − 
k�
+ �q̂� + 1��

�r

� j�
U�,j�P̂j�,jr�r �

k

2m�3n�−m

pk

�� − U� − 
k
� , �B23�

where P̂j�,jr
is a permutation operator that replaces the index j� with jr�r. j� runs through all the states �including spin� that are

not occupied in the �1+n−1� configuration, excluding the level �. �j�=1, . . . ,nr ; nr
2M −n−1� Substituting Eq. �B19� into
Eq. �B23�, we obtain

�
�r,�1,. . .,�m

G�,− �,jr�r, j1�1, . . . , jm�m,jm+1jm+1, . . . , jn�jn�

r

= ��l − 2� j
U�,j + �

i=1

m

U�,ji
+ 2 �

i=m+1

n�

U�,ji
+ U�,jr�−1��Njr,+

+ Njr,−
��

i=1

m

�Nji,+
+ Nji,−

� �
i=n�+1

M

ci

+ U�� �
k=1

2m+1�3n�−m

pk�

�� − U� − 
k�
� + �q̂� + 1�� �

k=2

2m+1�3n�−m � �
i=1

n��k�

U�,ji�� pk�

�� − U� − 
k�
��

= ��l − 2� j
U�,j + �

i=1

m

U�,ji
+ 2 �

i=m+1

n�

U�,ji
+ U�,jr�−1��Njr,+

+ Njr,−
��

i=1

m

�Nji,+
+ Nji,−

� �
i=n�+1

M

ci

+ U�

p1�

�� − U� − 
1�
+ �

k=2

2m+1�3n�−m �� �
i=1

n��k�

U�,ji�� q�pk�

�� − 
k�
+ �U� + �

i=1

n��k�

U�,ji�� pk�

�� − U� − 
k�
�� . �B24�

Using the partition of product of fractions, we obtain

��r,�1,. . .,�m
Gjr�r, j1�1, . . . , jm�m,jm+1jm+1, . . . , jn�jn�

r = �q̂� + 1��b̂jr
+ 2cjr

���
i=1

m

�b̂ji
+ 2cji

� �
i=m+1

n�

�âji
+ b̂ji

+ cji
�� ·

G2M
r ��cjr�

i=1

n�

cji� = �
k=1

2�m+1��3n�−m � q�pk�

�� − 
k�
+

pk�

�� − U� − 
k�
� ,

which takes the same form as Eq. �B16�. The sum rule can also be easily verified since
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�
k

�q� + 1�pk� = N�,−�
−1 �

k

pk� = �Njr,+
+ Njr,−

��
i=1

m

�Nji,+
+ Nji,−

� + U�

p1�

�� − U� − 
1�
.

The situation �b� �i.e., when jr coincides with one of the levels in j1¯ jm� can be similarly proved by adopting the same
argument as in proving Theorem 1. Therefore, Theorem 2 is also proved. Using Theorems 1 and 2 and take the limit n=0
�m=0 and n�=M −1�, we immediately obtain the final expression for the two-particle and one-particle Green’s functions as
given in Eqs. �5� and �6�.
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